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HOPF–GALOIS EXTENSIONS
FOR MONOIDAL HOM-HOPF ALGEBRAS

BY

YUANYUAN CHEN and LIANGYUN ZHANG (Nanjing)

Abstract. Hopf–Galois extensions for monoidal Hom-Hopf algebras are investigated.
As the main result, Schneider’s affineness theorem in the case of monoidal Hom-Hopf
algebras is shown in terms of total integrals and Hopf–Galois extensions. In addition,
we obtain an affineness criterion for relative Hom-Hopf modules which is associated with
faithfully flat Hopf–Galois extensions of monoidal Hom-Hopf algebras.

1. Introduction. The study of nonassociative algebras was originally
motivated by certain problems in physics and in other branches of mathe-
matics. Hom-type algebras appeared first in physical contexts, in connection
with twisted, discretized or deformed derivatives and corresponding gener-
alizations, discretizations and deformations of vector fields and differential
calculus. The notion of Hom-Lie algebras was introduced by Hartwig, Lars-
son, and Silvestrov [17, 19, 20] as part of a study of deformations of Witt
algebras and Virasoro algebras. In a Hom-Lie algebra, the Jacobi identity is
twisted by a linear map, resulting in the Hom-Jacobi identity

[α(x), [y, z]] + [α(y), [z, x]] + [α(z), [x, y]] = 0,

where α is a Lie algebra endomorphism. Because of the close relation to dis-
crete and deformed vector fields and differential calculus, Hom-Lie algebras
have been widely studied recently (see [1, 2, 5, 6, 18, 24, 26, 29, 31]).

Hom-associative algebras play the role of associative algebras in the
Hom-Lie setting. They were introduced by Makhlouf and Silvestrov [22].
Hom-associative algebras and related structures have recently become rather
popular, due to the prospect of having a general framework in which one
can produce many types of natural deformations of algebras, including Hom-
coassociative coalgebras, Hom-Hopf algebras, Hom-alternative algebras,
Hom-Jordan algebras, Hom-Poisson algebras, Hom-Leibniz algebras, infini-
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tesimal Hom-bialgebras, Hom-power associative algebras, quasi-triangular
Hom-bialgebras (see [3, 7, 8, 9, 11, 12, 16, 21, 24, 30, 32]), and so on.

Makhlouf and Silvestrov further investigated Hom-associative algebras
and Hom-coassociative coalgebras in [23, 24]. Here the associativity of al-
gebras and the coassociativity of coalgebras were twisted by endomorphisms.
Hom-bialgebras are both Hom-associative algebras and Hom-coassociative
coalgebras such that the comultiplication and counit are morphisms of al-
gebras. These objects are slightly different from the ones studied in this
paper (see Section 1).

The theory of Hopf–Galois extensions, which has its roots in the Galois
theory for groups acting on commutative rings, plays an important role
in the theory of Hopf algebras. There are two important applications of
Hopf–Galois extensions: Kreimer–Takeuchi type theorems and Schneider’s
affineness theorems.

In fact, this paper is a follow-up of the Ph.D. thesis [4] of the first named
author under the supervision of the second author. The fundamental the-
orem and Maschke’s theorem were considered in the category of relative
Hom-Hopf modules in [10]. The main purpose of this paper is to study
the theory of Hopf–Galois extensions for monoidal Hom-Hopf algebras and
the affineness criterion for relative Hom-Hopf modules. The paper is orga-
nized as follows. In Section 2, relative Hom-Hopf modules are introduced.
In Section 3, we prove the affineness criterion for relative Hom-Hopf mod-
ules associated with faithfully flat Hopf–Galois extensions. In Section 4, we
consider Schneider’s affineness theorem in the case of monoidal Hom-Hopf
algebras in terms of total integrals and Hom-Hopf Galois extensions.

2. Preliminaries. Throughout this paper, let k be a fixed field. Unless
otherwise specified, linearity, modules and ⊗ are all meant over k. And
we freely use the Hopf algebras terminology introduced in [14], [25], [27]
and [28]. For a coalgebra C, we write its comultiplication ∆(c) = c1⊗ c2, for
any c ∈ C; for a right C-comodule M , we denote its coaction by ρ : m 7→
m(0) ⊗ m(1), for any m ∈ M , where we omit the summation symbols for
convenience.

Let Mk = (Mk,⊗, k, a, l, r) be the category of k-modules. There is a
new monoidal category H(Mk) whose objects are couples (M,µ), where
M ∈ Mk and µ ∈ Autk(M). The morphisms of H(Mk) are morphisms f :
(M,µ)→ (N, ν) inMk such that νf = fµ. For any objects (M,µ), (N, ν) ∈
H(Mk), the monoidal structure is given by

(M,µ)⊗ (N, ν) = (M ⊗N,µ⊗ ν) and (k, id).

Briefly speaking, all Hom-objects are objects in the monoidal category
H̃(Mk) = (H(Mk), ⊗, (k, id), ã, l̃, r̃) introduced in [3], where the associator
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ã is given by the formula

(2.1) ãM,N,L = aM,N,L((µ⊗ id)⊗ ς−1) = (µ⊗ (id⊗ ς−1))aM,N,L

for any objects (M,µ), (N, ν), (L, ς) ∈ H(Mk), and the unitors l̃ and r̃ are

l̃M = µlM = lM (id⊗ µ), r̃M = µrM = rM (µ⊗ id).

The category H̃(Mk) is called the Hom-category associated to the monoidal
category Mk. A k-submodule N ⊆ M is called a subobject of (M,µ) if

µ restricts to an automorphism of N , that is, (N,µ|N ) ∈ H̃(Mk). Since

the category Mk has left duality, so does the category H̃(Mk). Now let
M∗ be the left dual of M ∈ Mk, and let bM : k → M ⊗ M∗ and dM :
M∗ ⊗M → k be the coevaluation and evaluation maps. Then the left dual
of (M,µ) ∈ H̃(Mk) is (M∗, (µ∗)−1), and the coevaluation and evaluation
maps are given by

b̃M = (µ⊗ µ∗)−1bM , d̃M = dM (µ∗ ⊗ µ).

We now recall from [3] some information about Hom-structures.

Definition 2.1. A unital monoidal Hom-associative algebra is a vector
space A together with an element 1A ∈ A and linear maps

m : A⊗A→ A, a⊗ b 7→ ab, α ∈ Aut(A)

such that

α(a)(bc) = (ab)α(c), a1A = 1Aa = α(a),(2.2)

α(ab) = α(a)α(b), α(1A) = 1A,(2.3)

for all a, b, c ∈ A.

Note that the first part of (2.2) can be rewritten as a(bα−1(c)) =
(α−1(a)b)c. In the language of Hopf algebras,m is called Hom-multiplication,
α is the twisting automorphism and 1A is the unit. Henceforth, the termi-
nology in Definition 1.1 will in general be slightly abused for simplicity by
dropping the words “unital” and “Hom-associative”. And we denote the
monoidal Hom-algebra by (A,α).

Our definition of monoidal Hom-algebras is different from those in [23,
24] in the following sense. The same twisted associativity condition (2.2)
holds in both cases. However, the unitality condition in those papers is the
usual untwisted one: a1A = 1Aa = a for any a ∈ A, and the twisting map α
need not be monoidal (that is, (2.3) is not required).

Let (A,α) and (A′, α′) be two monoidal Hom-algebras. A Hom-algebra
map f : (A,α) → (A′, α′) is a linear map such that fα = α′f , f(ab) =
f(a)f(b) and f(1A) = 1A′ .

Definition 2.2. A counital monoidal Hom-coassociative coalgebra is an
object (C, γ) in the category H̃(Mk) together with linear maps ∆ : C →
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C ⊗ C, ∆(c) = c1 ⊗ c2 and ε : C → k such that

γ−1(c1)⊗∆(c2) = ∆(c1)⊗ γ−1(c2), c1ε(c2) = γ−1(c) = ε(c1)c2,(2.4)

∆(γ(c)) = γ(c1)⊗ γ(c2), ε(γ(c)) = ε(c),(2.5)

for all c ∈ C.

Note that the first part of (2.4) is equivalent to c1 ⊗ c21 ⊗ γ(c22) =
γ(c11)⊗ c12 ⊗ c2. Analogously to monoidal Hom-algebras, “monoidal Hom-
coalgebra” will be short for “counital monoidal Hom-coassociative coal-
gebra”. The definition of monoidal Hom-coalgebras here is somewhat dif-
ferent from that of counital Hom-coassociative coalgebras in [23, 24]. Their
coassociativity condition is twisted by some endomorphism, not necessarily
by the inverse of an automorphism, and Hom-comultiplication is not comul-
tiplicative. The superiority of our definition is that our objects admit duality.
Hence more results in Hopf algebras can be extended to the monoidal-Hom
case.

Let (C, γ) and (C ′, γ′) be two monoidal Hom-coalgebras. A Hom-coalgebra
map f : (C, γ)→ (C ′, γ′) is a linear map such that fγ = γ′f , ∆f = (f⊗f)∆
and ε′f = ε.

Definition 2.3. A monoidal Hom-bialgebra H = (H,α,m, η,∆, ε) is a

bialgebra in the category H̃(Mk). This means that (H,α,m, η) is a monoidal
Hom-algebra, and (H,α,∆, ε) is a monoidal Hom-coalgebra such that ∆ and
ε are Hom-algebra maps, that is, for any h, g ∈ H,

∆(hg) = ∆(h)∆(g), ∆(1H) = 1H ⊗ 1H ,

ε(hg) = ε(h)ε(g), ε(1H) = 1k.

For any bialgebra (H,m, η,∆, ε), and any bialgebra endomorphism α
of H, the authors of [23] showed that (H,α, αm, η,∆α, ε) is a Hom-bialgebra
in their terminology. In our case, there is a monoidal Hom-bialgebra (H,α,
αm, η,∆α−1, ε), provided that α : H → H is a bialgebra automorphism.

Definition 2.4. A monoidal Hom-bialgebra (H,α) is called a monoidal
Hom-Hopf algebra if there exists a morphism (called antipode) S : H → H

in H̃(Mk) (i.e. Sα = αS) such that for any h ∈ H,

S(h1)h2 = ε(h)1H = h1S(h2).(2.6)

In fact, a monoidal Hom-Hopf algebra is a Hopf algebra in the cate-
gory H̃(Mk). Further, the antipodes of monoidal Hom-Hopf algebras have
similar properties to those of Hopf algebras: they are morphisms of Hom-
anti-(co)algebras. Since α is bijective and commutes with the antipode S, we
have Sα−1 = α−1S. For a finite-dimensional monoidal Hom-Hopf algebra
(H,α,m, η,∆, ε, S), the dual (H∗, (α∗)−1) is also a monoidal Hom-Hopf al-
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gebra with the following structure maps: for all g, h ∈ H and h∗, g∗ ∈ H∗,
〈h∗g∗, h〉 = 〈h∗, h1〉〈g∗, h2〉, 1H∗ = ε,

〈∆(h∗), g ⊗ h〉 = 〈h∗, gh〉, εH∗ = η,

(α∗)−1(h∗) = h∗α−1, S∗(h∗) = h∗S−1.

Now we recall the actions and coactions over monoidal Hom-algebras
and monoidal Hom-coalgebras respectively.

Definition 2.5. Let (A,α) be a monoidal Hom-algebra. A right (A,α)-

Hom-module consists of (M,µ) in H̃(Mk) together with a morphism ψ :
M ⊗A→M , ψ(m⊗ a) = m · a, such that

(m · a) · α(b) = µ(m) · (ab), m · 1A = µ(m),

µ(m · a) = µ(m) · α(a),

for all a, b ∈ A and m ∈M .

Similarly, we can define left (A,α)-Hom-modules. A monoidal Hom-
algebra (A,α) can be considered as a Hom-module over itself by Hom-
multiplication. Let (M,µ), (N, ν) be two left (A,α)-Hom-modules. A mor-
phism f : M → N is called left (A,α)-linear (or a left (A,α)-Hom-module
map) if f(a ·m) = a · f(m) for any a ∈ A and m ∈M , and fµ = νf . We de-

note the category of left (A,α)-Hom-modules by H̃(AM). If (M,µ), (N, ν) ∈
H̃(HM), then (M ⊗N,µ⊗ ν) ∈ H̃(HM) via the left (H,α)-action

(2.7) h · (m⊗ n) = h1 ·m⊗ h2 · n,
where (H,α) is a monoidal Hom-bialgebra.

Definition 2.6. Let (C, γ) be a monoidal Hom-coalgebra. A right (C, γ)-

Hom-comodule is an object (M,µ) in H̃(Mk) together with a k-linear map
ρM : M →M ⊗ C, ρM (m) = m(0) ⊗m(1), such that

µ−1(m(0))⊗∆C(m(1)) = m(0)(0) ⊗ (m(0)(1) ⊗ γ−1(m(1))),

m(0)ε(m(1)) = µ−1(m), ρM (µ(m)) = µ(m(0))⊗ γ(m(1)),

for all m ∈M.

(C, γ) is a Hom-comodule over itself via Hom-comultiplication. Let
(M,µ), (N, ν) be two right (C, γ)-Hom-comodules. A morphism g : M → N
is called right (C, γ)-colinear (or a right (C, γ)-Hom-comodule map) if gµ =
νg and g(m(0)) ⊗ m(1) = g(m)(0) ⊗ g(m)(1) for any m ∈ M . The cate-

gory of right (C, γ)-Hom-comodules is denoted by H̃(MC). We also de-

note the set of morphisms in H̃(MH) from M to N by H̃(ComH(M,N)).

If (M,µ), (N, ν) ∈ H̃(MH), then (M ⊗ N,µ ⊗ ν) ∈ H̃(MH) with Hom-
comodule structure

(2.8) ρ(m⊗ n) = m(0) ⊗ n(0) ⊗m(1)n(1).
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In the following, we introduce the invariants and coinvariants on Hom-
modules and Hom-comodules respectively.

Definition 2.7. Let (H,α) be a monoidal Hom-Hopf algebra.

(1) If (M,µ) is a left (H,α)-Hom-module, then the invariant of (H,α)
on (M,µ) is the set

MH = {m ∈M | h ·m = ε(h)µ(m)}.

(2) If (N, ν) is a right (H,α)-Hom-comodule with comodule structure ρ,
then the coinvariant of (H,α) on (N, ν) is the set

N coH = {n ∈ N | ρ(n) = ν−1(n)⊗ 1H}.

If H is finite-dimensional, then a right (H,α)-Hom-comodule (N, ν) can
be considered as a left (H∗, (α∗)−1)-Hom-module with the action h∗ · n =
〈h∗, n(1)〉ν2(n(0)). Then we have

N coH = {n ∈ N | ρ(n) = ν−1(n)⊗ 1H}(2.9)

= {n ∈ N | h∗ · n = 〈h∗, 1H〉ν(n)} = NH∗ .

Definition 2.8. Let (H,α) be a monoidal Hom-Hopf algebra. A right
(H,α)-Hom-Hopf module (M,µ) is defined as a right (H,α)-Hom-module
and a right (H,α)-Hom-comodule as well, obeying the following compati-
bility condition:

ρ(m · h) = m(0) · h1 ⊗m(1)h2(2.10)

for all m ∈M and h ∈ H.

Morphisms of right (H,α)-Hom-Hopf modules are both right (H,α)-

linear and right (H,α)-colinear. We denote by H̃(MH
H) the category of right

(H,α)-Hom-Hopf modules.

If (M,µ) is a right (H,α)-Hom-Hopf module, then so is (M coH ⊗ H,
µ|McoH ⊗ α), with the following action and coaction:

(m⊗ h) · g = µ(m)⊗ hg, ρ(m⊗ h) = (µ−1(m)⊗ h1)⊗ h2,

for all m ∈M and h, g ∈ H.

3. Relative Hom-Hopf modules. In this section, we study relative
Hom-Hopf modules and the adjoint functors in the category of relative Hom-
Hopf modules.

Definition 3.1. Let (H,α) be a monoidal Hom-Hopf algebra. A right
(H,α)-Hom-comodule algebra is both a monoidal Hom-algebra and a right
(H,α)-Hom-comodule (A, β) with the coaction ρA : A → A ⊗H such that
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ρA is a morphism of Hom-algebras, that is, for any a, b ∈ A,

(3.1)

ρA(ab) = ρA(a)ρA(b),

ρA(1A) = 1A ⊗ 1H ,

ρAβ = (β ⊗ α)ρA.

We always assume (A, β) is a right (H,α)-Hom-comodule algebra.

Let (H,mH , η,∆, ε, S) be a Hopf algebra and (A,mA, ρ) a right H-como-
dule algebra. If α : H → H is a Hopf algebra automorphism, then there is a
monoidal Hom-Hopf algebra Hα = (H,mα = αmH , η, ∆α = ∆α−1, ε, S, α)
by [3, Proposition 1.14]. Let β ∈ Aut(A) be an algebra automorphism such
that ρβ = (β⊗α)ρ. Then it is easy to show by direct computation that Aβ =
(A,mβ = βmA, ρβ = ρβ−1, β) is a right (Hα, α)-Hom-comodule algebra.
And the compatibility condition (3.1) for ρβ and mβ is just a consequence
of the compatibility ρ(ab) = ρ(a)ρ(b) in the comodule algebra (A,mA, ρ).

Definition 3.2. Let (A, β, ρA) be a right (H,α)-Hom-comodule algebra.

(M,µ) is called a right (H,A)-Hom-Hopf module if (M,µ) is both in H̃(MA)

and in H̃(MH), and the following diagram commutes:

M ⊗A ψM //

ρM⊗ρA
��

M
ρM //M ⊗H

(M ⊗H)⊗ (A⊗H)

ã
��

(M ⊗A)⊗ (H ⊗H)

ψM⊗mH

OO

M ⊗ (H ⊗ (A⊗H))

id⊗ã−1

��

M ⊗ (A⊗ (H ⊗H))

ã−1

OO

M ⊗ ((H ⊗A)⊗H)
id⊗(τ⊗id)

//M ⊗ ((A⊗H)⊗H)

id⊗ã

OO

where ψM is the right (A, β)-Hom-module structure on (M,µ), ρM is the
right (H,α)-Hom-comodule structure on (M,µ), mH is the multiplication
of H, and τ is the flip map.

The diagram expresses the compatibility condition for (H,A)-Hom-Hopf
module, which can be rewritten as

(3.2) ρM (m · a) = m(0) · a(0) ⊗m(1)a(1)

for all m ∈ M and a ∈ A. A morphism of right (H,A)-Hom-Hopf modules
is both a right (A, β)-Hom-module map and a right (H,α)-Hom-comodule

map. We denote by H̃(MH
A ) the category of right (H,A)-Hom-Hopf modules.

Similarly, we can define the category H̃(AM
H) of left-right (H,A)-Hom-Hopf

modules.
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In fact, the right (H,α)-Hom-comodule algebra (A,mA, ρA, β) is a right
(H,A)-Hom-Hopf module over itself via the Hom-comodule structure ρA
and the Hom-multiplication mA, since the compatibility condition of (H,A)-
Hom-Hopf modules is just the equality (3.1).

Example 3.3. (1) We can induce a relative Hom-Hopf module from a
relative Hopf module (M,ψ, ρ), which is similar to inducing a Hom-comodule
algebra from a comodule algebra. We just need to twist the action ψ and
coaction ρ into ψµ = µψ and ρµ = ρµ−1 respectively, where µ : M → M is
an automorphism such that µψ = ψ(µ⊗ β) and ρµ = (µ⊗ α)ρ.

(2) Let (A, β) be a right (H,α)-Hom-comodule algebra, and (M,µ) be a
right (A, β)-Hom-module. Then (M ⊗H,µ⊗α) is a right (H,A)-Hom-Hopf
module, with the right (A, β)-Hom-module structure ψ : (M ⊗ H) ⊗ A →
M ⊗ H, (m ⊗ h) ⊗ a 7→ (m ⊗ h) · a = m · a(0) ⊗ ha(1), and the right
(H,α)-Hom-comodule structure ρ : M ⊗ H → (M ⊗ H) ⊗ H, m ⊗ h 7→
(µ−1(m)⊗h1)⊗α(h2). Here we just check the compatibility condition (3.2):
for any m ∈M , h ∈ H and a ∈ A,

(m⊗ h)(0) · a(0) ⊗ (m⊗ h)(1)a(1) = (µ−1(m)⊗ h1) · a(0) ⊗ α(h2)a(1)

= (µ−1(m) · a(0)(0) ⊗ h1a(0)(1))⊗ α(h2)a(1)

= (µ−1(m) · β−1(a(0))⊗ h1a(1)1)⊗ α(h2)α(a(1)2)

= (µ−1(m · a(0))⊗ h1a(1)1)⊗ α(h2a(1)2)

= ρ(m · a(0) ⊗ ha(1)) = ρ((m⊗ h) · a).

In particular, (A⊗H,β ⊗ α) ∈ H̃(MH
A ).

Let (M,µ) be a right (H,α)-Hom-module and (N, ν) a left (H,α)-Hom-
module. The tensor product over (H,α) of (M,µ) and (N, ν) in the category

H̃(Mk) is defined as

(M ⊗H N,µ⊗ ν) = {m⊗ n ∈M ⊗N | m · h⊗ ν(n) = µ(m)⊗ h · n}.
And dually, let (M,µ) be a right (H,α)-Hom-comodule and (N, ν) a left

(H,α)-Hom-comodule. The co-tensor product space (M �H N,µ⊗ ν) in the

category H̃(Mk) is defined as the following set:

{m⊗ n ∈M ⊗N | (m(0) ⊗m(1))⊗ ν−1(n) = (µ−1(m)⊗ n(−1))⊗ n(0)}.
Let (A, β, ρA) be a right (H,α)-Hom-comodule algebra. We denote

B=AcoH . If (N, ν) is a right (H,A)-Hom-Hopf module, then (N coH , ν|NcoH )
is a right (B, β|B)-Hom-submodule of (N, ν). Obviously, N �H k ∼= N coH ,
where (k, id) is a trivial (H,α)-Hom-comodule.

For any right (A, β)-Hom-module (M,µ), (M ⊗B A,µ ⊗ α) is a right
(H,A)-Hom-Hopf module with the action (m ⊗ a) ⊗ b 7→ µ(m) ⊗ aβ−1(b)
and coaction m⊗ a 7→ (µ−1(m)⊗ a(0))⊗α(a(1)). This defines the induction
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functor F : H̃(MB) → H̃(MH
A ), M 7→ M ⊗B A. In fact, F is a left adjoint

to the functor of coinvariants G : H̃(MH
A ) → H̃(MB), N 7→ N coH (see the

following result).

Proposition 3.4. (F,G) is a pair of adjoint functors with the unit

η(M,µ) : M → (M ⊗B A)coH , m 7→ µ−1(m)⊗ 1A,

and counit

ε(N,ν) : N coH ⊗B A→ N, n⊗ a 7→ n · a,

where (M,µ) ∈ H̃(MB) and (N, ν) ∈ H̃(MH
A ).

Proof. First η(M,µ) and ε(N,ν) are well-defined. In fact, for any m ∈ M ,

obviously µ−1(m) ⊗ 1A ∈ (M ⊗B A)coH , and ε(N,ν)(n ⊗ ba) = n · (ba) =

ε(N,ν)(ν
−1(n) · b⊗ β(a)) for any n ∈ N and a, b ∈ A. Hence we only need to

check the triangular identity:

εF (M,µ)Fη(M,µ)(m⊗ a) = (µ−1(m)⊗ 1A) · a = m⊗ a,
Gε(N,ν)ηG(N,ν)(n) = ν−1(n) · 1A = n.

In the same way, the induction functor F : H̃(BM) → H̃(AM
H), M 7→

A⊗B M , is a left adjoint to N 7→ N coH .

Similarly, for the left-right (H,A)-Hom-Hopf module category H̃(MH
A ),

there is another pair of adjoint functors

F ′ = A⊗B − : H̃(BM)→ H̃(AM
H),

G′ = (−)coH : H̃(AM
H)→ H̃(BM),

where H̃(BM) is the category of left (B, β)-Hom-modules.

4. Hopf–Galois extensions. In this section, we give some affineness
theorems, providing additional sufficient conditions for (F,G) and (F ′, G′)
to be pairs of inverse equivalences. We always assume that (H,α) is a
monoidal Hom-Hopf algebra with antipode S, and (A, β) is a right (H,α)-
Hom-comodule algebra.

Definition 4.1. An (H,α)-Hom-module (M,µ) is called flat over k if

the tensor product preserves exact sequences in H̃(Mk), and faithfully flat
if taking the tensor product with a sequence produces an exact sequence if

and only if the original sequence is exact in H̃(Mk).

For the concepts of flat and faithfully flat see [13]. Since (A⊗H,β ⊗ α)

is in H̃(MH
A ) and A is k-flat, we have

(A⊗H)coH ∼= A⊗HcoH ∼= A⊗ k ∼= A.
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So the counit map in Proposition 3.4 is εA⊗H : (A⊗H)coH ⊗B A→ A⊗H,
which can be translated to the following map:

can : A⊗B A→ A⊗H.
We find easily that

can(a⊗ b) = (β−1(a)⊗ 1H) · b = β−1(a)b(0) ⊗ α(b(1))

for all a, b ∈ A.

Similarly, (A⊗H,β⊗α) ∈ H̃(AM
H), and the corresponding adjunction

map ε′A⊗H now defines another map

can′ : A⊗B A→ A⊗H
given by

can′(a⊗ b) = a · (β−1(b)⊗ 1H) = a(0)β
−1(b)⊗ α(a(1)).

Proposition 4.2. Let (H,α) be a monoidal Hom-Hopf algebra with a
bijective antipode S, and (A, β) a right (H,α)-Hom-comodule algebra. The
map f : A⊗H → A⊗H given by

a⊗ h 7→ β(a(0))⊗ a(1)Sα
−1(h)

is an isomorphism. Furthermore, can′ = f ◦ can, so can is an isomorphism
if and only if can′ is.

Proof. For any a ∈ A and h ∈ H, it is easy to check that the inverse of
f is

f−1(a⊗ h) = β(a(0))⊗ S−1α−1(h)a(1),

by the Hom-coassociativity of the Hom-comodule algebra (A, β), the Hom-
associativity of (H,α) and the property of the antipode; and for any a, b∈A,

f ◦ can(a⊗ b) = can′(a⊗ b).

Definition 4.3. Consider a right (H,α)-Hom-comodule algebra (A, β)
and its coinvariance (B, β|B). Then (A, β) is called a Hopf–Galois extension
of (B, β|B) if can or can′ is an isomorphism.

If the functors (F,G) or (F ′, G′) is a pair of inverse equivalence of cate-
gories, then clearly can and can′ are isomorphisms.

Now we consider equivalent conditions for (F,G) to be a pair of inverse
equivalences. Explicitly, (F,G) is a pair of inverse equivalences if and only
if (A, β) is a faithfully flat Hopf–Galois extension of (B, β|B). This comes
from the results of Doi and Takeuchi [15].

Theorem 4.4. Let (H,α) be a monoidal Hom-Hopf algebra with a bi-
jective antipode S, and (A, β) a right (H,α)-Hom-comodule algebra. Then
the following are equivalent:
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(1) (A, β) is faithfully flat as a left (B, β|B)-Hom-module, and (A, β) is
a Hopf–Galois extension of (B, β|B);

(2) (F,G) is a pair of inverse equivalences between H̃(BM) and H̃(MH
A ).

Proof. (2)⇒(1). We have already seen that (A, β) is a Hopf–Galois ex-
tension of B. Let (M,µ)→ (M ′, µ′) be an injective map of right (B, β)-Hom-

modules. The equivalence of H̃(BM) and H̃(MH
A ) implies that M ⊗B A→

M ′ ⊗B A is monic in H̃(MH
A ), and of course monic in H̃(MA). Thus (A, β)

is left (B, β|B)-flat. Faithful flatness also follows from the equivalence of

H̃(BM) and H̃(MH
A ) in a similar way: assume that we have a sequence

0→M ′ →M →M ′′ → 0

such that

0→M ′ ⊗B A→M ⊗B A→M ′′ ⊗B A→ 0

is exact in H̃(MA). The three right (A, β)-Hom-modules have the struc-
ture of right (H,A)-Hom-Hopf modules, and the sequence is also exact in

H̃(MH
A ). It stays exact after applying G to it, by the equivalence of H̃(MH

A )

and H̃(BM). Thus the original sequence

0→M ′ →M →M ′′ → 0

is also exact in H̃(BM).

(1)⇒(2). For any (N, ρN , ν) ∈ H̃(MH
A ), we will prove that the counit

εN is an isomorphism. If (X, ι) is a right (A, β)-Hom-module, then the map
canX is defined as the composition

X ⊗B A
∼=−→ X ⊗A (A⊗B A)

X⊗can−−−−→ X ⊗A (A⊗H)
∼=−→ X ⊗H,

given by

canX(x⊗ a) = xa(0) ⊗ α(a(1)).

Since can is an isomorphism, so is canX . Now we have a commutative dia-
gram

0 // N coH ⊗B A

εN

��

// N ⊗B A

canN

��

ρN⊗BA //

(ν−1⊗ηH)⊗A
// (N ⊗H)⊗B A

canN⊗H

��

0 // N ρN
// N ⊗H

ρN⊗H //

ã−1(N⊗∆H)
// (N ⊗H)⊗H

where ηH : k → H is the structure map of (H,α). The top row is exact,
since N coH is the equalizer of ρN and ν−1 ⊗ ηH , and A is flat as a left
(B, β)-Hom-module. Meanwhile, the equalizer of ρN ⊗H and ã−1(N ⊗∆H)
is N �H H ∼= N . So the bottom row is also exact. Since canN and canN⊗H
are isomorphisms, so is εN by the five lemma.
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In addition, the unit ηM : M → (M ⊗B A)coH is also an isomorphism.
Indeed, define i1, i2 : M ⊗B A→M ⊗B (A⊗B A) by

i1(m⊗ a) = m⊗ (1A ⊗ β−1(a)), i2(m⊗ a) = m⊗ (β−1(a)⊗ 1A),

for all m ∈M and a ∈ A. Then we have a commutative diagram

0 //M

ηM

��

M⊗ηA //M ⊗B A
i1 //

i2
//M ⊗B (A⊗B A)

M⊗can
��

0 // (M ⊗B A)coH
⊆
//M ⊗B A

M⊗ρA //

M⊗(β−1⊗ηH)
//M ⊗B (A⊗H)

since

(M ⊗ can)i1(m⊗ a) = m⊗ (a(0) ⊗ a(1)) = (M ⊗ ρA)(m⊗ a)

and

(M ⊗ can)i2(m⊗ a) = m⊗ (β−1(a)⊗ 1H) =
(
M ⊗ (β−1 ⊗ ηH)

)
(m⊗ a).

The top row is exact because A is faithfully flat as a left (B, β)-Hom-
module. The bottom row is also exact by the definition of coinvariants.
Since can is an isomorphism, so is the adjunction unit ηM , again by the five
lemma.

5. Total integrals. In this section we consider Schneider’s affineness
theorems under the assumption that there exists a total integral.

Definition 5.1. Let (A, β, ρA) be a right (H,α)-Hom-comodule algebra.
A morphism ϕ : (H,α)→ (A, β) is called a total integral for (A, β) if ϕ is a
right (H,α)-Hom-comodule map such that ϕ(1H) = 1A.

For the main result of this section we need some lemmas.

Lemma 5.2 (see [10, Theorem 2.5]). Let (A, β) be a right (H,α)-Hom-
comodule algebra. Then the following are equivalent:

(1) there is a total integral,
(2) (A, β) is an injective (H,α)-Hom-comodule,
(3) all right (H,A)-Hom-Hopf modules are injective as (H,α)-Hom-co-

modules,
(4) there is a right (H,α)-colinear map ϕ : (H,α)→ (A, β) with ϕ(1H)

invertible in A.

Let (M,µ) ∈ H̃(HM). Then (M,µ) ∈ H̃(MH) via m 7→ m(0)⊗S(m(−1)),

for any m ∈M . Applying the induction functor A⊗− : H̃(MH)→ H̃(AM
H)
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we find that A⊗M ∈ H̃(AM
H) with structure maps

ψl : a⊗ (b⊗m) 7→ (β−1(a)b)⊗ µ(m),

ρr : a⊗m 7→ (a(0) ⊗m(0))⊗ a(1)S(m(−1)).

Lemma 5.3. With notation as above, we have

(A⊗M)coH = A �H M

for any M ∈ H̃(HM).

Proof. This is straightforward.

Lemma 5.4. If (N, ν) ∈ H̃(MH
A ), then we have well-defined maps

i : N coH → A �H N, n 7→ 1A ⊗ ν−1(n),

and

p : A �H N → N coH , a⊗ n 7→ n · a,

such that pi = N coH , where the left (H,α)-Hom-comodule structure on
(N, ν) is given by n 7→ S(n(1))⊗ n(0).

Proof. First, the counitality and Hom-coassociativity of (N, ν) imply
that (N, ν) is also a left (H,α)-Hom-comodule via n 7→ S(n(1))⊗ n(0).

Next, i is well-defined, since taking n ∈ N coH , we obviously have i(n) =
1A ⊗ ν−1(n) ∈ A �H N by the left action on N and the definition of coin-
variants.

Also, p is well-defined. Taking a⊗ n ∈ A �H N , we have

(a(0) ⊗ a(1))⊗ ν−1(n) = (β−1(a)⊗ S(n(1)))⊗ n(0).

Applying ρN to the last fact and using the Hom-coassociativity of (N, ν),
we obtain

(5.1) (a(0) ⊗ a(1))⊗ (n(0) ⊗ n(1))

= (β−1(a)⊗ Sα(n(1)2))⊗ (n(0) ⊗ α(n(1)1)).

Hence,

ρN (n · a) = n(0) · a(0) ⊗ n(1)a(1)

(5.1)
= n(0) · β−1(a)⊗ α(n(1)1)Sα(n(1)2)

= n(0) · β−1(a)⊗ ε(n(1))1H

= ν−1(n) · β−1(a)⊗ 1H

= ν−1(n · a)⊗ 1H .

That is, p(a⊗ n) ∈ N coH , as required.

Finally, pi(n) = p(1A ⊗ ν−1(n)) = ν−1(n) · 1A = n for all n ∈ N .
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Proposition 5.5. Let (A, β) be a right (H,α)-Hom-comodule algebra.
Then the following are equivalent:

(1) (A, β) is right (H,α)-coflat,

(2) G = (−)coH : H̃(MH
A )→ H̃(MB) is an exact functor,

(3) G′ = (−)coH : H̃(AM
H)→ H̃(BM) is an exact functor.

Proof. (1)⇒(2). It is clear that G is left exact. Assume that f : (N, ν)→
(N ′, ν ′) is surjective in H̃(MH

A ). Then A �H f is surjective because (A, β) is

right (H,α)-coflat. Since f is a morphism in H̃(Mk), there is a commutative
diagram

A �H N
A�Hf //

p

��

A �H N ′

p

��

N coH f
//

i

OO

N ′ coH

i

OO

which implies that f : N coH → N ′ coH is surjective, where p, i are the maps
defined in Lemma 5.4.

(3)⇒(1). From Lemma 5.3, we know that (A⊗M)coH = A�HM . Then
A �H (−) is the composition

H̃(HM)
A⊗(−)−−−−→ H̃(AM

H)
G′−→ H̃(BM).

A ⊗ (−) is exact since (A, β) is k-flat, and G′ is also exact by assumption.
It follows that A �H (−) is exact. Hence (A, β) is right (H,α)-coflat.

(1)⇒(3). We can apply (1)⇒(2) to Aop as an Hop-Hom-comodule al-
gebra. Therefore,

N → N coH , N ∈ H̃(AM
H) = H̃(MHop

Aop ),

is exact.
(2)⇒(1). Similar: apply (3)⇒(1) to Aop.

Lemma 5.6. Assume that (A, β) is a right (H,α)-Hom-comodule algebra,

and ϕ : (H,α) → (A, β) is a total integral. For any (M,µ) ∈ H̃(MB), the
adjunction unit ηM : M → (M ⊗B A)coH is an isomorphism.

Proof. Define a map in H̃(Mk) as

t : (A, β)→ (B, β|B), a 7→ a(0)ϕ(S(a(1))).

It is easy to prove that t is well-defined. That is, t(a) ∈ AcoH = B.
Now define

φM : (M ⊗B A)coH →M, m⊗ a 7→ m · t(a).

Then φM is the inverse of ηM .

Theorem 5.7. Let (H,α) be a monoidal Hom-Hopf algebra with a bi-
jective antipode S, and (A, β) a right (H,α)-Hom-comodule algebra. If can
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is surjective, and if there exists a total integral ϕ : (H,α) → (A, β), then

the adjoint pair (F,G) is a pair of inverse equivalences between H̃(MH
A ) and

H̃(MB).

Proof. In Lemma 5.6 we have shown that the adjunction unit is an iso-
morphism. We need to show that so is the counit εN for all N ∈ H̃(MH

A ).

First, we prove this for N = V ⊗ A, where (V, ν) is an arbitrary object

in H̃(Mk), and the (H,A)-Hom-Hopf module structure on (V ⊗A, ν ⊗ β) is
induced by the structure on (A, β), that is,

(v ⊗ a) · b = ν(v)⊗ aβ−1(b), ρV⊗A(v ⊗ a) = (ν−1(v)⊗ a(0))⊗ α(a(1)),

for any v ∈ V and a, b ∈ A. By Lemma 5.6,

(V ⊗A)coH ∼= (V ⊗ (B ⊗B A))coH ∼= ((V ⊗B)⊗B A)coH ∼= V ⊗B.

Then we have a commutative diagram

(V ⊗B)⊗B A
∼= //

∼=
��

V ⊗ (B ⊗B A)

∼=
��

(V ⊗A)coH ⊗B A
εV⊗A

// V ⊗A

It follows that εV⊗A is an isomorphism.

By Lemma 5.2, we know that the coaction ρA : A→ A⊗H has a section
λA : A⊗H → A. And λA is a right (H,α)-Hom-comodule map with explicit
form

λA(a⊗ h) = β(a(0))ϕ
(
S(a(1)α

−1(h))
)

for any a ∈ A and h ∈ H.

It is not difficult to check that N⊗(A⊗H) ∈ H̃(MH
A ) with the structure

maps

(n⊗ (a⊗ h)) · b = ν−1(n)⊗
(
aβ−1(b(0))⊗ hα−1(b(1))

)
,

ρN⊗(A⊗H)(n⊗ (a⊗ h)) =
(
ν−1(n)⊗ (β−1(a)⊗ h1)

)
⊗ α2(h2),

for all a ∈ A, h ∈ H and n ∈ N . Define a map in H̃(Mk) by

f : N ⊗ (A⊗H)→ N, n⊗ (a⊗h) 7→ ν(n(0)) ·λA
(
a⊗Sα−1(n(1))α

−1(h)
)
.

First, we note that f is surjective, because for any n ∈ N ,

f
(
n(0) ⊗ (1A ⊗ α−1(n(1)))

)
= ν(n(0)(0)) · λA

(
1A ⊗ Sα−1(n(0)(1))α

−2(n(1))
)

= n(0) · λA
(
1A ⊗ Sα−1(n(1)1)α−1(n(1)2)

)
= n(0) · λA(1A ⊗ ε(n(1))1H) = ν−1(n) · 1A = n.

Next, f is right (H,α)-colinear by the following computation: for all h ∈ H,
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a ∈ A and n ∈ N ,

ρAf(n⊗ (a⊗ h)) = ρA(ν(n(0)) · λA(a⊗ Sα−1(n(1))α
−1(h)))

= ν(n(0)(0)) · λA(a⊗ Sα−1(n(1))α
−1(h))(0) ⊗ α(n(0)(1))λA(a⊗ Sα−1(n(1))α

−1(h))(1)

= ν(n(0)(0)) · λA

(
β−1(a) ⊗ (Sα−1(n(1))α

−1(h))1
)
⊗ α(n(0)(1))α((Sα−1(n(1))α

−1(h))2)

= ν(n(0)(0)) · λA

(
β−1(a) ⊗ Sα−1(n(1)2)α−1(h1)

)
⊗ α(n(0)(1))(S(n(1)1)h2)

= n(0) · λA

(
β−1(a) ⊗ S(n(1)22)α−1(h1)

)
⊗ α(n(1)1)(Sα(n(1)21)h2)

= n(0) · λA

(
β−1(a) ⊗ Sα−1(n(1)2)α−1(h1)

)
⊗ α2(n(1)11)(Sα(n(1)12)h2)

= n(0) · λA

(
β−1(a) ⊗ Sα−1(n(1)2)α−1(h1)

)
⊗ (α(n(1)11)Sα(n(1)12))α(h2)

= n(0) · λA

(
β−1(a) ⊗ Sα−1(n(1)2)α−1(h1)

)
⊗ ε(n(1)1)1Hα(h2)

= n(0) · λA

(
β−1(a) ⊗ Sα−2(n(1))α

−1(h1)
)
⊗ α2(h2)

= (f ⊗H)
(
(ν−1(n) ⊗ (β−1(a) ⊗ h1)) ⊗ α2(h2)

)
= (f ⊗H)ρN⊗(A⊗H)(n⊗ (a⊗ h)),

where the second step follows by the compatibility (3.2), and the third step
holds since λA is right (H,α)-colinear and the coaction on (A⊗H,β⊗α) is
given by ρ(a⊗ h) = (β−1(a)⊗ h1)⊗ α(h2). Finally, we conclude that f is a

split epimorphism in H̃(MH).
Since H is projective as a k-module, A⊗H is projective as a left (A, β)-

Hom-module. The map can : A⊗A→ A⊗H is a left (A, β)-linear epimor-
phism because

can(c · (a⊗ b)) = can(β−1(c)a⊗ β(b)) =
(
β−2(c)β−1(a)

)
β(b(0))⊗ α2(b(1))

= β−1(c)(β−1(a)b(0))⊗ α2(b(1)) = c · can(a⊗ b)
for any a, b, c ∈ A. Thus can has an (A, β)-linear splitting, and a fortiori has

a splitting in H̃(Mk).

It is easy to check that N ⊗ (A⊗A) ∈ H̃(MH
A ) with structure maps

(n⊗ (a⊗ a′)) · b = ν(n)⊗ (α(a)⊗ a′β−2(b)),

ρN⊗(A⊗A)(n⊗ (a⊗ b)) =
(
ν−1(n)⊗ (β−1(a)⊗ b(0))

)
⊗ α2(b(1)).

Then

N ⊗ can : N ⊗ (A⊗A)→ N ⊗ (A⊗H)

is a morphism in H̃(MH
A ), which is surjective and split in H̃(Mk). Therefore,

g = f(N ⊗ can) : N ⊗ (A⊗A)→ N

is surjective and split in H̃(Mk).
Set N ′ = ker(g). Then there is an exact sequence

(5.2) 0→ N ′ → N ⊗ (A⊗A)
g−→ N → 0

in H̃(MH
A ) which is split as a sequence in H̃(Mk). Indeed, (5.2) is also a split

exact sequence of (H,α)-Hom-comodules by Lemma 5.2.
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Repeating the resolution with N ′ instead of N , we obtain another exact

sequence in H̃(MH
A ):

(5.3) 0→ N ′′ → N ′ ⊗ (A⊗A)
g′−→ N ′ → 0,

which is split in H̃(MH). Now set N1 = N⊗(A⊗A) and N2 = N ′⊗(A⊗A).
Combining (5.2) and (5.3), we obtain the exact sequence

N2
g′−→ N1

g−→ N → 0

in H̃(MH). Since (5.2) and (5.3) are both split exact in H̃(MH), they stay
exact after taking (H,α)-coinvariants and combining them. Thus we have

an exact sequence in H̃(MB)

N coH
2 → N coH

1 → N coH → 0.

Tensor functors are right exact, so finally we obtain an exact sequence

N coH
2 ⊗B A→ N coH

1 ⊗B A→ N coH ⊗B A→ 0

in H̃(MH
A ). Thus, there is a commutative diagram

N coH
2 ⊗B A //

εN2

��

N coH
1 ⊗B A //

εN1

��

N coH ⊗B A //

εN

��

0

N2
g′

// N1
g

// N // 0

where both the bottom and the top lines are exact sequences in H̃(MH
A ).

Since N1 = N⊗(A⊗A) ∼= (N⊗A)⊗A and N2 = N ′⊗(A⊗A) ∼= (N ′⊗A)⊗A
are (H,A)-Hom-Hopf modules of the form V ⊗ A, where V is an object in

H̃(Mk), we see that εN1 and εN2 are isomorphisms. Hence so is εN .

Lemma 5.8. Let (H,α) be a monoidal Hom-Hopf algebra. Assume that

there is an isomorphism M �H Q ∼= H̃(ComH(Q∗,M)) for any right (H,α)-
Hom-comodule (M,µ) and any finite-dimensional left (H,α)-Hom-comodule
(Q, κ). Then (M,µ) is right (H,α)-coflat if and only if it is an injective

object in H̃(MH).

Proof. If (M,µ) is injective in H̃(MH), then there is an (H,α)-Hom-
colinear map

λM : M ⊗H →M

splitting ρM , that is, λMρM = idM . Let f : (N, ν)→ (W,ω) be surjective in

H̃(MH) and take m ⊗ w ∈ M �H W . Since f is surjective, we can find an
n ∈ N such that f(n) = w. To show (M,µ) is right (H,α)-coflat, we only
need to show M �H f : M �H N →M �H W is surjective. The proof is left
to the reader.
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Conversely, if (N,µ, ρN ) is a finite-dimensional right (H,α)-Hom-co-
module, then the natural morphism

θ : H ⊗N∗ → Hom(N,H), θ(h⊗ n∗)(n) = n∗(ν(n))α(h),

is a linear isomorphism. (N∗, (ν∗)−1) is a left (H,α)-Hom-comodule via the
coaction

ρN∗ : N∗ → H ⊗N∗, ρN∗(n
∗) = θ−1((n∗ ⊗H)ρN ).

Then

M �H N∗ ∼= H̃(ComH(N∗∗,M)) ∼= H̃(ComH(N,M)),

by assumption. Since (M,µ) is coflat we deduce that (M,µ) is (N, ν)-
injective, which means that for any Hom-subcomodule (N ′, ν) of (N, ν),

and any f ∈ H̃(ComH(N ′,M)), there exists g ∈ H̃(ComH(N,M)) such that

g|(N ′,ν) = f . Then (M,µ) is also an injective object in H̃(MH), and the
proof is similar to the non-Hom-case in [14, Theorem 2.4.17].

Theorem 5.9. Let (H,α) be a monoidal Hom-Hopf algebra with a bijec-
tive antipode, and (A, β) a right (H,α)-Hom-comodule algebra. Assume that

there is an isomorphism M �H Q ∼= H̃(ComH(Q∗,M)) for any right (H,α)-
Hom-comodule (M,µ) and any finite-dimensional left (H,α)-Hom-comodule
(Q, κ). Then the following assertions are equivalent:

(1) there exists a total integral ϕ : (H,α) → (A, β), and the map can is
surjective,

(2) F and G are mutually inverse equivalences between H̃(MH
A ) and

H̃(MB),

(3) F ′ and G′ are mutually inverse equivalences between H̃(AM
H) and

H̃(BM),
(4) A is a Hopf–Galois extension of B, and is faithfully flat as a left

(B, β)-Hom-module,
(5) A is a Hopf–Galois extension of B, and is faithfully flat as a right

(B, β)-Hom-module.

Proof. (1)⇒(2) follows by Theorem 5.7, and (2)⇔(4) follows by Theo-
rem 4.4. Now we only need to show (4)⇒(1). Suppose that A is a Hopf–
Galois extension of B, and is faithfully flat as a left (B, β)-Hom-module. In
order to show that there is a total integral, by Lemma 5.2 we only need to
show that (A, β) is an injective object in H̃(MH). Equivalently, by Lemma
5.8 we have to show that (A, β) is right (H,α)-coflat.

For any (V, ν) ∈ H̃(HM), A �H V is a right (B, β|B)-Hom-module via
(a⊗ v) · b = aβ−1(b)⊗ ν(v). Define a map
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$ : (A �H V )⊗B A→ (A⊗B A) �H V,

(a⊗ v)⊗ a′ 7→ (a⊗ β−1(a′))⊗ ν(v),

where the right (H,α)-Hom-comodule structure on A ⊗B A is given by
ρA⊗BA(a ⊗ a′) = (a(0) ⊗ β−1(a′)) ⊗ α(a(1)). Since A is flat as a left
B-Hom-module, $ is an isomorphism as a left B-Hom-module. Since can is
bijective, can′ is an isomorphism. Thus we have the following sequence of
left B-Hom-module isomorphisms:

(A �H V )⊗B A ∼= (A⊗B A) �H V ∼= (A⊗H) �H V
∼= A⊗ (H �H V ) ∼= A⊗ V.

For any exact sequence

0→ U → V →W → 0

in H̃(HM), the sequence

0→ A⊗ U → A⊗ V → A⊗W → 0

is also exact in H̃(kM), since k is a field. Hence, we have the exact sequence

0→ (A �H U)⊗B A→ (A �H V )⊗B A→ (A �H W )⊗B A→ 0.

Since A is faithfully flat as a left B-Hom-module, we finally obtain the exact
sequence

0→ A �H U → A �H V → A �H W → 0,

which implies that A is right (H,α)-coflat.
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