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THE v-RADIAL PALEY-WIENER THEOREM FOR THE
HELGASON FOURIER TRANSFORM ON DAMEK-RICCI SPACES

BY

ROBERTO CAMPORESI (Torino)

Abstract. We prove the Paley—Wiener theorem for the Helgason Fourier transform
of smooth compactly supported v-radial functions on a Damek—Ricci space S = N A.

1. Introduction. Let S = NA be a Damek—Ricci space, i.e., the semidi-
rect product of a (connected and simply connected) nilpotent Lie group N
of Heisenberg type [17] and the one-dimensional Lie group A = R* acting on
N by anisotropic dilations. When S is equipped with a suitable left-invariant
Riemannian metric g, S becomes a (noncompact, simply connected) homo-
geneous harmonic Riemannian space [9, [10]. Conversely, every such space
is a Damek—Ricci space if we exclude R™ and the “degenerate” case of real
hyperbolic spaces (see [14, Corollary 1.2]). We refer to [23] for a nice intro-
duction to the geometry and harmonic analysis on Damek—Ricci spaces.

We use the ball model B of S, namely we identify S with the unit ball
B in the Lie algebra s via the Cayley transform C' (see [7]):

C
S=NA=B={(V,Z,t)cs: |V*+|Z?+t* < 1}.

Here s =n®a=10@ 3 a, where 3 is the center of n and v its orthogonal
complement in n. We let p = dimv, ¢ = dim3, Q = p/2+ ¢, and let SP*4 be
the unit sphere in s,

ST =9B ={w= (V,Z,t) €s: V> +|Z* +* = 1}.
Let f € C3°(B). The Helgason Fourier transform of f is defined by
(1.1) FOw) = | f)Qrb.w)db (A€ C,we ST,
B

where Q) (b, w) is the normalized Poisson kernel with parameter A on B (see
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[2, 6] and Section 2). The inversion formula is [2, Theorem 4.4]

(1.2) FO) =221 | Q@) fhw) dwdu(N),
0 Spt+a

where dw is the normalized Euclidean surface measure on SP77, and du(\) =
lc(A\)|72d\ with
202D (24N (d/2
LA+ Q/2)T'(iA+p/4+1/2)

and
Cp,g = 2qilr(d/2)7rfd/2v d=p+q+1

A C* function 1 (\,w) on Cx 9B, holomorphic in ), is called a holomor-
phic function of uniform exponential type if there exists a constant R > 0
such that, for each integer j > 0,

(1.4) sup e AN 4 ) [N, w)| < oo
(Aw)eCxIB

THEOREM 1.1. The Fourier transform f(b) — f(A\,w) is a bijection of
C3°(B) onto the set of holomorphic functions (A, w) of uniform exponential
type satisfying the condition

(1.5) | Qab,w)p(hw)dw = | Qx(b,w)¥(—A w) dw

0B 0B

for any b € B and A € C. Moreover, f satisfies 1} if and only if f has
support in the closed ball Br = {b € B :d(b,C(e)) < R}.

The direct part of this theorem, asserting that supp f C Bgr implies fv
holomorphic of uniform exponential type R, was proved in [2, Theorem 4.5]
(in the open model). Here we prove the v-radial case of Theorem 1.1. The
converse part, in particular the surjectivity statement, is proved for v-radial
functions f on B, i.e., functions that are radial in the variable V' and thus
depend only on |V|, Z, and t. In this case we show that f — f is a bijection
onto the set of functions ¥ (A, w) that are holomorphic of uniform exponential
type, v-radial in w, and satisfy .

The case of biradial functions f = f(|V|,|Z|,t) on B was treated recently
in [5]. Here we extend the results of [5], by generalizing to v-radial functions
on B the well known expansion into K-types of the symmetric case [15].

By working in geodesic polar coordinates (r,w) € (0,00) x SPT? around
the origin in B, we expand both functions w — f(r,w) and w — f(\,w) in
Fourier series with respect to an orthogonal system of v-radial eigenfunctions
of the angular Laplacian Lg, in L*(SP*9). Here S(r) ~ SP*7 s the geodesic
sphere of radius r > 0 centered at the origin. The Fourier coefficients are then
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functions of r and A, respectively, related by a suitable Jacobi transform.
Using well known estimates for Jacobi functions, we prove the result.

Our method should generalize to arbitrary functions on B. The problem
in the nonsymmetric case is that there is no analogue of the group K acting
transitively by isometries on the geodesic spheres. This makes more difficult
the identification of non-v-radial eigenfunctions of Lg(,), as it requires the
explicit form of the full angular Laplacian, which is not yet available.

The outline of this paper is as follows. In Section 2 we first obtain a
formula for the v-radial part of the angular Laplacian. It generalizes the
formula obtained in [0, 5] in the biradial case. Then, using results of Koorn-
winder [19], we write down a decomposition of the space HP+4+L" of spheri-
cal harmonics of degree n on SP*¢ as an orthogonal direct sum of subspaces
invariant and irreducible under the group SO(p) x SO(q). This enables us
to identify the v-radial eigenfunctions of Lg(,) in terms of spherical har-
monics on SPT4. We then compute the v-radial eigenfunctions of the full
Laplacian Lg on B that separate in geodesic polar coordinates. The radial
part of these eigenfunctions is given by associated Jacobi functions. We also
obtain a Poisson integral representation for these v-radial eigenfunctions
of Lp.

In Section 3 we prove that v-radiality is preserved by the Helgason
Fourier transform, i.e., f v-radial on B implies w +— f(\,w) v-radial on SPT4.
The proof involves the Radon transform and the method of “descent” to
complex hyperbolic spaces [24, Proposition 5.1]. Then we write down the
Fourier transform and prove the v-radial case of Theorem 1.1.

Let us mention some earlier results on the Paley—Wiener theorem for
Damek—Ricci spaces. For radial functions on N A, the Helgason Fourier
transform reduces to the spherical transform [2]. The Paley—Wiener the-
orem for the spherical transform follows from the general theory developed
n [20] (Jacobi function analysis): see, for instance, [I, pp. 649-650]. For
nonradial functions, a partial result that uses the Radon transform and
reduction to complex hyperbolic spaces appears in [24]. A Paley—Wiener
theorem for nonradial functions on N A supported in a set whose boundary
is a horocycle was obtained in [3]. A Paley—Wiener theorem for the inverse
Fourier transform on N A was proved in [4].

2. p-radial eigenfunctions on B

2.1. The Cayley transform and the v-radial Laplacian. We denote
by (-,-) and |- | the fixed inner product and associated norm on s, and by
(V,Z,t) € s the element exp(V + Z)exp(tH) of S, where V € v, Z € 3,
t € R, and H € a is a unit vector. For each Z € 3 we have the linear map
Jz : v — v defined by (JZV, V') = (Z,[V,V']) for V,V’ € v. The Cayley
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transform is defined by
C:NA—B, V,Z,t)— (V',Z't),

where
,_ (e VPV —Jzv
(1+et + 1V P2)? + 22
27
(2.1) Z' =

(1+et+ LvR)? |22
(V) + 2P

= ,
(1+et+1V12)° 4+ |2P2
with inverse
AN 74 /
V—2(1 V' + JuV
ST =2tz
27!
2.2 7 =
( ) (1—t’)2—|—‘Z’|2’
g LR
- (1 —t')2 + |Z/|2’

where R = /|[V'[2 +|Z'|2 + 2 (see [23, (18), (19), Sect. 4.4]).
We also have a generalized stereographic projection

Co: N — S™O\{H} (H = (0,0,1))
obtained by letting a; = ¢! = 0, i.e., t = —o0, in :
Co(n) = tii{n C(na) € 0B

(see [23 Section 4.6]). Tts inverse C; ! is given by the first two lines in .

In the ball model B of S, equipped with the transported metric v5 =
C~(vs), we have C(Exp, rw) = th(r/2)w for r > 0 and w € SPT%. Thus
the geodesics through the origin are the diameters, and the Riemannian
sphere S(r) of radius r (centered at the origin) is just the Euclidean sphere
S(R) of radius R = th(r/2) [23, Thm. 10].

Let vol(S™) = 2x("*1/2/((n 4 1)/2) be the Euclidean surface measure
of the n-sphere. In geodesic polar coordinates (r,w) around the origin z¢ =
C(e) = (0,0,0) in B, the Riemannian measure is given by

(2.3) db = 2P19(sh(r/2))PT(ch(r/2))? vol(SPT9)drdw =: J(r)drdw.

Let M be the group of orthogonal automorphisms of N A, namely the
automorphisms of S that preserve the inner product on the Lie algebra s.
Using the exponential map, we can identify M as the group of orthogonal
automorphisms of the H-type Lie algebra n = v @3, i.e., the elements (1, ¢)
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in O(v) x O(3) such that
[W(V), (V] = &([V,V]),

or equivalently,
Y(JZV) = J¢(Z)¢(V), vV, Ve v, VZ € ;.

By conjugating with the Cayley map C, we obtain a group of transforma-
tions of B that we still denote by M. It is easy to check that this action
of M on B is just the action of M on s = v ® 3D a, ie., m- (V' Z ') =
(m - V' m-Z' t'), where M is trivial on a and leaves v and j invariant.
It is known that M acts transitively on the unit sphere S?~! in 3 (see [T,
Remark 6.3]). However, M may or may not be transitive on the unit sphere
SP~1in v, depending on the Heisenberg-type group N (see [22]).

Let f be a v-radial function on B, ie., f(V{,Z'.¢') = f(V4,Z',¢) if
|V{| = |V5]. Then f depends only on the variables |V'|, Z’ and ¢, and we
write f = f(|V'],Z’,t'). We denote by C5°(B)"**! the subspace of b-radial
functions in C§°(B). In geodesic polar coordinates we write

f(b) = f(th(r/2)w) = f(r,w).

For each r > 0, the function w = (V, Z,t) — f(r,w) is v-radial on SP* i.e.,
it depends only on Z and t. We use the following notations:

SP=L = {(V,0,0): |V| =1} = SPT N (unit sphere in v),
S1={(0,2,t) : ]Z]2 +#2 = 1} =S N3®a (unit sphere in 3 @ a),
SV = {(0,2,0):1Z] =1} = SPT1 N3 (unit sphere in 3).

Every we SPT4 can be written as w=+/1 — p% wy + pis, where 0 < p < 1,
wi € SP71 and @y € S9. By writing @2 as @y = cos ¢ H + sin ¢ wo, where
wp € S971 H = (0,0,1), and 0 < ¢ < 7, we see that every w = (V, Z,t)
€ SPT4 can be represented in the form

V=y1-p?uw,

Z = psin ¢ ws,

t = pcos o,
where

0<p<1l, 0<o¢<m w et wesit
We write w = (p, ¢, wi,wz) and refer to this as a system of bispherical
coordinates on SPT4. The choices of wy, we and ¢ are unique except when
V=0,0or Z=0,or (Z,t)=(0,0). The coordinates (p, ) can be regarded
as polar coordinates in the space (|Z],t):
t = pcos o,

{ |Z] = psin .

We let D, be the upper-half unit disk, defined by 0 < p <land 0 < ¢ <.
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A vp-radial function y on SP*Y depends only on p, ¢, ws, and we write
= x(p, ¢, w2). A v-radial function f on B depends only on , p, ¢, w2, and
we write f = f(ﬁPa ¢7w2)'
The Laplace—Beltrami operator on B in geodesic polar coordinates reads
(24) Lp=1Lq+ LS(T)?

where L,,q is the radial part, given by
(2.5) Lyag = 0% + (72’ cth% +gcth 7“) 8, (8, =0/or),

and Lg(, is the angular part, i.e., the Laplacian on the Riemannian sphere
S(r) with respect to the induced metric. We identify S(r) with SP*9 by the
map C(Exp, rw) — w, i.e., th(r/2)w +— w, for any fixed r > 0.

Let Lgn denote the round Laplacian on the unit sphere S™. Then the
round Laplacian on SP™4 can be written in bispherical coordinates as

1
(2.6) L5p+q=<1—p2>az+(f)—<p+q> )a+ L

1-—

(see [6]), where the round Laplacian on S is

1
(2.7) Lgs =854 (¢ — 1) cot ¢ 9 + ¢L5q 1,

with ¢ playing the role of “radial” coordinate on S9.

THEOREM 2.1. Let x=x(p, ¢, w2) be a v-radial function on SPT4~S(r).
Then the angular Laplacian Lg(y acting on x is given by

1
2.8) Lg, R
(2.8)  Lgpx = Shg(/ Lgp+aX T2 (rja) X

: {( —p2)32+<q—(p+q)p>3 L q}x

" ash’(r/2) * T \p P
1
- Lay.
dch(r/2) X

Proof. The idea is to change variables (V, Z,t) S (V' Z' ') directly in
the known expression of the Laplacian on S = N A. This can be carried out
in a rather explicit way, up to some point, which is enough to obtain the
v-radial part.

The Laplace—Beltrami operator on S is given in the usual N A-chart by

P q
Ls=e'Y Ef+e*) Y7+ H”-QH,
i=1 j=1
where {E1,...,Ep, Y1,...,Y,, H} is an orthonormal basis of s = v @3 & a
with respect to the Euclidean inner product (,) on s. We identify H = 0,
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and regard E;,Y; as left-invariant vector fields on the group N, given at
(V. Z) by

q
Bi=0u+5 Y (J,V,E)0.;, Y;=0.,
j=1

l\.')\r—t

if we write V=3, v;E; and Z =}, z;Y;. Then

—etz<&,z + = Z Jy,V, E;)0. )(a@i +;Z<JY;€VaEi>azk>
k

+e >y o2 +a§—Qat
J

1
SOV T Z}(aviuykv, £)o.,

+ efz v, V, E)y,0s, + = tz Jy, V. E)0., 0y,

Zk ,]
fetz Ty, V, E)(Jy,V, E)0.,0:, + €2 02 + 07 — Q0.
1,79,k J

The second term vanishes since
Z(avZ<JYk‘/7 Ez>)azk = Z <6vI <Yka [Z UlEla Ez:| >)azk
ik ik !
=Y (%, [E;, Ei])0., = 0.

The third and fourth terms are equal, and in the fifth term we have
N VB (Vi BN 0. = Yy, Vi, V)0, 0,
i,k ik
= YWV Y0, 0., = [V Za?_.
i,k

Here we have used the identity (J7V, Jz/ V) = (Z, Z")|V|*.
We can rewrite Lg as

1
(S P e )+ ok + o - o
( J J

+e > (Jy,V, Ei)0:,0,,.
i?j
The operators

Ly, = Zagw Ly = Zaij
( J
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are of course the Euclidean Laplacians on v ~ RP and 3 ~ RY, respectively.
In Euclidean polar coordinates they read

1

= 02 —1y !
Ly = |Z] + Z| 1z| + |Z|2L5q‘1’

where Lgy-1 and Lgq-1 are the round Laplacians on the unit spheres SP~1
and S?7! in v and 3, respectively. We denote by Ly the last term in Lg,

Ly =€ (Jy,V, Ei)0.,0,,
7:7j
and observe that Ly gives zero when acting on a v-radial function on S, i.e.,
f=f(V|,Z,t). Indeed in this case we have

3IV|
so that
(% 1
Lof = ¢ 3 (M V. Biyg0:,0f = €' ) g (5 Vi V)00 f = 0.
(2] J

If we define the structure constants C’-k- by

[E;i, E;) Z " Y,

we can rewrite Ly as
L k t
Ly=c¢ E C;50i0z,0p; *6 Z — 00y, )0z, -
i7j7k“ 7] k

Note that vﬁv — v;0y, is a well defined differential operator on the unit
sphere SP~1 for any 4,j =1,...,p.
The biradial part Lg of Lg is given by

(2.9) Ls—e<8lv+ v |8|V|+ |V|2<8Z+ Z |8|Z>)

<8z+ 7 8|Z|) (07 — Q),

and the Laplacian on S becomes

V2

2.10 Lo=1 ¢
(210 Ls S“( AZP 2P

V2 €2t
LSp 1—|—| ’ qu 1> LSq 1+ Lo.

Consider now the change of variables (V, Z,t) oA (V' Z' t") given by
the Cayley map in (2.1)—(2.2). It is convenient to separate out the norms



THE v-RADIAL PALEY-WIENER THEOREM 95

of V,V'. Z, Z' from their respective angular variables, and to transform to
Euclidean polar coordinates (R,w) € (0,1)xSP*9 on B. We get the following
transformations:

(’V|7 |Z’7t7w17w2) = (‘V/|7 |Z/’atlawllawé) = (R7 12 gf),wi,wé),

where V = |V|wy, V! = |V'|o} (w1,w] € SP7Y), Z = |Z|ws, Z' = |Z' |}
(wo,wh € S171),

V]
[+ et 51V 122
2|Z]
(1+et+ 3V P2)2 4212
(210 y_ Tl RIVE) 2P
(et L)z
(LT+e + VP wi = [Z]Jupwr

o[ VR iz
Wy = W2,

V' =

’Z/‘ = 2

Wi =

with inverse
2|V|

(1= ) 127

2| 7|
(1—=t)241|2'%
(2.12) g LR

(1 _ t’)2 + |Z/’2’
(1= )l + |2 g}

[(1 _ t’)2 + ‘21’2]1/2 ’

—
\WQ —CL)Q,

VI=

7] =

w1 =

where R? = |V/|2 4+ |Z'|? + 2, and (R, p, ¢) can be regarded as spherical
coordinates in the space (|V’'|,|Z'|,t'):

’V,’ = R\/ 1- 27
|Z'| = Rpsin ¢, 0<R,p<1,0<0<).
t' = Rpcos¢
The Jacobian of the change of variables
(|V‘7 |Z|7t7wlvw2) = (|V/’7 ’ZI|7tlvwivwé)

gives the transformation between the gradients. We write it symbolically as
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(0= 6?IXV//I| vt (?IIZ//I' Aot 3%8 gr‘u}| il
Oz = ‘?9'|‘;||a|v |+ ‘?é,' Oz + 88’261% §§| Ot
(2.13) o, = ag:’a v+ ang\am + (Z@t' + %fawiv
Oy = gi;awi + 3w§7

with inverse

V| ot

Ay = 8\V’|8W| + 8|V/|8t’
Az = ;HZ/," A + ;'5," Oz + 8|aZ’|8t + 68’?,|8M,
Dy = aag‘ | + agz 02 + gt, 9 + 88(’:} Do
Oy = g:,i@wl,
Oy = gz;a’” + Oy
where % =0, g““;l,‘ = 0. For the change of variables (|V'|,|Z'|,t') —

(R, p, ¢) we get

1
8|V" = 1/ 1-— p2 83 — *p\/ 1-— p2 8p,

O\z1) = psing Or + ]1%(1 —p?)singd, + ];pcos¢8¢,
1 1.
Oy :pcosgzb@R—FE(l—p2)cos¢8p—R—ps1n¢6¢,

with inverse

1
Or = E(t’ﬁt/ + |Z/’8|Z/| + |V/|8|V/‘),

1 Rp
Op=—{t'0p +12'|0,7) — ——=
Oy = t’6|Z/ —|Z"0y.

Now we observe from (2.11)—(2.12)) that f is biradial on B if and only if
f o C is biradial on S, and more generally, f is v-radial on B if and only if
foC is v-radial on S.

6|V/‘,
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Consider then the v-radial part of Lg, given by

¢ (1
(2.14) Loxad = Ls + —— 7 <4yv|2 + et) Lggr.

When we transform L,_,q to B we must get the v-radial part of the Lapla-
cian on B, plus some operator L; such that L; f = 0 for f v-radial on B. Let
us examine the transformation of the two terms in separately. When
we transform Lg (given by ) using , we get the biradial part Lp
of the Laplacian on B (which is known, see below) plus an operator L} such
that L f = 0 for f biradial on B. Moreover, L} f = 0 if f is v-radial on B,
since every term in L} will carry derivatives with respect to the angular
variable w}. Next, by the transformation

aw2 = awz + o

we see that under the Cayley map, Lgq-1 < Lgq-1 + LY, where L{f =0
for v-radial f, since L carries derivatives with respect to wj in every term.
Transforming Ly_..q to B we then get

(2.15) Ly. deLBJr (|V’|2+1—R2)L5q_1 + Ly,

4| Z/|2
where the first two terms give the v-radial part of the Laplacian on B, and
the operator
1-R?
4| Z’P
satisfies L1 f = 0 for f v-radial on B.
The biradial part Lp is known, namely ([6, Theorem 4.1], [5, Theo-
rem 2.1])

Ly T+ ——(V'?+1 - R*L]

1— R2 1— R?

iB = Lrad +

where
D1=<1—p2>a§+<§—<p+q> >a+ (@1 (g 1) cot 60y),

=05+ (q— 1) cot ¢ 9.
The coefficient of Lgq-1 in can be rewritten in terms of R, p and
¢ as
1 - R? 1—R? 1— R?
AR?p? sin? ¢ AR?p?sin? ¢ 4sin¢
Consider now the term Lgp-1 in . It is easy to check that Lgp—1 S

Lgp-1, i.e., the round Laplacian on SP~!, is invariant under the Cayley
transformation. For example, for p = 2 and ¢ = 1 a direct computation

(R*(1—p*) +1-R?*) =
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shows that if w; = €' and W] = ¢?1, then the angular coordinates on
Sp—1 = S' are related by
Rpsin ¢
/
= arctan —————

so that 0y, = 0y and 821 = 8;,1 . In the general case we observe that the
map R : v — v induced by w; — wf, namely
(1+e +3IVI*=12]J)V
[+ e+ 3VE) 4122
is a linear map preserving the Euclidean norm for any |V, |Z], t and ws
fixed. Thus R € O(v) and the round Laplacian Lgpy—1 is invariant under R,
as claimed.

By transforming Lg in (2.10)), we then obtain the Laplacian on B in the

form

1—R? 1
2.16 Lg=1L — | D —_
(2.16) B = Liad + — 7 < 1+ s’ o

1
<D2+ LSq 1> +L1+L27
sin? ¢

Vs RV =

1
LSq 1 + LSp 1>
—p?

1-R?
4
where we write Lo for the image of Lo under the Cayley transform. Note
that the operators in the round brackets of are precisely the round
Laplacians Lgp+q and Lgq (cf. , ) Defining L3 by
1-R? 1

Li+Ly=—"—"[g=——
P 4 T Leh?(r)2)

and recalling the relationship R = th(r/2) between the Euclidean and Rie-
mannian distance in B, we can rewrite the Laplacian on B in geodesic polar
coordinates as

L37

1—-R? 1— R?
LB = Lrad + LSP""Q - (qu + LB)
4R?
1 1
— Lypud + . (Lsa+ L)
AT L sn?(r/2) Lrta 4ch2(r/2)( su+ Ls)
The angular Laplacian Lg(,) is identified as
1 1
2.17 L =— L — —————(Lga + L3).
( ) S(r) 4sh2(r/2) srra 4ch2(r/2)( 51 3)

Now Lsf =0 for f v-radial on B, since both L; and Lo have this property,
so the result follows. m

REMARK 2.2. The unknown part in Lg() is the operator Ls. It will be
some expression in the derivatives ds, 0., Oy . (The derivative dr must
obviously cancel out in Lz. The derivative J, cancels out in L3 since the
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p-coordinate decouples from the remaining coordinates, as we know from
the explicit form of the induced metric vg(, [6]. Thus the derivatives with
respect to p only occur in the term (4sh?(r/2)) "' Lgp+q, corresponding to
the constant curvature part of the induced metric, namely 4 sh?(7/2)Ygp+q;
see [6, Theorem 3.1].) Since Lgf = 0 for f v-radial, every term of L3 will
contain derivatives with respect to the angular variable wj. Symbolically,
L carries the derivatives 653, 0ty Ot Oy s O,y O

REMARK 2.3. In the symmetric case, i.e., when S is a rank-1 symmetric
space G/K, L3 is r-independent and the operator L' = Lgq + L3 in
is the “vertical” Laplacian acting along the fibers of the Hopf fibration of
SPT4. For example for p = 2 and ¢ = 1 we have

’Ulavz — ’Ugaul = 8¢1 = 8¢/1 = Ullavé — Ué@vll
and
L2 = et(v18v2 — Ugavl)az = eta¢1 az = et8¢/1 (92,
where 0, = adr + b0, + cOy + d8¢/1 , with a, b, ¢, d suitable functions of R, p

and ¢. Adding on the contribution from L, we see that all terms with the
derivatives Og, 0, cancel out, and we get

Lj :82/1 +28¢8¢/1 = L'=Lgi+ L3 :83)4-113 = (8¢+8¢/1)2 :83.

Here 0y = 0y + 0y, = t'0y — 2'0p + 110y, — v50,; is the Hopf vector field,
generating the Hopf action along the fibers isomorphic to S' at each point
of SPT4 = §3,

In the nonsymmetric case, SP*9 is no longer a fibration with fiber S9,
and there does not seem to be a natural interpretation of the operator
L' = Lga + L3 in . Moreover, L3 will generally depend on 7, since
the term L’ is due to the “perturbed” part of the induced metric (denoted
4sh*(r/ 2)hin(r/2) in [6, Theorem 3.1]), which is a complicated differential
expression on SP14 explicitly depending on r.

2.2. Spherical harmonics on SPT%. We recall some results of Koorn-
winder [19]. Let HPT9+1" be the space of spherical harmonics of degree n on
SP+4, Recall that every w € SPT4 can be written as w = /1 — p2w; + po,
with 0 < p < 1, w; € SP7L and @y € S% By [19, Theorem 4.2] (with
g q+1,co80 =p, m—n, k—r, l+— s) we have the decomposition

ptgt+ln _ § : p+g+l,n
H - HT,S ’

0<r,s<n
n—r—seven >0

where Hi’;qﬂ’n is the vector space which is spanned by the functions

S(w) = p (1= p?) PRI 252 — 1) S0 (w1) S (@)
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with
57(«1) € HP" = spherical harmonics of degree r on SP~!,

Sf) € H7T1 = spherical harmonics of degree s on S,

and R (z) is a Jacobi polynomial normalized so that Rgg’b)(l) = 1. The
spaces ’H?;qﬂ’" are mutually orthogonal and they are invariant and irre-
ducible under SO(p) x SO(q + 1).

We now refine this decomposition by adapting it to the bispherical
coordinate chart (p,d,wi,ws) of SPTY. As before, we write Wy € S? as
@y = cos¢ H + sinpwsy, with wy € S971 H = (0,0,1), and 0 < ¢ < 7.
Then by [19, Theorem 2.4] (with ¢ — g + 1) we have the decomposition

S
(2.18) Hatle = N qathe,

where ’H;I-Jrl’s is the linear span of the functions

§(@2) = (sin @) RY79271) (cos )5 (wn)
with ) 4
S J( ) e i = spherical harmonics of degree j on S971.

The spaces ’Hq+ * are mutually orthogonal and they are invariant and irre-

ducible under SO(q). Using this decomposition for the spherical harmonics

S §2)( 9) in HES TP above, we obtain the following decompositions of the
spaces HerqH ™ and HPTatLn:

s

+q+1,
(219) MRS = D M
=0
1
(2.20) prratte — " Z”Hfjig* "
0<r,s<n  j=0

n—r—seven >0

HP+Q+1 N

rs i is the linear span of the functions

where

S(w) = p* (L= ") PRECSHT 207 1)

% (sin¢)jR(‘i/.2 1+j.q/2— H_j)(COS ¢)S(1)(W1)SJ(2)(W2)

with S( ) € HP" and S( ) € 199, The spaces Hp+g+1 ™ are mutually orthog-
onal and they are invariant and irreducible under SO( ) x SO(q).

REMARK 2.4. For ¢ = 1 the decompositions ([2.18} f must be mod-
ified as follows. The index j must be restricted to take the values 0 <
j < min(s,1) and S]@) (wg) = 1. The remaining formulas correctly repro-
duce the decomposition of spherical harmonics of degree s on S¢ = S'. For
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example, if s > 1, then 1) reads H>* = ’Hg’s & "H%’S, where 7-[[2)’5 and

’Hl are the linear spans of the functions R{YETY2) (cos ¢) = cos(s¢) and

(sing)R, 1/2 1/2) (cos @) = s~ 1sin(sg), respectively.

2.3. Separation of variables. The v-radial eigenfunctions of the an-
gular Laplacian Lg(, are those that are independent of wy in the bispherical
coordinate chart (p, ¢, wy,ws) of SPT4 ~ S(r). It follows from that the
v-radial eigenfunctions of Lg(,) in HPFIHL" are the elements of

1 1
p+q+n Z”Hgigq;r’n (0<s<mn,n—seven >0),

namely
-1 -1
Y € HETT o LY = (_n(n+p2+q ) N s(s +2q )>Y7
4sh*(r/2) 4ch*(r/2)
and conversely, if Y € HPT9+tL7 is a p-radial eigenfunctions of Lg(, then
Y € Hp+q+1n for some s with 0 < s < n and s of the same parity of n.

Lettmg n=k+lands=Fk—1 , we find that the v-radial eigenfunctions of
L,y with the eigenvalue

(k+D)(k+l+p+qg—1) (k—=Dk—-1+qg—-1)
4sh?(r/2) 4ch?(r/2)

(2.21) A = —
are the elements of Hg*,;qjl’kﬂ. They belong to subspaces invariant and
irreducible under SO(p) x SO(q + 1). The v-radial eigenfunctions with the
eigenvalue A;; that belong to subspaces invariant and irreducible under

SO(p) x SO(q) are the elements of /ngquri A+ With 0 < j < k — 1. A basis

of Hg;qﬁ Rt g given by the functions

(222) Xk,l,j,i(pv ¢’ (A)Q) _ pkflRl(p/Q_lv(q_l)/z"'k_l) (2,02 o 1)

X (sin qﬁ)jR;q_/f__jHj’qﬂ_lﬂ)(cos ¢)S; )(wz)

where S( ) (i=1,...,dimH%) is a basis of H%7. For k and [ fixed, the only
elgenfunctlons that are invariant under SO(p) x SO(q) are those with j = 0,
namely the biradial eigenfunctions (cf. [6, [5])

_ 2—1,(¢—1)/2+k—1 2-1,q4/2—1
Xk,l(% ¢) — pk lRl(p/ (¢—1)/2+ )(2/)2 o 1)RI(<;q—/l q/ )(COS ¢)
+q+1,k+1 +q+1,k+1
Hoxlio CHoxl
The degeneracy of A;; is then at least dim ngqtl ok Z?;é dim HJ.
It will actually be bigger than this, since this number only depends on k —
but not on k + 1.
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REMARK 2.5. In [I8] pp. 27-28] it is observed that, for any noncompact
harmonic space X, the number (f’/f) (r), where f is the density function, is
an eigenvalue of Lg(,y with degeneracy > dim X. For a Damek-Ricci space
we have f(r) o< (sh(r/2))P*9(ch(r/2))?, so that (f'/f)(r) is precisely the
first nonzero v-radial eigenvalue A1 g = A1 o(r) in . Thus the degeneracy
of A1 0 is at least p+¢+1, whereas dim ngqﬂ’l = g+1. Note that p+qg+1 =
dim Hp TN 4 dim HEHITH

The normalized Euclidean measure dw on SP™? can be written in bi-
spherical coordinates as
vol(SP~1) vol(S471)

vol(SP+a)
= dm(p, ¢)dwdws,
where dw; and dwsy are the normalized Euclidean measures on SP~! and
S9~1 respectively.
For a v-radial function y on SPT? we get (writing x(w) = x(p, ¢, w2))

dw =

p?(1 = p*)P2 (sin )4~ dpdepelery dws

1m
S X(w) dw :SS S X(p? ¢7W2) dm(ﬂ, ¢> dws.
Sp+aq 00 Sa—1

Suppose the basis {SJ(QZ)} of H4%J is orthonormal in L?(S97!, dwsy). Then the

system {xg, i} is orthogonal on D x 591 with respect to the measure
d:u = dm(pa ¢)dw27

V xkgi@xm g @ dw = § X e du
Sp+a Dy xS9—1

= [xtk.0.j.i || * Ot Ouar 8 S

2 is computed to be (mg, ;)" ! with
2k =214+ 2B)(k+ 1+ a)(a— 028+ 1)p—i(a+ 1)k — 1+ 28);
22(k =1+ 2B)(k +a) Il (k =1 = )UB+ 1)x(B +1/2)7 ’
where o = (p+q¢—1)/2, 5 = (¢ —1)/2, and (a)y, is defined by (a)o = 1 and
(@), =T'(a+n)/I(a)=ala+1)---(a+n—1).

A smooth v-radial function y on SPT? can then be expanded as

The squared L?-norm X0,

7rk7l7j -

oo k k-l dimHII

X = ZZ Z Tk, 1,j Ok, G,i Xk, jyis

k=0 1=0 j=0 i=1
where

Al = S X (W) Xk 1,5, (w) dw.
Sp+q
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Consider now the eigenvalue equation for the Laplacian on B:

(2.23) Lpf=-(N+Q*4)f (AeC,Q=p/2+q)
Here we can separate variables in geodesic polar coordinates, by looking for
the v-radial solutions of the form f(r,w) = ¢(r)x(w).

Recall that for A\ € C,t e R, a > > —1/2,and k,l € Z, k > 1 > 0, one
defines the associated Jacobi functions by (see [20])

il (1) = e(2sh ) (2 eh )1l ),

where c is a normalization constant and gbg\a’ﬁ ) is a Jacobi function:
, a+B+1—iX a+8+1+1iA
o\ (t) = F(

a+1,—sh?t

2 ) 2 ) —"_ ) >
(F(a,b,c,z) is the hypergeometric function). The functions ¢ = gbg\akﬁl) are
the unique solutions (up to normalization) of the following equation that
are regular at t = 0:

(2.24) {83 + ((2a + 1) ctht + (28 + 1) th, t) &,

k+D(k+1+2a) (k—0)k—1+2
—(+)(Sh;:+ )+( )(Ch2t+ﬂ)}¢=—(k2+(a+ﬁ+1)2)¢.

Putting together 24), @5), @3), @21), @-22) and ([2:24), we obtain

the following result.

C
THEOREM 2.6. Let S = NA = B be a Damek—Ricci space. The v-radial
eigenfunctions of the Laplacian, solutions of (2.23|) that separate in geodesic
polar coordinates and belong to subspaces invariant and irreducible under

SO(p) x SO(q), are given by
(2.25) Pkt i (0) = fak,ti(Ph(r/2)w) = dx ki (r) Xk, (W),
where the ¢y 1 are the associated Jacobi functions
(226)  drralr) = ¢34 (r/2)
= qea(N)(25h(r/2)) ! (2eh(r/2))F g5 (),

Here q;,1(\) is a normalization constant, the functions xp,j; are given
by (2.22), and the indices are as follows:

kleZ, k>1>0 0<j<k-—1 1<i<dimH,

a=(p+q-1)/2, p=(¢-1)/2
The functions fx ;. are biradial if and only if j = 0, in which case they
reduce to the biradial eigenfunctions

k() = fapa(th(r/2)w) = éx k(1) xk1(w)
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(cf. [6), Theorem 5.1]). They are radial if and only if k =1 = j = 0, in which
case they reduce to the spherical functions ¢x(r) = qbéf{’ﬂ) (r/2).

2.4. Poisson integral representation. Let P(z,n) be the Poisson
kernel on N A given by (see [§])

€t

>Q
2
et + 1[VIA)" + |22

(2.27) Plar,n) = cpgq < (

for v = ay = exp(tH) € A, and by
P(nag,n’) = Plag,n'n')  (n,n' € N)

for general © = na; € S. Define the normalized Poisson kernel with param-
eter A € C on NA as the following function on NA x N (cf. [2]):

(2.28) Ox(z,n) = Z’)\\Ei’z)) (x € NA, n € N),
where
(2.29) Pa(z,n) = (P(x,n)) />N,

We define a kernel Qy on B by
0,(C(x),Ch(n)) = Qx(z,n) (x € NA, ne N),
that is,
r(b,w) = QA\(CT'(1),Cy M (w)) (b€ B,we dB\ {H}).
From now on we write Qy(b,w) in place of Q) (b,w). The kernel Q) (b,w)
extends to a smooth kernel on BxdB. For example for b = C(a;) = th(t/2)H
and w = (p, ¢, w1, ws), we have
OA(C(ar),w) = |ch(t/2) — pe'®sh(t/2) 9

(cf. [6, (5.20)]). In particular, for w = H = (0,0, 1),

O\(C(ay), H) = H@/2=N),

For a suitable choice of the constant gy ;(\) in (2.26) (see below for de-
tails), one has the following Poisson integral representation of the associated
Jacobi functions (cf. [6, Theorem 5.2]):

Saka(t) = Hora(th(t/2)H) = | Qa(th(t/2)H,w)xp(w) dw.
Sp+aq

This formula extends to the biradial eigenfunctions f) ;(b) at arbitrary
points, namely for any b in B,

(2.30) Fea®) = | Qb w)xea(w) dw.

Spr+a
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See [0, Theorem 2.2] for a proof of this result involving the Radon transform
and the method of “descent” to complex hyperbolic spaces, which was used
also in [111 21] for the radial case (k =1 = 0). A different proof in the radial
case appears in [I, pp. 654-655].

The expression of gi () is (see [5])

(A +Q/2) (—iN+p/4+ 1/2)1‘

2.31 A) =
( ) Qk,l( ) (d/2)k+l
This can also be written as a ratio of c-functions, namely

Ca,8(—2X)

2.32 A) = : ,
(2:32) @i (Y) Cotht1,B+k—1(—2A)
where

2a+,3+17i)\11 i\ 1
(2.33) cap(N) = (NI o +1)

F(M-&-a;—ﬁ-&-l ) F(i)x—l—az—ﬂ-l—l ) '

(See [20, (2.18), (4.15), (8.5), and (8.7)]. For the symmetric case, see [20,
(8.13) and the last part of Section 8.1]. See also [13l, Theorem 7 and Remark
on p. 277].)

Observe that the c-function ¢(A) in is precisely ¢, p(2A) if & =
(p+¢q—1)/2 and 5 = (¢ — 1)/2, as we continue to assume.

We now have a result similar to for the v-radial eigenfunctions
Ikl in . The proof can be given along the same lines of [5, Theorem
2.2] for the biradial case (j = 0). Since the proof is quite involved already
in the biradial case, we shall omit it altogether.

THEOREM 2.7. Let gy () in (2.26) be given by (2.31). For allb € B we
have

(2.34) akgi(b) = S Ox(b, W)Xk 1,5, (w) dw.

Spr+q

Equivalently, if we define fxr,:(b) by (2.34), then (2.25) holds, i.e.,
(2.35) | Qa(th(r/2)w, )Xk (0) do’ = G k(M) Xiaji(w),

Sp+aq
Vr >0, Vw € SPT1.

REMARK 2.8. In the symmetric case, the functions x;;; on SPT4 ~
K/M can be identified with suitable matrix coefficients of a K-type 0y
containing an M-fixed vector. The result f then follows for this
general class of matrix coefficients (not only the v-radial ones) by an easy
change-of-variable argument, rewriting the integral over K /M as an integral
over K (see [16, Lemma 4.2]). This can be interpreted by saying that for a
symmetric space G/K of rank one, the subspace £ 8, of K-finite functions
of type d;; in €y (the smooth eigenfunctions of Lp satisfying ) is
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essentially determined by the single function ¢y x; (up to angular functions).
Formulas ([2.34)—(2.35)) generalize this to any Damek—Ricci space, but only
for the class of v-radial functions.

3. The Helgason Fourier transform in the v-radial case

3.1. Fourier series expansion of f and f~' Let f be a p-radial
function in C§°(B)*™d with supp f C Bg. The function w — f(r,w) =
f(th(r/2)w) can be expanded in the Fourier series

(3.1) Fr,w) =33 mh i () xXngi(w),

k> 5 i
where the Fourier coefficients
(3.2) ag,4,i(1) = S f(r W)X, (w) dw
Spr+aq

are smooth functions of the geodesic distance r supported in [0, R].

Let f()\,w) be the Fourier transform of f given by 1} By the direct
part of Theorem 1.1 (that was proved in [2, Theorem 4.5]), the function

f(A,w) is holomorphic of uniform exponential type with constant R.

LEMMA 3.1. Let f € CSO(B)"'rad. Then, for each A € C, the function

w i f(\w) is v-radial on SPt.
Proof. Consider the normalized Helgason Fourier transform of f o C' in
S = N A given by

ffc:z'()\,n) = S(fo C)(x)Qx(z,n)dx (A€ C,neN).
S
Then

F(X,Co(n) = f o C(\m),
and we need to prove that n — L]Q/C'()\,n) is v-radial. For simplicity, we
write f in place of f o C in the following. Let

fun) = § f@)Pa(x,n) da
S
be the unnormalized Helgason Fourier transform of f, so that (cf. (2.28))

~ ~

f(A,n) =Pr(e,n)f(An).

Since n +— Py(e,n) is biradial (cf. and (2.29)), it is enough to prove
that n — f()\,n) is v-radial. We use the Radon transform to reduce the
problem to the case ¢ = 1 of complex hyperbolic spaces.

Fixw € 3 with |w| = 1, let 3, = Rw, and consider the subspaces n, = v®3,
and 5, = n, @ a of s, with the scalar product induced from that on s.
Then n, is a Heisenberg-type Lie algebra if one defines the commutator
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[V,V']o = mo([V, V]), where 7, is the orthogonal projection of 3 onto 3,. The
associated Lie group IV, is the classical Heisenberg group of dimension p+ 1.
We recall that p is even, so we let p = 2(n — 1) (n > 2). Then the Damek—
Ricci space S, = N,A can be identified with the complex hyperbolic space
H"(C) ~ G,/K,, where G, = SU(n, 1) ~ N,AK, and K, = S(U(n) x U(1)).

The centralizer M, of A in K, is connected and acts trivially on the
center 3,. In matrix form we have

u 0 0
M,={m=|0 U 0]:UcUn-1),ucU), u’detU =1
0 0 wu

The map m +— U is a 2 : 1 homomorphism of M, onto U(n —1). The action
of M, on v ~ R2=D ~ ¢! ig given by m -V = « UV, and M, acts
transitively on the unit sphere SP~! = §27=3 in v.

The group J\Z of orthogonal automorphisms of N, A4, i.e., of the H-type

Lie algebra n, = v & 3,, is given by
M, = M, U (cM,),

where o is the automorphism of v @ 3, defined by o = (¢, —1d), with ¢ any

orthogonal isomorphism of v that anticommutes with J,,. For example if v =

span{ X;,Y; ?:_11 with [X;, Y]] = d;jw, we can take ¢(X;,Y;) = (=Y, —X;).
We denote by P©) (20, M) the Poisson kernel on S,, and define

P (@, 10) = (P (0, n0)) /21 (X €T, 2, € Sy o € N,).

Given g € C5°(S) and w € S9! (¢ > 1), we define the Radon transform
of g by
Rug(Vin,t) = e =02\ g(Vinw + Z,)dZ,

wl

where 1, € R and w is the orthogonal complement of w in 3, with Lebesgue
measure dZ. The function R.g is in C3°(S,). Note that Rpg = 0 for all
w € S9! implies g = 0. (This corrects a wrong statement in [5, p. 440]
about the injectivity of the maps R, for w fixed.) We keep the same notation
R.g for the Radon transform applied to functions g on N. In this case the
variable ¢ is absent and the factor e'=9%/2 is omitted. We observe that g¢
is v-radial in S (resp. N) if and only if R,g is v-radial in S, (resp. N,) for
every w € 3 N SPTY,

Consider now the Radon transform in N of the function n — f(A, n). It
can be shown that this is well defined and that it is related to the Helgason
Fourier transform in S, = N,A of the function R, f.
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Indeed by [24, Proposition 5.1] we have, for all w € S9!,
(3.3) (Ruf (X)) (10) = cqBp g NP (€,10)(Rusf) (X 710)

= ¢gBpg(N)(Ruf) (A no)  (no € No),
where ¢, is a constant depending only on ¢, and B, 4()) is the meromorphic
function
I'((¢—1)/2)I'(p/4+1/2 —i})
rQ/2—i)\) '

We can describe as follows: the Radon transform in N of the (un-
normalized) Helgason Fourier transform of f in N A is proportional to the
(unnormalized) Helgason Fourier transform in N,A of the Radon transform
of fin NA.

Since f is v-radial in S, the function g = R, f is v-radial in S,, and we
need to prove that n, — g(\, n,) is v-radial in N,. Since M, is transitive on
the unit sphere SP~! in v, = v, it is enough to show that

gA (m-Vim) =g\, (V,n), VmebM, Vecvnek.

Bpg(A) =

Now

vy =\ o, DP (V. (Vin) du(V i, 6),
bxRxR

where du(V,7,1) = e~ dV didf and

POV, i, E, (V,n))

B <(n - 1)!)1/2—M/“< et /i
= n - N2 - ) :
i (e + 3V =VP)" +|(n—nw - 5[V, V]|
Since g is v-radial, we have, for all m € M,,

N m-vip) =\ g(V,a, OP (V0,1 (m- Vi) du(V, 3, 7)
b X RxR
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since M, is trivial on 3,. It follows that g(\,-) = (Ruf) (),) is v-radial
in N,, so (Ry,f(A,-)) is v-radial in N, for all w € S97!, and finally f(),-) is
v-radial in N. =

By this lemma, we have the Fourier expansion

(3.4) Z Zzﬂk,z,g bre,1,5,i (N Xk 1,54 (W),

k>l g %

where the coefficients

brijiN) = | FO @)Xk (W) dw
Spr+aq
are holomorphic functions of A\ of exponential type R.
The functions ayj;(r) and by j;(A\) are related as follows. Let o/ =

a+k+land B/ = B+ k— 1 Define co 5 (N) by (2.33). Let J#)(g) be
the Jacobi transform of g € CF (R)even, defined by (see [20])

o0

TN N = | g0)ey” (1) (2sht) H 2ch) dr,
0

with inverse (see [20, Theorem 2.3])

1

(T WO = 5

[ ROV () carpr (V2N
0

PROPOSITION 3.2. We have
vol(SP+a)

(35) brigi(N) = —5 (V)
oo pta+k+l q+k—l
o/ ,8) r r
X §) Qk.1.4, z( )¢2)\ <2> (2 sh > (2 ch 2> dr
_ vol(SPte) ('3 ag,1,5,i(2t)
(3.6) = ot NI Gt ) Y

where qi1(\) is given by (2.31)), and conversely

(3.7)  agyji(r)

k+1
@, r o! 5
= or (2 sh 2) (2 ch 2) S ara (-5 (2) i 1.3, (A) dp(A)

- ) e G
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29 r k+1 r k—l

bk:,l7 z( ) r -2
%(g) qk;( 165 (5 lewr N2 an

Proof. The proof uses , (2.25), (2.20)), (2.32) and , and it is

entirely analogous to [5, Proposition 3.2]. =

REMARK 3.3. Since the function r + ay;;:(r) is in CF([0,00)) and

A ¢(a+k+l’6+k 2 (r/2) is entire, the integral in 1’ is an entire function
of A. Since A — ¢x;()) is a polynomial (cf. (2.31)), both functions

A= bk,l,j,z’()\) and A\ — bk,l,j,i()\)/Qk,l()\)

are entire of exponential type R (see [I5, Lemma 5.13, p. 288]), the second
one being even.

We also observe from f and the Paley—Wiener theorem for the
Jacobi transform [20, Theorem 2.1] that, for all &, 1, j, i, the map a j;(r) —
bi1.5,i(A) is a bijection from the space of smooth functions ay; ;; on [0, 00)
compactly supported in [0, R] and such that the function

g 1,5i(7)

(sh(r/2))"+!(ch(r/2))+"

extends to CF(R)even, i€, argji € (sh(r/2))F(ch(r/2))*CF (R)even,
onto the space of holomorphic functions by ;; on C such that the function
A= brgji(N)/aei(A) is in PWR(C)even, i€, biiji € qii() PWR(C)even-
Here PWR(C)even is the space of even entire functions on C of exponential
type R. The proof of the converse part of Theorem 1.1 in the v-radial case
(see below) implies that the Fourier coefficients by, ; ;(A) of (), w) satisfying

(1.4), (1.5) and v-radial in w are indeed in g () PWR(C)even-

3.2. The v-radial Paley—Wiener theorem. We now prove the v-
radial case of Theorem 1.1.

T —

THEOREM 3.4. The Fourier transform f(b) — f(z\, w) is a bijection from
Cs°(B)*™d onto the set of holomorphic functions (X, w) of uniform expo-
nential type, v-radial in w, and satisfying the condition

(3.10) | Qab,w)p(Aw)dw = | Qx(b,w)p(—A, w) dw

oB oB

for any b € B and A € C. Moreover, f satisfies 1} if and only if f has
support in the closed ball B = {b € B :d(b,C(e)) < R}.

Proof. In view of Lemma 3.1 and [2, Theorem 4.5], we only need to
prove the converse part, in particular the onto statement. We proceed as in
[5, Theorem 3.3] for the biradial case.



THE v-RADIAL PALEY-WIENER THEOREM 111

Let 1 (A, w) be a holomorphic function of uniform exponential type such
that (1.4) and (3.10) hold, and such that the map w — (A, w) is v-radial
on SP*4 for all A € C. Define by ,ji(A) = {gpiq Y(A, w)Xk,1,j,i(w) dw, so that

(cf. @)
(3.11) P\ w) = Z Z Z Tk, 0,50k, 1,5, (A) Xk 56 (@)
k>1 § i

Then A — by ;i(A) is holomorphic of exponential type R. Using (3.11) in
the integral {,, Q_(b, w)w()\ w) dw we get, by (2.34),

(312) | 9w\ w)dw = Y > mibrgi(A) forma(b)-

OB k>l § i

From (3.10), (2.25)—(2.26) and (3.12), it follows that the function A —
b 1.5,i(A) g1 (—A) is even. Thus so is
Or1ji(A) _ bhigi(A) gra(=X)

Q1 (N) Qg (N) @i (—A)
Define f by the inversion formula (1.2)):

A=

[e.9]

Fb) = 2L | Qa(b,w) (A w) dwdu(N).
0 Spt+a

Then f is smooth and - radlal on B (by (3.12f - Define ag (1) by (3.1])-

. Then we get again (| and .
By (2.31) we see that the function A — by;i(N)/qri(A) in . ) has
no poles for ImA > 0. Then, using the exponential type condltlons for

the functions by, ;;(A\) and the well known asymptotic estimates for the

functions ¢$\/’ﬂl)(r/2) in , we can prove that ag;;(r) = 0 for r > R.
In more detail, we use

657 (r/2) = car g QNP7 (1/2) + o (208 (7/2),
where the function A — @E\a/’ﬁl)(t) is holomorphic in C\ {—iN} for each t > 0
(cf. [12, Proposition 1]), to rewrite the integral in (3.9) for r > 0 as
OSO bV 57 (r/2) "

Qk,l()‘) Ca’,,@’(_2)‘)

Now (ca 5/(—2X))~! has no poles for Im A > 0, and the integrand is holo-
morphic for Im A > 0. Thus we obtain, by Cauchy’s theorem,

F(r) =

—00

(of
") = T beagi+in) 2 §+m)(7'/2)
o= S Qi (E+1in)  carp(—2(€ +1n))

—00

dg

for any n > 0.
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We now use the estimates for @E\a/’ﬂ,)(t) and ¢y (M) given in [I2, The-
orem 2] (see also [20, (6.4) and (6.5)]), namely for any ¢ > 0 there exists
K7 > 0 such that for all t > c and all A € C with Im A > 0,

@E\a’,ﬁ’)(m < Klef(lrn)\Jra’JrB'Jrl)t'

Moreover, there exists Ko > 0 such that for all A € C with Im A\ > 0,
leargr (=N 7H < Ko (14 A2

Using the exponential type conditions for by ;(\) and the inequality

1 ‘ (d/2) 41
ar(E+in) |~ (Q/2)k (p/4+1/2)
which is easily proved from ([2.31)), we find (as in [12} p. 157])

(V€, ¥ > 0),

[F(r)| < Ke@rr@mor2 § b (6 + in)|(1+21¢ + i) 70/ dg
45>

—0o0

< Kle—(277+Q+2k)r/2enR < K/en(R—r)

for suitable constants K, K'. Since this holds for all n > 0, we get F(r) =0
for » > R, as claimed. It follows from that f(b) = f(r,w) has support
in Br. The proof is completed by showing that the Fourier transform of f
is just f(A\,w) = ¥(\,w). In fact, the Fourier coefficients of w — f(A,w) are
just the bk,l,j,i()\)- [
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