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JORDAN SUPERDERIVATIONS AND
JORDAN TRIPLE SUPERDERIVATIONS OF SUPERALGEBRAS

BY

HE YUAN (Changchun and Siping) and LIANGYUN CHEN (Changchun)

Abstract. We study Jordan (6,0)-superderivations and Jordan triple (6, 6)-super-
derivations of superalgebras, using the theory of functional identities in superalgebras. As
a consequence, we prove that if A = Aq@®A; is a prime superalgebra with deg(A1) > 9, then
Jordan superderivations and Jordan triple superderivations of A are superderivations of A,
and generalized Jordan superderivations and generalized Jordan triple superderivations
of A are generalized superderivations of A.

1. Introduction. Let A be an associative algebra. A Jordan derivation
d of A is a linear mapping from A into itself satisfying d(2?) = d(x)x+zd(z)
for all z € A. In the 1950’s Herstein [I5] proved that if A is a prime ring of
characteristic different from 2, then any Jordan derivation of A is a deriva-
tion of A. In 1988, Bresar [§] studied Jordan derivations on a 2-torsion free
semiprime ring. Fosner [13] extended Herstein’s theorem to superalgebras
and proved that a Jordan superderivation on a prime associative super-
algebra whose even part is noncommutative is a superderivation. Later,
Fosner [14] considered Jordan superderivations on semiprime superalgebras.

The concept of a generalized derivation was introduced by Bresar [11].
Generalized derivations on prime rings were studied by Hvala [16]. The fol-
lowing definition is a common generalization of Jordan derivations and gen-
eralized derivations. A linear mapping f : A — A is called a generalized
Jordan derivation if there exists a Jordan derivation d : A — A such that

flzy +yz) = f(2)y + yd(z) + zd(y) + f(y)r, x,y € A

Jing and Lu [I7] considered generalized Jordan derivations of prime rings
and standard operator algebras. Their results were extended to semiprime
rings by Vukman [20] who proved that every generalized Jordan derivation
of a 2-torsion free semiprime ring is a generalized derivation.
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The following two notions correspond to Jordan derivations and gener-
alized Jordan derivations. A linear mapping J : A — A is called a Jordan
triple derivation if

J(zyr) = J(2)yx + xJ(y)z + zyJ(x), =,y € A.

A linear mapping G : A — A is called a generalized Jordan triple derivation
if there exists a Jordan triple derivation J of A such that

G(zyzr) = G(z)yr + zJ(y)r + zyJ(x), x,y€ A

Bresar [9] proved that every Jordan triple derivation on a 2-torsion free
semiprime ring is a derivation. It turns out that every Jordan derivation on
a 2-torsion free ring is a Jordan triple derivation. Jing and Lu [17] proved
that every generalized Jordan triple derivation on a prime ring is a general-
ized derivation. Liu and Shiue [I8] proved that Jordan (6, ¢)-derivations and
Jordan triple (6, ¢)-derivations are (0, ¢)-derivations, and generalized Jor-
dan (0, ¢)-derivations and generalized Jordan triple (6, ¢)-derivations are
generalized (6, ¢)-derivations on a 2-torsion free semiprime ring.

On the other hand, a functional identity can be described as an identi-
cal relation involving elements in a ring together with functions. The goal
when studying a functional identity is to describe the form of these func-
tions or to determine the structure of the ring admitting the FI in ques-
tion. The theory of functional identities in rings originated from results on
commuting mappings [7]. The name “functional identity” was introduced
by Bresar [10]. The crucial tool in the theory of functional identities in
rings is the notion of d-free set, which was developed by Beidar and Cheb-
otar [4, [5]. Making use of the theory of functional identities in rings, Her-
stein’s conjectures on Lie mappings in rings have been settled [II, 2, 3].
Subsequently, Wang [22] established the theory of functional identities in
superalgebras and gave the definition of d-superfree sets. As an application,
Wang [23] described Lie superhomomorphisms from the set of skew elements
of a superalgebra with superinvolution into a unital superalgebra. For func-
tional identities and d-superfree sets of superalgebras we refer the reader
to [12], [21] and [22].

In this paper, we study Jordan (6, 6)-superderivations, generalized Jor-
dan (6, 0)-superderivations, Jordan triple (6, #)-superderivations and gener-
alized Jordan triple (6, )-superderivations of superalgebras, using the theory
of functional identities in superalgebras. As a consequence, we prove that if
A = Ap @ A, is a prime superalgebra with deg(A4;) > 9, then Jordan su-
perderivations and Jordan triple superderivations of A are superderivations
of A, and generalized Jordan superderivations and generalized Jordan triple
superderivations of A are generalized superderivations of A.
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2. Preliminaries. Throughout the paper, by an algebra we shall mean
an algebra over a fixed unital commutative ring @. We assume without
further mention that 1/2 € &.

An associative algebra A over @ is said to be an associative superalgebra
if there exist two @-submodules Ay and A; of A such that A = Ay ® A;
and A;A; C Ajyj, 1,7 € Za. A superalgebra is called trivial if A1 = 0. The
elements of A; are homogeneous of degree i and we write |a;| = ¢ for all
a; € A;. For a superalgebra A, we define 0 : A — A by (ag+a1)? = ag — aq,
then ¢ is an automorphism of A such that o> = 1. On the other hand, for
an algebra A, if there exists an automorphism o of A such that 02 = 1, then
A becomes a superalgebra A = Ag® Ay, where A; = {x € A | 27 = (—1)'z},
1 =0, 1. A superalgebra A is called prime if aAb = 0 implies a =0 or b =0,
whenever at least one of the elements a and b is homogeneous.

An element © € Ay U A; is said to be algebraic over C' of degree < n if
there exist co,c1,...,¢, € C, not all zero and such that )" ™t = 0.
The element z is said to be algebraic over C' of degree n if it is algebraic
over C of degree < n and is not algebraic over C' of degree < n — 1. By
deg(x) we shall mean the degree of z over C (if x is algebraic over ()
or oo (if = is not algebraic over C'). Given a nonempty subset S C AgU Aj,
we set

deg(S) = sup{deg(z) | z € S}.

Montaner [19] found that a prime superalgebra A is not necessarily a
prime algebra but a semiprime algebra. Hence one can define the maximal
right ring of quotients ) of A, and some useful properties of ) can be
found in [6]. By [6, Proposition 2.5.3] o can be uniquely extended to Q.
Therefore @ is also a superalgebra. Moreover, we can show that @ is a
prime superalgebra.

For any z,y € AgU A1, we consider the Jordan superproduct

vosy =y + (—1)Wyy
and the Lie superproduct
[, y)s = ay — (1) Wy,
Accordingly, a os b = ag os by + ay o5 by + ag os by + aj o5 by and [a,b]s =
lao, bols + [a1,bo]s + [ao, b1]s + [a1, b1]s, where a = ag + a1, b = by + by.
The following definitions will be needed throughout the paper.
Let A be a superalgebra and let § be an automorphism of A. For i € {0, 1},
a (0, 0)-superderivation of degree i is a @-linear mapping d; : A — A which
satisfies d;(A;) C Ay for j € Zy and

di(ab) = d;(a)8(b) + (—1)"6(a)d; (D)
for all a,b € AgU Ay. If d = dy + dy, then d is a (0, 0)-superderivation.
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For i € {0,1}. A ®-linear mapping ¢; : A — A is called a generalized
(0,0)-superderivation of degree i if g;(A;) C Aitj, j € Za, and

gi(zy) = g9:(2)0(y) + (=1)"16(z)d;(y)
for all x,y € Ay U Ay, where d; is a (6, 0)-superderivation of degree i. If

g = go + g1, then g is called a generalized (0, 0)-superderivation.
The following definition is an extension of Jordan derivations.

DEFINITION 2.1. Let A be a superalgebra and let # be an automorphism
of A. For i € {0,1}, a ®-linear mapping «; : A — A is called a Jordan
(0,0)-superderivation of degree i if a;(A;) C Aiyj, j € Za, and

ai(z ogy) = ai(@) 05 0(y) + (—1)"10(x) o, ci(y)
for all z,y € Ag U Ay. If & = ap + a1, then « is called a Jordan (6,0)-

superderivation.

According to the concepts of generalized Jordan derivations and gener-
alized (6, 0)-superderivations, we will give the concept of generalized Jordan
(0, 0)-superderivations.

DEFINITION 2.2. Let A be a superalgebra and let # be an automorphism
of A. For i € {0,1}, a ®-linear mapping ¢; : A — A is called a generalized
Jordan (8, 8)-superderivation of degree i if ¢;(A;) C Ai1j, j € Za, and

di(x 05 y) = ¢i()8(y) + (—1) WG (y)a, (2)
+ () Fl8)ai(y) + (~1)F Mgy (y)0()

for all z,y € AgU A1, where «; is a Jordan (6, 6)-superderivation of degree i.
If ¢ = ¢o + ¢1, then ¢ is called a generalized Jordan (0, 0)-superderivation.

In trivial superalgebras, the concept of Jordan (6, 6)-superderivations
(resp., generalized Jordan (6, f)-superderivations) coincides with that of Jor-
dan (6, 0)-derivations (resp., generalized Jordan (¢, #)-derivations).

DEFINITION 2.3. Let A be a superalgebra and let # be an automorphism
of A. For i € {0, 1}, a ®-linear mapping 3; : A — A is called a Jordan triple
(0, 0)-superderivation of degree i if 5;(A;) C Aiyj, j € Zz, and

Bilw o5 y o5 2) = Bi(z) 05 8(y) 05 (=) + (=1)18(2) o5 Bi(y) o5 6(2)
+ (=1)"FD0(z) o 0(y) o4 Bi(2)
for all x,y,z € Ag U Ay. If 8 = By + 51, then B is called a Jordan triple

(0, 0)-superderivation.

DEFINITION 2.4. Let A be a superalgebra and let # be an automorphism
of A. For i € {0,1}, a @-linear mapping §; : A — A is called a generalized
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Jordan triple (0,0)-superderivation of degree i if &(A;) C Ay, j € Zo,
and

= &(2)0(»)0(2) + (—1) Vi (y)8(2)6(=)
+ (=D)lHEHEl g ()0 (2)0(y) + (—1) @ Wil 2l (2)0(4)0(2)
+ (=1)10(2)8:(y)6 (=) + (~1)WHWlG(y) 5,(2)6(2)
+ (=1)dEHlal 2l =+l =l ) 6 ()0 (2)
o+ (1) R ()8, ()0 y) + (—1) D 0()0 ) 8i(2)
+ (=1)=HuD+2l 19 (1) 0 (2) Bi (2)
+ (=1l lD+el =1+l 1219 (2)0(2) Bi (y)
+ (= 1) iFlDFlellyitzl =1l 1219 (2)0(y) 8; (2)

for all z,y,z € Ay U Ay, where f3; is a Jordan triple (6, §)-superderivation of
degree i. If £ = &y + &1, then £ is called a generalized Jordan triple (6,0)-
superderivation.

It is clear that Jordan triple (6, 6)-superderivations (resp., generalized
Jordan triple (6, 6)-superderivations) of trivial superalgebras are Jordan
triple (6, 0)-derivations (resp., generalized Jordan triple (6, 6)-derivations).

3. Jordan superderivations. The following identity will be used fre-
quently:

(3'1) [[x,y}s,z]s = TIOg (yosz)*(*l)m ly‘yos (mosz)’ T,Y,% € AgUA;.

LEMMA 3.1. Let A be a prime superalgebra with mazimal right ring of
quotients Q and extended centroid C'. Suppose that 0 is an automorphism of
A and a; : A — A is a Jordan (0, 0)-superderivation of degree i € {0,1}. If
A is a 4-superfree subset of Q, then a; : A — A is a (0,0)-superderivation
of degree i.

Proof. Define § : A x A — Q by

8(z,y) = aslwy) — ai(@)0(y) — (—1)0(z) s (y)

for all z,y € Ay U A;. Note that §(z1,y0) = —0(yo,x1) and §(z1,y1) =
5(y1,$1).
Applying «; to (3.1)), we get

(3.2) a;([[z1,y1]s, 20)s) = ai(z1 05 (Y1 05 20)) + i(y1 o5 (21 05 20)).
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By [19, Lemma 1.2] and [I8, Corollary 1], a;|Ap is a (¢, #)-derivation. So
a;i([[x1,y1]s, 20]s)
= [i([z1,51]s), 0(20)]s + O(21)0(y1)cxi(20) + 0(y1)0(z1)cxi(20)
— i(20)0(21)0(y1) — i(20)60(y1)0(21)
and
a;(z1 05 (Y1 05 20)) + i(y1 o5 (x1 05 20))
= ai(z1) 05 B(y1 05 20) + (—1)'0(21) o5 i (y1 05 20)
+ a;(y1) 05 0(x1 05 20) + (—=1)°0(y1) 05 (1 05 20)
= (1) 05 B(y120 + 2051) + (—1)"0(21) 05 (vi(y1) 05 0(20))
+ 0(z1) o5 (6(y1) 05 @i(20)) + (Y1) 05 O(z120 + 2021)
+ (=1)"0(y1) o (evi(z1) 05 B(20)) + O(y1) 05 (B(1) 05 vi(20))
= ai(21)0(y1)0(20) + i(21)0(20)0(y1) — (—1)"0(y1)0(z0)cti(1)
— (=1)"0(20)0(y1) i (1) +(—1)"0(z1) i (y1)0(z0) +(— ) '0(1)0(20) i (y1)
— a;(y1)0(20)0(x1) — 0(20) i (y1)0(z1) + 0(21)0(
+ (=1)"0(x1)i(20)0(y1) — (—1)°0(y1)i(20)0 (21
+ ai(y1)0(21)0(z0) + i (y1)0(20)0 (1) — (—1)"0(21)0(20) i (1)
— (=1)"0(20)0(x1)vi(y1) + (—1)"0(y1 )i (1)0(20) + (—1)'0(y1)0(20) cvi (1)
— i(21)0(20)0(y1) — 0(20)ci(x1)0(y1) + 0(y1)0(x1) v (20)
+ (=1)'0(y1)i(20)0(x1) — (—=1)'0(x1)exi(20)0(y1) — vi(20)0(x1)0(y1)
for all x1,y1 € Ay, 29 € Ag. Comparing the above relations, we have
[i([z1,31]5),0(20)]s = i(21)6(y1)0(20) + (—1)"0(1) i (y1)0(20)
+ ai(y1)0(21)0(20) + (—1)"0(y1) evi(21)0(20)
— 0(z0)ci(x1)0(y1) — (—1)"0(20)0(1) i (1)
— 0(z0) i (y1)0(x1) — (—=1)'0(20)0(y1) cvi (1)

— a;(20)0(y1)0(21)

Therefore
[6(z1,91) + 6(y1,21),0(20)]s =0
for all x1,y1 € A1, 20 € Ag. From §(z1,y1) = 0(y1,x1), we obtain
(3.3) [0(z1,91),0(20)]s = 0.
Since A is a 4-superfree subset of @, [22] Theorem 3.8] implies that
(3.4) d(w1,y1) = M0(21)0(1)
+ X20(y1)0(x1) + pa(z1)0(y1) + pa(y1)0(x1) + vi(x1, 1),

where A\, A2 € C+ Cw, pi, 0 : A1 > C+Cw, 11 : A1 x A - C + Cuw.
Substituting (3.4 into (3.3)), we find that
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1)0(zp) in is Aq;

1)0(z ) in is Ao;
20) in is ul(ml)

0) in is pa(y1)-

In view of 4-superfreeness of A, [22, Theorem 3.7] now forces that
A1 = A2 =1 = p2 =0.
So d(x1,y1) = v1(x1,y1) and §(y1,x1) = vi(x1,y1). Therefore

e the coefficient of 6(z1)0(y
e the coefficient of 0(y;)0(x
e the coefficient of 6(y;)6(
e the coefficient of 6(x1)0(z

(20
(

ai([z1,31]s) = ci(T1yr + y171)
= ai(z1y1) + ai(y1z1)
= lai(z1),0(y1)]s + (=1)'[0(21), 2i(y1)]s + 201 (21, 1)
Again applying «; to , we get
ai([[z1,y0]s, 21]s) = i1 05 (Yo 05 21)) — (o o5 (w1 05 21))-

Extending the above expression, we have

i ([[z1, yols, 21]s)
= [ai([z1,90]s), 0(21)]s + (=
= [ei([z1, y0ls), 0(21)]s + (—=1)'0(21)0(yo)i(z1) — (=1)"0(y0)O (1) i (1)
+ ai(21)0(21)0(yo) — ci(21)0(yo)0(x1) + 2v1([21, Yols, 21)

(=1)'[0([x1, yols), ci(z1)]s + 2v1([1, os, 21)

and

@i(z1 05 (Yo 05 21)) — @i(yo o5 (71 05 21))
= a;(w1) 05 O(yo 05 21) + (—1)"0(21) 05 vi(yo 05 21)
— a;i(yo) 05 O(x1 05 21) — O(yp) 05 (1 05 21)
= aj(x1) 05 0(yo 05 21) + (=1)"0(1) 05 (i(yo) 05 0(21))
+ (=1)'0(x1) o5 (B(yo) 05 i(21)) — @i(yo) o5 (0(z1) 05 0(21))
—0(yo) o5 (i(w1) 05 0(21)) — (=1)"0(y0) o5 (6(21) 05 @i (1))
= a;(21)0(y0)0(21) + ai(21)8(21)0(yo) — (=1)"0(y0)8(21)vi(w1)
— (=1)"0(21)0(yo) cvi (1) 4 (—1)"0(x1) v (Y0)B(21) + O(21)0(21) i (yo)
(Yo

— @i(y0)0(21)0(x1) — (—=1)'0(21) i (yo)0(1) + (—1)"0(21)0(yo)cvi(21)
+ (=1)'0(z1) i (21)0(yo) — O(yo)evi(z1)6(x1) — vi(21)0(y0)0(x1)
— a;(y0)0(21)0(21) + ;i (y0)0(21)0(z1) — 0(21)0(21) i (yo)

) 0(yo)0(21)cvi(z1)

1)
(21) + o 1)0
+0(21)0(x1)i(yo) — O(yo)vi(1)0(z1) + (—1)°
(v0) Z( Dai(z1)8(yo) — (—1)"0(yo)0(21)ai(21)
) (1)ai(21)0(yo) + i(21)6(21)0(yo)
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for all x1,21 € A1, yo € Ag. Comparing the above expressions, we obtain

[ai([21, y0]s), O(21)]s + 201 ([21, Yols, 21)
= a;(21)0(y0)0(21) + (=1)"0(x1)i(y0)0(21) — @i(yo)0(21)0(21)
— 0(yo)vi(21)0(z1) + (—1)'0(21) i (21)0(y0) + 0(21)0(x1)xi (o)
— (=1)'0(21)i(y0)0(x1) — (=1)'0(21)0(yo)ai(1)
= [i(21)0(yo) + (—1)'0(x1) (o), 0(21)]s
— [ai(yo)0(z1) + 0(yo) (1), 0(21)]s-

So [5('%.17 yO)_(s(y()a .’L'l), H(Zl)]s_ —21/1([(131, yo]sa 251). As 5<$17 3/0) = _5(y07 1'1),
we have

(3.5) [6(z1,90), 0(21)]s = —va([z1,Y0]s, 21)-
By [22, Theorem 3.8], we have
(3.6) (1, 90) = A10(x1)0(yo) + X30(0)0 (1)

+ 14 (21)0(yo) + 1o (yo)0 (1) + va(21,%0),
where N[, \, € C 4+ Cw, py : A4 —» C+ Cw, py : Ay — C + Cw, and
vy 1 Ay X Ag — C + Cw. Substituting (3.6)) into (3.5)), we find that

the coefficient of 6(x1)0(yo)0(z1) in (3.5) is A;
the coefficient of 6(yo)0(x1)0(z1) in (3.5) is Aj;
(

(x
the coefficient of 6(yp)0(z1) in (3.5)) is ) (z1);
( 35

the coefficient of 0(x1)0(z1) in (3.5)) is 15 (yo)-
Again applying [22, Theorem 3.7], we get
N =X =y = py =0.

Therefore §(z1,y0) = va(x1,y0) and 0(xo,y1) = —0(y1, o) = —v2(y1, To)-
We shall now compute «;(z1ypz1) in two different ways. On the one hand,

ai(r1y0z1) = ci(z1y0)0(21) + (—1)'0(21)0(yo)i(z1) + vi (210, 21)
= (ai(21)0(yo) + (=1)"0(x1)ci(yo) + va(x1,%0))0(21)
+ (=1)'0(21)0(yo) cvi(21) + vi (10, 21)-
On the other hand,

ai(z1yoz1) = ai(z1)0(yoz1) + (—1)'0(z1)ai(yoz1) + v (21, yoz1)
= ai(21)0(y0)0(z1) + (=1)"0(x1) (i(y0)0(=1)
+ 0(yo)ai(z1) — v2(21,%0)) + vi(@1,yoz1)
for all z1,21 € A1, yg € Ag. Comparing both expressions, we get
vo(21,90)0(21) + v1(z1y0, 21) = —(—1)i9($1)V2(Z17yo) + vi(z1,9021)-
By [22, Theorem 3.7], we have va(x1,y0) = 0. So §(z1,%0) = d(yo,x1) = 0.
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Computing «o;(x1y121) in two different ways, we have

ai(ziyiz1) = ai(z1)0(y121) + (=1)"0(21)ai(y121)
= a;(21)0(y1)0(21) + (=1)'0(21) (i (y1)0(=1)
+ (=1)'0(y1)ci(z1) + v1(y1, 1))
and
ai(z1y121) = ai(x1y1)8(21) + 0(x1y1) 6 (21)
(i(21)0(y1) + (=1)'0(z1)ai(y1) + vi (21, 91))0(21)
+ 0(z1)6(y1)ci(z1)

for all z1,y1,21 € A;. Comparing the above relations, we get

(=1)'0(x1)r1(yr, z1) = vi(z1,51)0(z1).
By [22, Theorem 3.7], we have vi(z1,y1) = 0. It follows that d(z1,y1) = 0.
Therefore «; is a (6, 8)-superderivation of degree i. m

By [22, Theorem 4.16] and Lemma we have

THEOREM 3.2. Let A= Ay @ Ay be a prime superalgebra with mazimal
right ring of quotients Q@ and extended centroid C'. Suppose that 6 is an
automorphism of A and o : A — A is a Jordan (0,0)-superderivation. If
deg(A1) > 9, then a: A — A is a (6,0)-superderivation.

The remainder of this section will be devoted to the study of generalized
Jordan (6, #)-superderivations.

LEMMA 3.3. Let A be a prime superalgebra with maximal right ring of
quotients @ and extended centroid C. Suppose that 0 is an automorphism of
A and ¢; : A — A is a generalized Jordan (6,0)-superderivation of degree
i€ {0,1}. If A is a4-superfree subset of @Q, then ¢; : A — A is a generalized
(0, 0)-superderivation of degree i.

Proof. By definition, we set
$i(w 05 y) = $i(2)0(y) + (1)W1 WG(y)ay(x)
+ (=)Mo(@)ai(y) + (—1) ¥ (y)0(x)
and m: A x A — Q to satisfy
(@, y) = di(zy) — ¢i(@)0(y) — (~1)10(x)i(y)

for all z,y € A9 U A1, where «; is a Jordan (6, 0)-superderivation of degree
i € {0,1}. Note that 7(x1,y0) = —7(yo, z1) and 7 (z1,y1) = 7(y1,21).

Applying ¢; to , we get
(3.7) oi[[z1,91]s, 20]s) = di(21 05 (y1 05 20)) + Bi(y1 05 (21 05 20))-
By [18, Corollary 2], ¢;|Ap is a generalized (6, 0)-derivation. Since «; is a
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(0, 0)-superderivation of degree i, we obtain

di([[z1,y1]s, 20]s) = Pi([z1,¥1]5)0(20) + O([21, y1]s)vi(20)
— ¢i(20)0([z1, 41]s) — 0(20) i ([z1, 41]s)
= ¢i([z1,41]5)6(20) + 0(21)0(y1)ai(20) + 0(y1)0(x1)i(20)
— $i(20)0(21)0(y1) — ¢i(20)0(y1)0(21)
— 0(20) (i(x1)0(y1) + (=1)'0(z1)ai(y1) + @i(y1)0(z1)
+ (=1)"0(y1)ai(x1))
and
@i(z1 05 (Y1 05 20)) + Bi(y1 o5 (1 05 20))
= ¢i(21)0(y1 05 20) — (=1)'0(y1 05 z0)xi(w1) + (=1)'0(x1) i1 o5 20)
— ¢i(y1 05 20)8(21) + Gi(y1)0(w1 05 20) — (=1)"0(w1 05 20) (1)
+ (=1)"0(y1)ai(1 05 20) — di(w1 05 20)0(31)
= ¢i(21)0(y120 + z0y1) — (—1)"0(y120 + 20y1) cvi(x1)
0
(

~.

+ (=1)"0(21) (i(y1)8(20) +(=1)"0(y1)ai(20) +i(20)8(y1) +6(20) i (1))
—(41(y1)0(20) + 0(20)i(y1) + (—1)"0(y1)vi(20) + di(20)0(y1))0(x1)
(=
+

/-\

+ ¢i(y1)0(z120 + 2021) — (—1)"0(2120 + 2021) i (1)
+ (=1)"0(y1) (@i(21)8(20) + (—1)"0(21)vi(20) + i(20)0 (1) +6(z0)cvi (1))
— (¢i(x1)0(20) + 0(20)ai (1) + (=1)'0(x1)exi(20) + ¢i(20)0(x1)) 0 (y1)
for all x1,y1 € A1, 29 € Ag. Comparing the above relations, we have
i([21,41]5)0(20) = di(21)8(y1)6(20) + (—1)"0(z1)cxi (y1)6(20)
+ ¢i(y1)0(21)0(20) + (=1)"0(y1)ai(1)0(20)-
Therefore
(7T(.T)1,y1) + (1, xl))ﬁ(zo) = 0.
Since m(z1,y1) = 7(y1, 1), we obtain
m(x1,91)0(20) = 0.
Since A is a 4-superfree subset of @, [22, Theorems 3.8 and 3.7] imply that
m(x1,y1) = 0. Therefore ¢;(z1y1) = ¢i(21)0(y1) + (—1)'0(z1)i(y1).
Again applying ¢; to , we get
®i([[1, vols, 21]s) = di(z1 05 (Yo 05 21)) — Pi(Yo 05 (71 05 21))
for all x1,21 € A1, yo € Ag. Extending the above expression, we have
i1, 90]5)0(21) = di(21)8(y0)8(21) + (=1)"0(z1)i(y0)8(21)
— ¢i(y0)0(21)0(21) — O(yo)cvi(21)0(21).
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So (m(z1,y0) — m(yo,x1))0(21) = 0. Since 7(x1,y0) = —7(yo, x1), we have

m(z1,90)0(21) = 0.

By [22, Theorems 3.8 and 3.7], we get m(x1,y0) = 7(yo,x1) = 0. So ¢; is a
generalized (6, 0)-superderivation of degree i. m

By [22, Theorem 4.16] and Lemma we have

THEOREM 3.4. Let A = Ag @ Ay be a prime superalgebra with maz-
imal right ring of quotients Q and extended centroid C. Suppose that 0
is an automorphism of A and ¢ : A — A is a generalized Jordan (0,0)-
superderivation. If deg(A1) > 9, then ¢ : A — A is a generalized (0,0)-
superderivation.

In particular, when § = 1 in Theorems [3.2] and we have

COROLLARY 3.5. Let A = Ag® Ay be a prime superalgebra with maximal
right ring of quotients Q and extended centroid C. Suppose a: A — A is
a Jordan superderivation. If deg(Ai) > 9, then o : A — A is a super-
derivation.

COROLLARY 3.6. Let A = Ag® Ay be a prime superalgebra with maximal
right ring of quotients Q) and extended centroid C. Suppose that ¢ : A — A
is a generalized Jordan superderivation. If deg(Ai) > 9, then ¢: A — A is
a generalized superderivation.

4. Jordan triple superderivations. In the section, we will be con-
cerned with Jordan triple superderivations and generalized Jordan triple
superderivations. The following identity will be used frequently:

(4.1) [z,[y,2]s)s =z 05y 05 2 — (_1)‘y| #la 05205y, T,Y,2€ AgUAj.

LEMMA 4.1. Let A be a prime superalgebra with maximal right ring
of quotients Q@ and extended centroid C. Suppose that 0 is an automor-
phism of A and B; : A — A is a Jordan triple (0,0)-superderivation of
degree i € {0,1}. If A is a 4-superfree subset of Q, then p; : A — A is a
(0, 0)-superderivation of degree i.

Proof. As in the proof of Lemma [3.1] we define 6 : A x A — Q by
8(x,y) = Bilay) — Bi(x)0(y) — (~1)10(x)Bi(y)
for all z,y € Ay U A;. Moreover, 6(x1,y0) = —0(yo,x1) and §(z1,y1) =

6(y1,21).
Applying B; to (4.1)), we get

(4.2)  Bi(lwo, [y1, 21]s]s) = Bi(wo 05 y1 05 21) + Bi(wo 05 21 05 Y1)-
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By [18, Theorem 1], ;| Ao is a (0, §)-derivation. So
Bi([zo, [y1, 21)s]s) = Bi(x0)0(y1)0(21) + Bi(x0)0(21)8(y1) — 0(y1)0(21)Bi(z0)
— 0(21)0(y1)Bi(zo) + [0(z0), Bi([y1, 21]s)]s

and

Bi(zo 05 y1 05 21) + Bizo 05 21 95 Y1)
= Bi(wo) 05 0(y1) 05 0(21) + 0(20) 05 Bi(y1) o5 0(21)
+ (=1)"0(x0) 05 O(y1) 05 Bi(21) + Bilwo) 05 O(21) o5 O(y1)
+ 6(z0) 05 fi(21) o5 9(91) (—1)'0(x0) o5 6(21) o5 Bi(y1)
= Bi(20)0(y1)0(z1) + (—1)'0(y1)Bi(0)0(21) — (=1)"0(21) Bi(x0)8 (y1)
—9(21)9(%)/3@(@’0)+9($0)5z(y1)9(21)+5z(y1) (20)0(=1)
— (=1)"0(21)0(x0) Bi(y1) — (=1)"0(21) Bi(y1)0 (o) + (—1)"0(0)0 (y1) Bi(21)
+ (=1)"0(y1)0(20)Bi(21) — Bi(21)0(0)0(y1) — Bi(z1)0(y1)0(w0)
+ Bi(0)0(21)0(y1) + (—1)'0(21) Bi(w0)0(y1) — (—1)"0(y1)Bi(w0)0(21)
— 0(y1)6(21)Bi(z0) + 0(x0)Bi(21)0(y1) + Bi(21)6(20)0(y1)
— (=1)"0(11)0(0) Bi(21) — (—1)"0(y1) Bi(21)0(x0) + (—1)"0(20)0(21) Bi (1)
+ (=1)"0(21)0(0) Bi(y1) — Biy1)0(x0)0(21) — Bi(y1)0(21)0(0)
for all xg € Ag, y1,21 € A1. Comparing the above relations, we have
[0(y1, 21), 0(x0)]s = 0.

Analysis similar to that in the proof of Lemma shows that §(z1,y1) =
vi(z1,y1) for all 1,91 € Ay, where v} : Ay x A; — C + Cw. Therefore

Bilz1,31]s) = [Bi(z1), 0(y1)]s + (=1)'[0(21), Bi(y1)]s + 204 (21, 51)

for all x1,1y1 € Aj.
Again applying 3; to (4.1), we get
Bi[z1, [y1, 20]s]s) = Bi(w1 05 Y1 05 20) — BiT1 05 20 05 Y1)
for all x1,y1 € Ay and zg € Ay. Extending the above expression, we have
[0(z1),5(y1, 20)]s = —(=1)"04 (21, [y1, 20]s)-

By [22, Theorems 3.8 and 3.7], we get

6(z1,90) = va(x1,90) and  d(zo,y1) = —0(y1,0) = —V5(y1, o)

for all 2o, yo € Ao and z1,y1 € Ay, where v : A} x Ag — C'+Cw. Computing
Bi(x1ypz1) and Bi(z1y121) in two different ways, we have

i

6(
6

Vi(z1, 1) = va(e1,90) =0 and  d(z1,m0) = 6(yo, 21) = 6(x1,41) =0
for all 21,31 € Ay and yg € Ap. So (; is a (0, 0)-superderivation of degree i. =
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By [22], Theorem 4.16] and the above result, we have

THEOREM 4.2. Let A = Ay ® Ay be a prime superalgebra with maximal
right ring of quotients ) and extended centroid C. Suppose that 6 is an
automorphism of A and f: A — A is a Jordan triple (0, 0)-superderivation.
If deg(A1) > 9, then B: A — A is a (0,0)-superderivation.

Next we will study generalized Jordan triple (6, §)-superderivations of
superalgebras.

LEMMA 4.3. Let A be a prime superalgebra with maximal right ring of
quotients QQ and extended centroid C. Suppose that 6 is an automorphism
of Aand & : A — A is a generalized Jordan triple (0, 0)-superderivation of
degree i € {0,1}. If A is a 4-superfree subset of Q, then & : A — Ais a
generalized (0, 0)-superderivation of degree i.

Proof. By assumption, we define 7: A x A — @ by

(@, y) = &i(ry) — &(2)0(y) — (=1)110()Bi(y)
for all x,y € Ay U Aj, where f3; is a Jordan triple (6, 8)-superderivation of
degree i € {0,1}. Note that w(x1,v0) = —7(yo, 1) and 7(z1,y1) = 7(y1,21).

Applying &; to (4.1]), we get
(4.3) &i([mo, [y1, 21]s)s) = &i(wo 05 Y1 05 21) + &i(w0 05 21 05 Y1).

By [18, Theorem 3], &;|Ap is a generalized (6, 6)-derivation. Since f; is a
(0, 0)-superderivation of degree i, we have

&i([zo, [y1, 21]s]s) = &i(20)0(y1)0(21) + &i(20)0(21)0(y1) + 0(x0) (Bi(y1)0(z1)
+ (=1)'0(y1)Bi(21) + Bi(21)0(y1) + (—1)'0(21)Bi(11))
— &i([y1, 2115)0(z0) — 0(y1)0(21) Bi(wo) — 0(21)0(y1) Bi(wo)

and

§i(wo 05 Y1 05 21) + &i(wo 05 21 05 Y1)

= &(20)0(y1)0(21) + &i(y1)0(20)0(21) — &i(21)0(20)0(y1) — &i(21)0(y1)0 (o)
+0(20)Bi(y1)0(21) + (=1)"0(y1) Bi(20)0(21) — (=1)"0(21)Bi(y1)0 (0)
— (=1)'0(21)Bi(0)0(y1) + (=1)"0(20) 0 (y1) Bi(21) + (=1)"0(y1)0(0) Bi (1)

<1

(o)
— (=1)"0(21)8(x0) Bi(y1) — 0(21)8(y1) Bi(wo) + &i(w0)0(21)0(y1)
+&i(21)0(20)0(y1) — &i(y1)0(x0)0(21) — &i(y1)6(21)0 (o)
+0(20)Bi(21)0(y1) + (=1)'0(21)Bi(20)8(y1) — (—1)'8(y1)Bi(21)8 (o)

— (=1)"0(y1)Bi(0)0(21) + (—1)"0(0)0(21) Bi (1) + (—1)°0(21)6(0) Bi (1)
— (=1)"0(y1)0(x0) Bi(21) — O(y1)0(21)Bi(0)

Zo
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for all xg € Ag, y1,21 € A;1. Since A is a 4-superfree subset of (), we have
fi(ajlyl) = &(xl)@(yl) + (—1)19(1‘1)5@'(2;1) for all x1,Y1 € Ay
Likewise, applying &; to (4.1), we get

ﬂ-(‘rlayO) = Tr(yO?xl) =0

for all x1 € A1, yo € Ap. Therefore &; is a generalized (6, #)-superderivation
of degree i. m

By [22, Theorem 4.16] and the above result, we have

THEOREM 4.4. Let A = Ay ® A1 be a prime superalgebra with maximal
right ring of quotients ) and extended centroid C. Suppose that 6 is an
automorphism of A and § : A — A is a generalized Jordan triple (6,0)-
superderivation. If deg(Ay) > 9, then § : A — A is a generalized (0,6)-
superderivation.

In particular, when # = 1 in Theorems [£.2] and [£.4] we have

COROLLARY 4.5. Let A = Aqg® Ay be a prime superalgebra with mazximal
right ring of quotients Q) and extended centroid C. Suppose that 5: A — A
is a Jordan triple superderivation. If deg(Ay) > 9, then 5 : A — Ais a
superderivation.

COROLLARY 4.6. Let A = Ay® Ay be a prime superalgebra with maximal
right ring of quotients Q and extended centroid C'. Suppose that € : A — A is
a generalized Jordan triple superderivation. If deg(A1) > 9, thené: A — A
1 a generalized superderivation.

An easy computation shows that Jordan superderivations (resp., gen-
eralized Jordan superderivations) are Jordan triple superderivations (resp.,
generalized Jordan triple superderivations). We can also get Corollaries
and [3.6] from Corollaries .5 and 4.6
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