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ON TWISTED GROUP ALGEBRAS OF OTP REPRESENTATION
TYPE OVER THE RING OF p-ADIC INTEGERS

BY

LEONID F. BARANNYK and DARIUSZ KLEIN (Stupsk)

Abstract. Let Zp be the ring of p-adic integers, U(Zp) the unit group of Zp and
G = G, x B a finite group, where G,, is a p-group and B is a p’-group. Denote by Z;G the
twisted group algebra of G over Z, with a 2-cocycle A € Z(G,U(Z,)). We give necessary
and sufficient conditions for Z;G to be of OTP representation type, in the sense that
every indecomposable Z?,G-module is isomorphic to the outer tensor product V # W of
an indecomposable Z;\Gp-module V and an irreducible Z;B-module wW.

1. Introduction. Assume that p > 2 is a prime, S is either a field of
characteristic p, or a commutative discrete valuation domain, U(S) is the
unit group of S, and G is a finite group of order |G|. Denote by Z%(G,U(S))
the group of all U(S)-valued normalized 2-cocycles A = (Agp)apec: G X G
— U(S) of the group G that acts trivially on U(S). We recall that A is
defined to be normalized if \ge = Ae,q = 1 for all @ € G, where e is the
identity element of G. By the twisted group algebra of G over S with a
2-cocycle A € Z2(G,U(S)) we mean the free S-algebra S*G with an S-basis
{ug: g € G} satistying uqup = Agpuap for all a,b € G. Such a basis is called
canonical (corresponding to \). We remark that S*G is isomorphic to the
group algebra SG if and only if A is a 2-coboundary (see [29, pp. 67-68]).

Assume now that G = G, x B, where G,, is a p-group, B is a p/-group
and |G,| > 1, |B| > 1. This means that the Sylow p-subgroup G, of G is
a direct summand of G. We recall from [I7, p. 9] that a finite group whose
order is not divisible by p is called a p'-group. Given u € Z*(G,,U(S)) and
v € Z*(B,U(9)), the map pu x v: G x G — U(S) defined by the formula

(1-1) (N X V)x1b1,w2b2 = Hzy,z2 " Vbi,ba

for all 1,29 € Gp, b1,bs € B is a 2-cocycle in Z%(G,U(S)). Every 2-cocycle
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M € Z%(G,U(S9)) is cohomologous to x4 x v in the second cohomology group
H*(G,U(9)) = Z*(G,U(S))/B*(G,U(S)),

where p is the restriction of A to G, X Gy, v is the restriction of A to B x B
and B2(G,U(S)) is the subgroup of all 2-coboundaries of Z2(G,U(S)). If
Up b = 1 for all by,b2 € B, we write A = p x 1. Similarly, A = 1 x v if
fay,zo = 1 for all z1, 29 € Gy,

Henceforth, we suppose that every cocycle A € Z2(G,U(S)) under con-
sideration satisfies the condition A = pxv, and all S*G-modules are assumed
to be finitely generated left S*G-modules which are S-free. Recall that the
study of these S*G-modules is essentially equivalent to the study of projec-
tive S-representations of G with the 2-cocycle .

Let A\ =px v e Z%(G,U(S)) and {uy: g € G} be a canonical S-basis of
SAG. Then {uy: h € G,} is a canonical S-basis of S*G), and {uy: b € B}
is a canonical S-basis of S¥B. Moreover, if g = hb, where g € G, h € G,
b € B, then uy = upup = upuy,. It follows that SAG = StG, ®g SYB.

Given an S*Gp-module V' and an S¥ B-module W, we denote by V # W
the S*G-module whose underlying S-module is V ®g W, the S*G-module
structure is given by

Upp(V @ W) = upv @ upw

forallh € Gp,be B,veV,we W, and it is extended to SAG and Vg W
by S-linearity. Following |29 p. 122|, we call the module V' # W the outer
tensor product of V and W.

We next recall from [7, p. 10] the following definitions.

DEFINITION 1.1. Assume that S, G are as above and A = y X v €
Z%(G,U(9)) is a 2-cocycle as in .

(a) The algebra S*G is defined to be of OTP representation type if ev-
ery indecomposable S*G-module is isomorphic to the outer tensor
product V' # W, where V is an indecomposable S*Gp-module and
W is an irreducible S¥ B-module.

(b) The group G = G, x B is said to be of OTP projective S-representa-
tion type if there is a cocycle A € Z2(G,U(S)) for which the algebra
SAG is of OTP representation type.

(c) The group G = G, x B is defined to be of purely OTP projective
S-representation type if S*G is of OTP representation type for any
A€ Z3G,U(9)).

In [14], Brauer and Feit proved that the group algebra SG is always of
OTP representation type in case when S is an algebraically closed field of
characteristic p.

Blau [12] and Gudyvok [23], [24] independently show that if S is an
arbitrary field of characteristic p, then SG is of OTP representation type if
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and only if G is cyclic or S is a splitting field for SB. In [24]-[26], Gudyvok
considers an analogous problem for the group algebra SG, where S is a
commutative complete discrete valuation domain. In particular, he proved
that the algebra ZpG is of OTP representation type if and only if the p-adic
number field @p is a splitting field for @pB, or G, is cyclic of order p", n < 2.

In [2], [, [5], [7]-[9], the twisted group algebras S*G of OTP repre-
sentation type are described, where G = G, x B and S is either a field of
characteristic p, or a commutative complete discrete valuation domain of
characteristic p. For this case, necessary and sufficient conditions on G and
S were given, in [5], [9], for G to be of OTP projective S-representation type
and of purely OTP projective S-representation type.

In the present paper we determine the twisted group algebras Z/\G of

OTP representation type, where G = G, x B and Zp is the ring of p—adlc
integers. Moreover, we describe the groups G, x B of purely OTP projective

Zp-representation type.
The main results of the paper are the following three theorems proved as

Theorems and

THEOREM A. Let p # 2, Gy, be a cyclic p-group, G = G, X B, 1 €
Z2(Gp,U(Zy)), v € ZX(B,U(Zy)) and X = pux v be as in . Denote by d
the number of simple blocks of the algebra Qng. The algebra Z;‘G 1s of OTP
representation type if and only if one of the following conditions is satisfied:

(i) if |Gp| > p?, then d < 2;
(ii) Qp s a splitting field for Q”B

We also prove that if G, is non-cyclic then, under some assumption, the
algebra ZI),‘G is of OTP representation type if and only if @, is a splitting
field for Q¥ B.

THEOREM B. Let p =2, Go be a cyclic group of order 2", G = Go X B,
p € Z2(Go,U(Zy)), v € Z2(B,U(Z3)) and X = pu X v be as in . The
algebra Z%G is of OTP representation type if and only if one of the following
conditions is satisfied:

(1) ©5G2 is a totally ramified field extension of Qo;
(i) Q5G2 is a field and the center of the algebra Q9B is 2-irreducible
(see Definition [2. 2.11);

(iii) n <2 and Z“Gg is the group algebra of Go over Zo;

(iv) n = 2, the number of simple blocks of Q“Gg is 2 and the center of
Q9B is 2-1rreducible;

(v) Q5 is a splitting field for Q9 B.
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THEOREM C. The group G = G, x B 1s of purely OTP projective Zp—
representation type if and only if one of the following conditions is satisfied:

(i) p # 2 and Gy is a cyclic group of order p or p?;

(ii) p = 2, Gy is a cyclic group of order 2 or 4 and the center of Q.B
1s 2-irreducible;

(iii) P # 2 and there exists a finite central group extension 1 — A —
B — B — 1 such that any projective Qp representation of B with
a 2-cocycle in Z2(B U(Zy)) lifts projectively to an ordmary Qp
representatzon ofB and Qp 8 a splzttmg field for Qp

(iv) p=2 and Qs is a splitting field for Q2 B.

We remark that conditions (iii) and (iv) of Theorem C do not hold for
B if B’ # B. Here B’ = [B, B] is the commutator subgroup of B.

Throughout the paper, we use the standard group representation the-
ory notation and terminology introduced in the monographs by Curtis and
Reiner [16]-[18], and Karpilovsky [29]. A systematic account of the projective
representation theory can be found in [29]. For problems of the representa-
tion theory of orders in finite-dimensional algebras and of Cohen—Macaulay
algebras, we refer to the books [16]-[18], [35] and to the articles [2I] and [31].
A background of the modern representation theory of finite-dimensional alge-
bras can be found in the monographs by Assem, Simson and Skowroriski [1],
Drozd and Kirichenko [22], Simson [30], and Simson and Skowronski [34],
where among other things the representation types (finite, tame, wild) of fi-
nite groups and algebras are discussed. Various aspects of the representation
types are also considered by Dowbor and Simson [19], [20], Simson [32], and
Simson and Skowroniski [33].

In particular, we use the following notation: p > 2 is a prime; Zp is the
ring of p-adic integers; Qp is the field of p-adic numbers; U (Zp) is the unit
group of Zp; @pn(X) is the cyclotomic polynomial of order p™; GF(q) is the
finite field of g-elements; Z, = Z/pZ is the residue class field of Zp; rad A
is the Jacobson radical of a ring A and A = A/rad A is the factor ring of
A by rad A; G = G, x B is a finite group, where Gy, is a p-group, B is a
p/-group, |Gp| > 1 and |B| > 1; H' = [H, H] is the commutator subgroup
of a group H, e is the identity element of H, |h| is the order of h € H,
soc H is the socle of an abelian group H. If D is a subgroup of H, then
the restriction of A € Z2(H,U(Z,)) to D x D will also be denoted by A.
We assume that in this case Z;D is the Zp—subalgebra of ZSH consisting of
all Z,-linear combinations of elements {uq: d € D}, where {uj,: h € H} is
a canonical Zp—basis of ZI’}H corresponding to A. Given a Z;‘H -module, we

write EndW (M) for the ring of all Z;;H -endomorphisms of M. Denote by
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Ay x Ay the Kronecker (or tensor) product of the matrices A; and Ay (see
[16, p. 69]), and by E,, the identity matrix of order m.

2. Prelirpinaries. We start with some information on the structure of
the units of Z,, that we need in the paper (see [27, p. 236]).

If p # 2, then any unit 5 in U (Zp) can be represented uniquely in the
form

n=uw"(1+p)%

where w is a primitive (p — 1)th root of 1 and « € Zp. Any unit 7 in U(Zg)
can be represented uniquely in the form

n= +5%, a € 22.

Denote by Ut(Zp) the maximal torsion subgroup of U (Zp). Hence

Ut(Zp)_{<—1> if p=2.
Let
o {Q+pracZy) ifp#2,
Us(Zy) = { {57 a € Zy} ’ if p=2.

We have U(Zy,) = Uy(Zyp) x Ug(Zyp).
LEMMA 2.1. Let p # 2, D be a finite p-group and T a finite p’-group.

(i) For every 2-cocycle \ € Z*(D,U(Zy,)) there exists a 2-cocycle pu in

Z*(D,Uy (Z,)) such that A and p are cohomologous in H2(D, U (Zy)).

(ii) The restriction of any 2-cocycle X € Z*(D,U(Zy)) to D' x D' is a
2-coboundary. R

(iii) For every 2-cocycle X\ € Z*(T,U(Zy)) there exists a 2-cocycle v in

Z2(T,U(Z,)) such that A and v are cohomologous in H2(T,U(Z,)).

Proof. Apply |29, Theorem 1.7, p. 11, and Corollary 4.10, p. 42|. =

By Lemma without loss of generality we may assume that if G =
Gp x B and p # 2, then every 2-cocycle A € Z?(G,U(Z,)) satisfies the
condition A\ = p x v, where u € Z%(Gp, Us(Zy)) and v € Z?(B, Uy(Zy)).

LEMMA 2.2. Let D be a finite 2-group and T a finite 2'-group.

1 e restriction of any 2-cocycle A € , AQ to X s a

i) Th cti 2 le X € Z*(D,Us(Z D'x D'
2-coboundary. X

(ii) Every 2-cocycle A\ € Z*(T,U(Zz)) is a 2-coboundary.

Proof. Again apply [29] Theorem 1.7, p. 11, and Corollary 4.10, p. 42|. =
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In view of Lemma [2.2] we may assume that if p = 2 and G = G2 x B,
then every 2-cocycle A € Z2%(G,U(Zy)) satisfies the condition A = p x 1,
where p is the restriction of A to G2 x Ga.

Let H = (a1) X -+ X {(a;,) be an abelian p-group of type (p"*,...,p"™),
pe Z2(H,U(Zy)), ri = p™ — 1 and 7 = Haj,aita; 2 - - - Paga,ms for @ in
{1,...,m}. The algebra Z} H has a canonical Z,-basis {uy,: h € H} satisfy-
ing the following conditions:

(1) if h = a% ... akm and 0 < k; < p™ for each i € {1,...,m}, then

_ .k km.
Up = Ugy -+ Uy

(2) b = yiue for every i € {1,...,m}.
We also denote Zi H by [H, Zp, Y1, - - -, Ym)-

Recall that wg,ue; = €ijua;uq;, Where i # j and g5 = Hay,a; ugj{ai. It
follows that EL(;-” = 1. Hence, g;; = 1 for p # 2, and ¢;; € {1, -1} for p = 2.
Consequently, if p # 2 then ZﬁH is a commutative algebra.

Now we collect several facts we apply later.

LEMMA 2.3. Let G = Gp x B, p € Z*(Gp, U(Zy)), v € Z*(B,U(Zy))
and A = u X v. The algebra Z])D‘G is of OTP representation type if and only
if the outer tensor product V.# W of any indecomposable Zng—module V

and any irreducible ZZB—module W is an indecomposable Z;,‘G—module.

 The proof is similar to that of the corresponding fact for the group algebra
ZpG (see |12} p. 41], [26, p. 68] and 28] p. 658]).

LEMMA 2.4. Let G = Gpx B, p € Z*(Gy,U(Zy)), v € Z*(B,U(Z,)) and
A=puxv. IfV is an indecomposable Zng—module and W is an irreducible
Z;B—module, then

Endg, o (V # W) 2 Endypg, (V) @z, Endy, (W)

Proof. See [T, p. 15] and 28], p. 657]. =

LEMMA 2.5. Let G = Gp x B, p € Z*(Gp, U(Zy)), v € Z*(B,U(Zy))
and A =pu xv. If (@p is a splitting field for the Qp—algebm (@ZB, then ZI),‘G
is of OTP representation type.

Proof. Again see [7, p. 15] and [28, p. 657]. =

LEMMA 2.6. Let R be a commutative complete discrete valuation domain,
H a finite group, A € Z*>(H,U(R)) and V an R*H-module. Then V is in-
decomposable if and only if Endpry (V) is a skew field.

Proof. Apply [I7, Proposition 6.10, p. 125]. =
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LEMMA 2.7. Let Gp be a finite p-group, H a subgroup of G,, A €
Z%(Gp,U(Zy)) and 'V an indecomposable Z;,‘H—module. Assume  that
EndeH(V) is isomorphic to the finite field GF(p"™) and one of the following
condztzons 1s satisfied:

(i) Gp=H - T, where T is a subgroup of the center of Gy;
(ii) p does not divide m.

Then VG := ZZ))‘GP ®san V' is an indecomposable Z;Gp-module, and the
quotient algebra EHdZAGP(VGP) is isomorphic to GF(p™).
p

Proof. Apply [10, Theorem 2.6, p. 4138|. =

LEMMA 2.8. Let K be a finite field extension of @p, R the ring of all
integral elements of K, R the residue class field of R, and H either a cyclic
group of order p3, or an abelian group of type (p,p). Then, for any finite field
extension F of R, there exists an indecomposable RH-module M such that
Endgry (M) = F.

Proof. See [26], pp. 72-74]. =

LEMMA 2.9. Let K be a finite ramified extension of Qp, K # Qp, R the
ring of all integral elements of K, and H a cyclic group of order p*>. Then,
for any finite field extension F of R, there is an indecomposable RH -module
M such that Endry (M) = F.

Proof. See [26, pp. 73-74]. m

LEMMA 2.10. Let G = G, x B. The group algebra ZPG is of OTP repre-
sentation type if and only if either Qp is a splitting field for the group algebra
QpB, or G is a cyclic group of order p", r < 2.

Proof. See [24, p. 583|. =

Assume that
7 is a primitive (p™ — 1)th root of 1,
(2.1) f(X) € Z,[X] is the minimal monic polynomial of 7,
Ay is the companion matrix of the polynomial f
in the sense of [15, p. 345].

It is well known (see [27, pp. 190, 211-212]) that:

(i) the polynomial f is irreducible modulo p and the degree of f is m;
p( ) is an unramified extension of Qp of degree m;

(i)
(111)
)

N O
<

[1] is the ring of all integral elements of Q,(n);
oln)/PLpn] = GF(p™).
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Let v € Z2(B,U(Zy)). Then @ZB is the quotient algebra of Qpé, where
|B| = (p—1)-|B]| (see [29, pp. 136-137]). Denote by £ a primitive | B|th root
of 1. The field Q,(€) is a splitting field for (@pﬁ (see [I7, p. 386]) and hence
Qp(&) is a splitting field for QyB. By [27, p. 211], Q,(&) is an unramified
extension of Q. Since the index of every simple block of QyB is 1 and
Qp(&) ®g, Qp B is a direct product of matrix algebras over Q,(§), we have

(2.2) QYB =M, (F1) x -+ x M, (F}),

where Fi,..., F, are unramified extensions of Qp We recall that the algebras
M, (Fy),...,M,, (F,) are called the simple blocks of Qp

Let W; be an irreducible Z” B-module such that W] = Qp ®Z W; is a di-
rect summand of M, (F}), Where j€{1,...,r}. Denote by I'; an irreducible
matrix Z,-representation of the algebra ZZB afforded by the module W;.
Let degI'; = k;. Assume that
Lj = {A € My,(Qp): Al}(z) = I'j(z)A for every z € Z! B},

(2.3) .
={C e My, (Zy): CTj(x) = Ij(x)C for every z € Z,B}.

Then L; is a Qp—algebra and S; is a Zp—algebra. Moreover
L; _EndQVB(W)NFj, S; _EndZVB(W)

We identify a € Qp with the scalar matrix aFEy;. Then Qp C L; and
Zp C S;j. Suppose that A € L; and A # 0. Then by [16, Corollary 76.16,
p. 536], A = p!C, where | € Z, C € S; and C is invertible over Zp. Since C
is a root of the characteristic polynomial det(XE — C) € Z,[X] of C, the

matrix C' is integral over Z If A is integral over Zp, then so is AC™!. It
follows that I > 0, hence A € S;. Consequently, S; is the integral closure

of Zp in Lj.

DEFINITION 2.11. Let B be a finite p/-group and v € Z%(B, U(Z,)). We
say that the center of the algebra @ZB is p-irreducible if [F : @p] is not
divisible by p for every simple block M, (F') of QZB .

Denote by Ip the product of all pairwise distinct prime divisors of |B].
Let £ be a primitive Igth root of 1. If [Q,(§) : Qp] is not divisible by p, then
for any v € Z2(B,U(Z,)) the center of Q’;B is p-irreducible.

PROPOSITION 2.12. Let W; be an irreducible ZZB—module such that
Q ®g, Wi is a direct summand of M, (F}) (see l.i Then:

(i) Endy, ,(W;) = GF(ph), where k; = [F; : Q).
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(ii) @p is a splitting field for (@ZB if and only if Z, is a splitting field
for ZIB = 7B /pZYB.
Proof. (i) By [17, Proposition 5.22, p. 112],
Endy, (W) 2 Endy, 5 (W;)/pEndy, 5 (W)) 2 8;/pS; = GF(p"),

where k; = [Fj : Q] (see the notation (2.3)).
(ii) By [17, Theorem 6.8, p. 124], for every simple ZZB—module W there

exists an irreducible ZZB—module W such that W/pW = W. By [16, Theo-
rem 76.8, p. 532 and Corollary 76.16, p. 536],

EnngB (W) = EnngB(W)/p EnngB(W)‘

Moreover, by [16, Corollary 76.15, p. 536|, W/pW is a simple ZZB—module
for any irreducible ZZB—module w.
Furthermore, @p is a splitting field for QZB if and only if

EnngB(W)/p EndZ;;B (W) =7,

for every irreducible Z’;B—module W. It follows that @p is a splitting field
for Q]”,B if and only if Endzyp (W) = Z, for any simple ZF B-module W, i.e.
if and only if Z,, is a splitting field for ZZB . m

PROPOSITION 2.13. Let G = Gpx B, n€ Z*(Gp, U(Zy)), v€ Z*(B,U(Z,))
and A = p x v. Assume that if Gy, is a non-abelian group, then the center
of the algebra QB is p-irreducible. Moreover, let T be a subgroup of Gy,
|T| >1 and H =T x B. If ZQH is not of OTP representation type, then
neither is ZI);G.

Proof. Suppose that ZSH is not of OTP representation type. Then, in

view of Lemma there exist an indecomposable Z5T-module V and an ir-
reducible ZZB—module W such that V # W is a decomposable Z;H -module.

By Lemmas [2.4] and Ezndng(V) ®z, EndZ;BEW) is not a skew field. In
view of Lemma the Z4yGp-module V& = ZbG, R V' is indecom-

posable and the quotient algebra EndZqu(VGP) is isomorphic to the field
Endng(V). Hence, again by Lemmas [2.4{ and , the Z;‘G-module VG 4 W

is decomposable. Applying Lemma , we conclude that the algebra ZI/}G is
not of OTP representation type. m

3. Twisted group algebras Z]);G of OTP representation type for
p # 2. Let R be a commutative ring with 1, and ¢ a root of the monic
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irreducible polynomial f(X) € R[X]. Denote by
(3.1) zZ € Mp+1(R)
the matrix of multiplication by z € R[t] in the R-basis 1,t,...,t" of the ring
R[t].
Throughout this section, we assume that p # 2.

Let 0, 6 and p be roots of the irreducible polynomials

n—1

p

1+p

XV (1), X (14 p), @p( ) € 2,[x],

respectively.

LEMMA 3.1. Let H = (a) be a cyclic group of order p" (n > 1) and
ZhH = [H,Z,, (1 + p)?'], where 1 € {0,1} andn > 2 for 1 =1.

(i) If 1 =0 then, up to equivalence, the algebra ZﬁH has only one inde-
composable matrix Zp-representation I':ug — 9.
(ii) If I = 1 then, up to equivalfnce, the indecomposable matriz Zy-re-
presentations of the algebra ZyH are the following:
~ _ 0 (i .
IN:ug =0, Iv:ugp, I3:uq+— <0 <7r~>>7j :0,17---,p"—1_1’
P
where m =1 — 6 is a prime element of Z,[0] and (x7) is the matriz
in which all columns but the last one are zero, and the last column
. A n—1
consists of the coordinates of w0 in the Zy-basis 1,0,...,0P" ~1 of
the ring Zy0).

Proof. (i) If I = 0 then Z4H = 7,[6]. Each Z4H-module M can be
considered as a torsionfree module over the principal ideal domain Zp[é],
therefore if M # 0 then M = Z,[8]®- - -®7Z,[5]. Hence, up to equivalence, the
algebra Zg H has only one indecomposable matrix Zp—representation Ug +> 5.

(i) Let I = 1, M be an arbitrary non-zero Z4 H-module and
N:={veM: (@ " —(1+pu)v =0}

Then N is a Zi H-submodule of M. Since M is a Zp—torsionfree module,
am € N implies m € N for all m € M and for all non-zero a € Zj,. One can
view the Zj, H-module N as a module over the algebra

~ n—1 ~ ~
ZEH/ ("™ = (14 p)uo)ZLH = Z,[0].

Since Z,[6] is a principal ideal domain and N is a Z,[f]-torsionfree module,
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there is a decomposition N 2 Z,[0] @ - - - @ Z,[6]. Moreover, we have

n—1

Z1H | ta

p p 1 +p
where Z,[p] is a principal ideal domain. The Z4 H-module M /N can be viewed
as a Zy[p]-module. If z € Z,[p] and z # 0, then the equality z(v + N) = N
yields v € N. This means that M /N is a torsionfree module over Z,[p]. Hence
in the case N # M we have M /N = Z,[p| & - - - @ Zypp].

Every Z,-basis of N can be extended to an Z,-basis of M (see |16, p. 100]),

and hence up to equivalence, any matrix Zp—representation I of the algebra
Zh H afforded by the Zf H-module M can be written in the form

(ug) <§>< E, * )
Uq) = . s
0 ,HX Et

o = 2,00,

where 6 x E, is the Kronecker product of the matrices 6 and E,. Using
the technique of [11l pp. 880-888|, we conclude that indecomposable matrix
Z -representations of the algebra Z”H are 17,15, I3;, as asserted. m

LEMMA 3.2. Let H = (a) be a cyclic group of order p™ and let pu be
in Z*(H,U(Zy)). If the algebra Q4 H has at most two simple blocks, then

EndZu (W) 22 Zy, for each indecomposable 24 H-module W .

Proof. Keeping the notation of Lemma assume that ZZH is not
the group algebra ZpH and @ﬁH is not a field. Then n > 2 and Z]‘,fH =
[H, Zp, (1+p)?]. If Wy is an underlying Z4 H-module of the representation I7,
then Endzg (W) = Z,[6], and consequently

Endgy. ;, (W1) = 7,101/ (1 — 0)Z,[0) = Z,.
Let W3; be an underlying Z“ H-module of the representation I3,

S = {C S M ( ) C’ng(ua) ng(ua)C},

81—{016Mn 1( ) 019—901}
The ring S is isomorphic to Endzg 1 (W3;), and the ring S7 is isomorphic to
EndZu (W1). If C € S then

(v @)
0 )’

where C € S; and Cap = pCs. Since S /rad Sy = Z,,, we have C1 = aE'+11,
where «a € Z,, E' is the identity matrix of order p"~! and T} € rad Sy, i.e.
T} is a non-invertible matrix over Z,. It follows that C' = oE + T, where E
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is the identity matrix of order p" and T' € 5. Because S is a local ring and
T is a non-invertible matrix over Z,, we conclude that 7' € rad S. It follows
that S/rad S = 7Z,,.

The case when Q4H is a field and the case when |H| = p and Z4H is
the group algebra can be treated similarly. m

LEMMA 3.3. Let H = (a) be a cyclic p-group and p € Z>(H,U(Z,)).
Assume that the algebra @5H has three simple blocks.

(i) If ZLH is the group algebra Z,H, then |H| = p* and EndZuH(W) =

Zy, for each indecomposable 24 H-module W .

(i1) If u is not a 2-coboundary, then, for any positive integer m, there is
an indecomposable Zjy H-module M such that

Endng(M) = GF(p™).

Proof. Statement (i) was proved in |24, p. 583|. Now we prove (ii). In
view of Lemma we may assume that |H| = p® and

~ ~ 2
ZnH = [H, Ly, (1 +p)P"].
Denote by 61,65, 03 roots of the irreducible polynomials

XP — (1+p),d, (Xp>,¢p2 <Xp> € Z,[X],

1+p I+p
respectively, and by s; the Z -rank of Z pl0j] for j =1,2,3. Let m; =1 — 0
for j = 1,2, Ay be the companion matrix of the polynomial f as in
and I be the matrix Z -representation of the algebra Z“ H defined by

01 X By (m) X Ep o (1) % Ay
I(ug) = 0 02 X By (ma) X B, |

0 0 03 X En,
where m is the order of Ay, and (d;) is the matrix all of whose columns except
the last one are zero, whereas the last column consists of the coordinates of
the element §; € Zpy[0;] in the Zy-basis 1,6;,.. .,9;'7_1 of the ring Zy[6;],

I<j<2

By the same arguments as in [11} pp. 889-894|, we can prove that the rep-

resentation I is indecomposable. Denote by M the underlying ZI‘; H-module
of I'. The algebra Endy,. (M) is isomorphic to the algebra

S ={C € M,8(Zp): CI'(ug) = I'(ug)C}.

For a matrix 2 = (xg) € GL(m,Zp[Gj]), we set 2 = (Z) (see the
notation (3.1))).
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By Lemma [2.6, S is a local ring. If C € S and C is a non-invertible
matrix, then C' € rad S. Let C € S be an invertible matrix. Arguing as in
[11L pp. 890-892|, we conclude that C' is of the form

2, ¢ Cs
c=10 2 5],
0 0 5

where §2; € GL(m,Zp[Gj]) for j = 1,2,3 and 2, 'A;2; = Ay (mod ).
The matrix {21 can be written as 2y = Ty + w1 (2], where T} € GL(m,Zp),
Q) € My, (Zy[61]) and Ty ATy = Ap (mod p). By [16, Theorem 76.8,
p. 532|, there is a matrix D, € GL(m, Zp) such that Dy = T; (mod p) and
Dy Dy = Ay Let D = diag[E,, % Dy, Ey, % D1, Ey, % Dy]. Then D € S,
hence C' — D € S. Since £ — D; = 0 (mod 71), the matrix 2; — Dy is
non-invertible over Zp. Hence so is C' — D, and therefore C'— D € rad S.

Let R = {D; € M,,(Z,): D1A; = A;D;}. The ring R is local, rad R =
pR and R/rad R = GF(p"™). The map ¢: S/rad S — R/rad R defined by
©(C +rad S) = D +rad R is an algebra isomorphism. Consequently,

EnngH(M) =~ GF(p™)
and the proof is complete.

LEMMA 3.4. Let H = (a) x (b) be an abelian group of type (p",p®),
w € Z*(H,U(Zp)) and ZyH = [H,Zy,1 + p,1]. Then, for any finite field
F of characteristic p, there is an indecomposable ZﬁH—module M such that
EnszH(M) ~F.

Proof. Let D := (a) and T := (b). The algebra Z4 D is isomorphic to the
Zy-algebra R := Z,[p], where pP" = 14p. The field Q,(p) is a totally ramified
extension of @p of degree p”, R is the ring of all integral elements of Qp(p),
m = 1—pis a prime element of R and R/7mR = 7Z,,. One can view ZﬁH as the
group algebra RT. By Lemma for any finite field F' of characteristic p,
there is an indecomposable RT-module M for which Endpr(M) = F. One

can view M as an indecomposable Z4 H-module. Moreover Endyu (M) =
P
Endgr(M).

We are now able to prove the first main result of this paper.

THEOREM 3.5. Let p # 2, G, be a cyclic p-group, G = G, X B, p €
Z2(G,, Uf(Zp)), v e Z%(B,U(Zy)) and X = px v be as in . The algebra
ZZ))‘G is of OTP representation type if and only if one the following conditions
is satisfied:
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(i) if |Gyl > p?, then ZbG, = [Gyp, Zyp, ), where a = 1 (mod p) and
a# 1 (mod p?);

(ii) Qp is a splitting field for Q”B

Proof. We have ZhG,, = |G, Z,, o, where o € U(Z,). Tt is easy to show
that Z4G), = [Gp, Zy, (1 + p)P"], where k = 0 if a # 1 (mod p?); k = 1 if
a=1 (mod p?) and a # 1 (mod p?); k > 2 if a =1 (mod p3).

If one of conditions (i)-(ii) is satisfied, then Z;}G is of OTP representation
type, by Lemmas [2.3H2-6] and [3:-1H3-3]

Let us prove the necessity. Assume that Qp is not a splitting field for QZB .
In view of Proposition there is an irreducible ZZB—module W such that
EnngB(W) = GF(p™), where m > 1. If |G| > p* and ZLG), =[Gy, Zyp, o,

where o = 1 (mod p 3), then, by Lemmas [2.72.8] and [3.3] there exists an
indecomposable Z4G,-module V such that EndZuG (V) = GF(p™). Since

GF(p™) ®z, GF(p™) is not a field, the Z’\G module V # W is decomposable,
by Lemmas [2.4] and [2.6] Consequently, in view of Lemma [2.3] the algebra
Z)‘G is not of OTP representation type. m

The previous theorem can be reformulated in the following way.

THEOREM 3.6. Let p # 2, G be a cyclic p-group, G = Gp X B, i €
ZX(Gp,U(Zy)), v € Z*(B,U(Zp)) and X = pu x v. Denote by d the num-
ber of simple blocks of the algebra (@ng. Then the algebra Z;‘G is of OTP
representation type if and only if one of the following conditions is satisfied:

(i) if |Gp| > p?, then d < 2;

(ii) Qp is a splitting field for QZB,

We remark that if |G| < p? then d < 3; moreover, if d = 3 then |Gp| = p?
and @;,LGP = @pGp

Suppose now that G, is an abelian group of type (p",p) and p is in
Z%(Gp,U(Zp)). In this case d > 2. If d = 2 then there exists a direct
decomposition G, = (a) x (b), where |a|] = p™ and |b|] = p, such that
ZhGp =[Gy, Zp, 1+ p,1].

PROPOSITION 3.7. Let p # 2, Gp, be an abelian group od type (p",p),
G =G, x B, pe€ Z%G,,U(Zy)), v e Z>(B,U(Zy)) and X = p x v. If the
number of simple blocks of Qng is different from 2, then ZI’}G is of OTP
representation type if and only if Qp s a splitting field for @ZB.

Proof. Let D = socG). If Z D = Z D, then the assertion follows from
Lemmas H n and Proposition [2.13] Assume now that Z“ D is not Z D.
Then there is a subgroup 7' = (a ) (b) of type (p?,p) of G)p such that
ZﬁT [T, Zp, 1,1+p]. Let H=Tx B. If Qp is not a splitting field for Q”B
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then, by Lemmas , and H, ZQH is not of OTP representation

type. Applying Proposition we conclude that neither is Z;}G. "

THEOREM 3.8. Let p # 2, Gy, be a non-cyclic p-group, G = Gp, x B,
w € Z2(Gy, U(Zp)), v € Z%(B, U(Zp)) and X = pxv. Assume that if G, /G,
is of type (p",p), then G, is non-abelian and the following conditions are
satisfied:

(i) if p is not a 2-coboundary, then the center of @ZB 15 p-irreducible;
(ii) if |Gp| = p> then expG, =p

The algebra Z;}G 1s of OTP representation type if and only if Qp s a splitting
field for Q4B

Proof. Assume that G),/G, is not of type (p",p). In view of Lemma
we may assume that G, is abelian. Let D = soc Gy If |D| > p? then ZJD
contains a group algebra Z H= Z H, where H is a group of type (p, p) In
this case the theorem followe from Lemmas 2.5] 2:10] and Proposition
The case When |D| = p? and Z“ D= Z D is treated similarly. Suppose now
that |D| = p? and the restriction of u to D x D _is not a 2-coboundary.
Then Zﬁ,f G, contains an algebra Zéf H as in Lemma Next apply Lemmas
2.3H2.6] and Proposition

Assume that G},/G, is of type (p",p). If G}, is not cyclic, then the as-
sertion follows from Lemmas and Proposition Assume that
Gy, = (0), |c| = p® and G/ G}, = (xG}) x (yG},), where |2GY| = p”, [yG| = p
Let T' = (c?). Denote by D the subgroup of G such that G}, C D and
D/G,, = soc(Gp/G},). By [3, Lemma 1.12, p. 288], |D'| < p. First, we ex-
amine the case when zP" € T and y? € T. If s > 2 then D' C T and
D/T = (aT) x (bT) x (cT), where a = 27"~ and b = . Arguing further as
in the first part of the proof, we establish the desired conclusion. If s = 1
then |D| = p® and exp D = p. The algebra ZﬁD contains a group algebra
Zf,‘ H = ZpH , where H is an abelian group of type (p,p). Next we argue as
previously.

We now consider the case in which " ¢ T. Let {uy: ¢ € G,} be a
canonical Zp—basis of Zk Gp. We may assume that

P = (1 +p)juc, uh = (1 +p)*ue, where k € {0,1}.

By Proposition and Theorem |3 . 3.6 |c| = p, hence n > 2. If kK = 0 then
the Z -algebra generated by u. and u, is the group algebra Z H, where
H:<c> (y). If k =1 then

Consequently, Zng contains the twisted group algebra ZﬁH as in Lemma
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where H = (y) x <y‘j:cpn71> is of type (p,p?). Next apply Lemmas

2:3H2:6] [3-4 and Proposition [2.13]

If 2P" € T and y? ¢ T, then |c| = p, n > 2 and
= (1+p) ue, ub=(1+p)ue.

n—1

Let i = pk and v = (1 +p)~*uf . Then v = u,, hence the Zp—algebra
generated by v and u. is a group algebra of an abelian group of type (p,p).
If p does not divide 4, we may assume that ¢ = 1. For v = u_Jp 1uy we
have v” = u.. Therefore ZpGp contains Z5 H as in Lemma here H =
(zP) x (yz=7""") is of type (p" 1, p?). Applying Lemmas 2 n 3.4 and
Proposition 2.13 we finish the proof. =

PROPOSITION 3.9. Let p be an arbitrary prime, G = Gp, X B, v €
Z*(B,U(Zp)) and A =1 x v € Z*(G,U(Zy)). The algebra ZZ’}G is of OTP
representation type if and only if either Qp s a splitting field for QZB, or
G)p is a cyclic group of order p", r < 2.

Proof. Apply Lemmas 2:3H2.6] 2-8| B-2] and [3.3] =

4. Twisted group algebras Z%G of OTP representation type. In
this section (@2 is the field of 2-adic numbers, 75 is the ring of 2-adic integers,
G = G2 x B is a finite group, where G is a 2-group, B is a 2'-group and
G2/, [B| > 1. In view of Lemma the algebra Z4 B is the group algebra
7B for any v € Z2(B,U(Zy)). Therefore every cocycle A € Z%(G,U(Zs))
satisfies the condition A = p x 1, where y is the restriction of A to G X Gbs.

Let

C1+E
=5
We recall from [I3 p. 277] that the field Q2(v/5) is an unramified extension
of Qy of degree 2 and R is the ring of all integral elements of Qz(v/5).

Assume that pu € Z2(Gp, U(Zy)), A = Z5Gy and A’ = Re; A IEN
is a A-module, we denote by N, the module N viewed as a A-module. By
a result due to Jacobinski (see [I7, pp. 697-698]), for any indecomposable
A-module M there is an indecomposable A’-module U such that M is a
direct summand of the module U,. Moreover, if N is an indecomposable
A’-module, then R ®s, Njp =2 NV, where V is also an indecomposable
A’-module and the R-rank of V is equal to the R-rank of N.

LEMMA 4.1. Let G = Gy x B, p € Z*(Go,Us(Z2)) and X\ = p x 1 €
Z*(G,Us (Z3)). If w is not a 2-coboundary and Z3G is of OTP representation
type, then the center of Q9B is 2-irreducible.

(4.1) R =7Za]p].



TWISTED GROUP ALGEBRAS 225

Proof. By Lemma the restriction of 1 to Gf x GY is a 2-coboundary.
Hence we may assume that p,,, = 1 for all z,y € G5. Let {ug: g € Ga} be a
canonical Zg—basis of Z‘QLGQ. Then u;luhug = Ug-1pg for all g € Go, h € G,
Suppose that F = Gy/Gh and I(GY) is the augmentation ideal of ZyGY.
Arguing as in the proof of [29, Lemma 5.5, p. 91|, we may show that ZQLGQ .
I(Gh) is a two-sided ideal of Z4Gy and Z5Gy/ZE Gy - I(Gh) = Z5 F for some
T € Z*(F,U;(Zy)) such that p is cohomologous to inf(t) € Z2(Ga, Us(Zs)),
where inf(7)q, = TGy bcy, for all a,b € Ga. Since p is not a 2-coboundary,
neither is 7. Consequently, without loss of generality we may suppose that
GG is abelian.

Up to cohomology, there is an element = € G2 of order 2" such that

2’71 _ 2'm
Uy =95 Ue, mMm <N,

2n7'm,71

Let H = (z), D = (y) be a cyclic group of order 2", 2z =y and
T = (z). There exists an algebra homomorphism of ZH onto the twisted
group algebra

gn—m_1]
S S ; n—m
75D = @ ng;, vs = 5.
=0

Denote by M the underlying ZgT—module of the matrix representation A of
Z§T defined by

1 2
2 -1

n—m—1
Yy

A(v.) = <

The algebra End;,.(M) is isomorphic to the algebra
2

), where v, = v2

R={C € My(Zy): CA(v.) = A(v,)C}.

B a 15} ' -
R_{<5 a_ﬁ).a,ﬁEZQ}.
Since

@ GG -6

we conclude that R = Zs[p], where p = (1++/5)/2. It follows that

w >~ GF(4). In view of Lemma l the induced module N :=
MP = 73D Bz M is indecomposable and EnngD(N) =~ GF(4). One can
view the ZgD—module N as a Zg‘ H-module. By Lemma the Zg Go-module
NG2 .= Z’Q‘GQ Dpen N is indecomposable and W

We have

Q‘GQ(N G2) is isomorphic
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to GF(4). By applying Lemmas and Proposition one shows
that the center of Q9B is 2-irreducible. »

LEMMA 4.2. Let H be an abelian group of type (2,2) and A = [H, Zs,5, 1].
Then, for any odd number m, there is an indecomposable A-module M such
that End 4 (M) contains a subfield which is isomorphic to GF(2™).

Proof. Let A" = R®; A (see the notation (4.1)). The algebra A’ is the
group algebra RH. Therefore by Lemma [2.8] there is an indecomposable
A’-module N for which End A'( ) = GF(22™). Assume that N, is an inde-
composable A-module. We have End,/ (N) C Ends(N,4). Because the rings
End, (N) and Ends(N4) are local, rad End 4/ (N) C rad Ends(Ny). It fol-
lows that End 4/(IV) is isomorphic to a subfield of End,(N,4). Consequently,
End,(N,4) contains a subfield which is isomorphic to GF(2™).

We now consider the case when N, is a decomposable A-module. Let d be
the R-rank of N. Then Ny = M @&V, where M and V are indecomposable
A-modules of Zy-rank d and N is isomorphic to R ®z, M. Denote by A
a matrix Zo-representation of the algebra A afforded by the A-module M.
Let {uy: h € H} be a canonical Zy-basis of A, and

S:={Ce¢ Md(Zz): CA(up) = A(up)C for every h € H},
S":={C" € My(R): C'"A(up,) = A(uy)C’ for every h € H}.

The ring S is isomorphic to End, (M), and the ring S’ is isomorphic to
Endy (N). Assume C' = C; + pCz, where p = (14 +/5)/2 and C;,C5 €
Mg(Zs). Because {1, p} is a Zy-basis of R, we conclude that €’ € §' if and
only if Cy,Cy € S. Hence S = S+pS. By [17, Proposition 5.22 and Theorem
7.9], we may write S’ = GF(4) ®z, S, consequently End (M) = GF(2™). =

LEMMA 4.3. Let H=/{a) be a cyclic group of order 2" and A=[H, Lo, 52k],
where n > 3 and k > 1. Then, for any odd number m, there is an indecom-

posable A-module M such that Ends(M) contains a subfield isomorphic to
GF(2™).

Proof. In view of Lemmas [2.7] and 2.8] we may assume that n = 3 and
k € {1,2}. Keeping the notation (4.1), suppose that k& = 2. The algebra

AN =R ®j, A is the group algebra of H over R. By Lemma there is an
indecomposable A’-module N such that End 4 (NN) is isomorphic to GF(22™).
Arguing as in the proof of Lemma we deduce the assertion.

Now consider the case when k = 1. Denote by 61, 05 and 63 roots of
the irreducible polynomials X2 — /5, X2 + /5 and X% + 5 € R[X], respec-
tively. Let A" = R ®jz, A and N be an underlying A’-module of the matrix
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representation I" of A’ defined by the formula
0 X B (m1) X Ep (1) X Ay
(ug) = 0 Oy X By (m3) X Epy |
0 0 03 x Ey,
where m; = 1 — 6; for i = 1,2 and Ay is the matrix as in (2.1); see also
the notation in the proof of Lemma [3.3] Arguing as in the latter proof, we
show that N is an indecomposable module and End (N) & GF(2*™). By

applying the same type of arguments as in the proof of Lemma we finish
the proof in this case. =

LEMMA 4.4. Let H = (a) be a cyclic group of order 2" and A = [H, Zs, 5).
Then:

(i) Enda(M) is isomorphic to a subfield of the field GF(4) for any in-
decomposable A-module M.

(i1) There exists an indecomposable A-module My such that End(Mp)

>~ GF(4).

Proof. Let R be the ring as in (4.1). Denote by 6 and o roots of the
polynomials X 2" /5 and X2"7 + V5, respectively. The fields Qg( ) and
Qa(0) are totally ramified extensions of Qg(\f 5) of degree 2"~ 1 and R[],
Rl[o] are the rings of all integral elements of Qg( ) and @2( ), respectively.
Clearly, %" = 5 and A = Zy[#]. Since R[0] = Zs[0] + ng[ ], the Zy-order
Zs[6] is of cyclic index in the maximal Zy-order R[6] in the Qo-algebra Qo(6).
By a result of Borevich-Faddeev (see [I7, p. 789]), every A-module is iso-
morphic to a direct sum of ideals of A. It follows that the Zo-rank of any
indecomposable A-module is 2.

Write A’ = R ®yz, A. Applying the arguments used in the proof of Lemma
3.1, we can prove that, up to equivalence, the indecomposable matrix R-
representations of A" are the following:

0 ()

In:ug— 0, Ih:ug— o, F3+k:ua»—><
o

>, where t =1 -6,
k=0,1,...,2" 1 —1 (see the notation in and in Lemma . Arguing
as in the proof of Lemma we can show that Endy (U) & R = GF(4) for
every indecomposable A’-module U.

Assume that N is an underlying A’-module of the representation I7,
where j € {1,2}. Then N, is an indecomposable A-module. The A’-module
V=R ®3, N, decomposes into a direct sum of two mutually non-isomorphic
indecomposable A’-modules of R-rank 2"~ !. It follows that End, (V) =
GF(4) x GF(4). The argument given in the proof of Lemma 4.2 shows that
Endy (V) 2 R ®z, Ends(N,). Consequently, Ends(N,) = GF(4).
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Now, assume that N is an underlying A’-module of the representation I7,
where j € {3,...,2+ 2" 1}. Then the Zo-rank of Ny is equal to 2", and
therefore Ny = M @V, where M and V are indecomposable A-modules of
Zo-rank 2™. By a result of Jacobinski (see [I7), pp. 697-698]), the A’-module
R ®;, M is indecomposable, hence Endy (R ®7, M) = R. Since

Endy (R @5, M) = R ®7, Ends (M),
we conclude that End, (M) = Zs. =

LEMMA 4.5. Let H = (a) be a cyclic group of order 4 and A = [H, Zy, 5%).
Then:

(i) Enda(M) is isomorphic to a subfield of GF(4) for every indecom-
posable A-module M .
(ii) There is an indecomposable A-module My such that

End (M) = GF(4).

Proof. Denote by 11, n2 some roots of the polynomials X?—5 and X2 +5,
respectively. Let

~_(o 5> ~_(o —5> A_<1 2)

m= 10 ; e = 1 0 ) - 9 _1 )

D:(O 1>’ S:<0 1>, T:<O O)‘
0 1 0 0 01

By [6, Lemma 3.9], up to equivalence, the indecomposable matrix Zy-re-
presentations of the algebra A are the following:

m D
Fi:uaHﬁi(i:1,2), I3: uy — A, F4:ua'_><n1 ~>7
0 m
m S A0S 4 5T
F5:uav—><m N), Fﬁtua'—>( ~>, I7iug— |0 12 O
0 12 0 m ~
0 0 mn

Let M; be the underlying A-module of the representation I; and d; =
rankz2 M;. Denote by R; the set of all matrices C € My, (Zg) such that
CT5(uq) = Ii(ug)C. Then R; is a free Zg—algebra and R; = End,(M;). By
Lemma [2.6] R; is a local algebra.

We have shown in the proof of Lemma {.1| that Rs = GF(4).

If C € Rg, then

C= (Cl CQ), where C5 = <$ —5y> with =,y € Zo.
0 Cs y x



TWISTED GROUP ALGEBRAS 229

Let A =xE4+yls(ug). Then A € Rg and C — A € rad Rg. Since I5(u,)* =
E4 (mod 2), it follows that C' +rad Rg = (2 + y) E4 + rad Rg. Consequently,
Rg = Zs.

If C € Ry, then

c, C .
= ( ! 2>, where C', = <:E Y ) with x,y € Zo.
0 Cs y z—vy

Let A = xFg + yL, where

Li 0 0 1 .
L:<1 ) withL1:< >,Lg:E2><L1.
0 Lo 1 -1

Then A € Ry and C — A € rad R7. By ( ., L? + L = Eg. Therefore
R7 = GF(4). Similarly we can show that R; & Z for each i € {1,2,4,5}. =

Our second main result of this paper is the following theorem.

THEOREM 4.6. Let Go = (a) be a cyclic group of order 2", G = G x B,
w € Z3(Ga,U(Zy)), A= x 1€ Z%(G,U(Zy)) and Z5Gy = (G2, 7, 0]. The
algebra Z%‘G is of OTP representation type if and only if one of the following
conditions is satisfied:
(i) a« # 1 (mod 4);
(i) @ = 1 (mod 4), o # 1 (mod 8) and the center of QuB is 2-ir-
reducible;
(i) n <2 and ZHGy = ZnGly;
(iv) n =2, a =1 (mod 8), a # 1 (mod 16) and the center of QoB is
2-1rreducible;
(v) Qs is a splitting field for Q2 B.

Proof. Assume that o #Z 1 (mod 4). Denote by 6 a root of the irreducible
polynomial X2 — a € Zy[X]. Then Qo(0) is a totally ramified field exten-
sion of Qy and Zs[f] is the ring of all integral elements of Q2(6) (see [27.
p. 192]). Because Z5 Gy = Zy[f], and Zs[6] is a principal ideal domain, every
indecomposable Zg G2-module is isomorphic to the regular module. Since
EndZuG (Z’;Gg) & Zo, the algebra Z%‘Gg is of OTP representation type, by
Lemmas 2:3] 4] 26

Assume now that o = 1 (mod 4), i.e. p € Z%(Ga,Us(Z2)). Tt is easy
to show that Z‘;Gg = [G2,22,52k], where £k = 0 if @« Z 1 (mod 8); k =1
if « =1 (mod ) anda;‘él (mod 16); £ > 2 if @ = 1 (mod 16). If one
of the conditions (ii)—(v) is satisfied, then ZAG is of OTP representation

type, by Lemmas .—. n and . . Conversely, let Z)‘G be of OTP

representation type. If y is a 2-coboundary, then Z” Gy = ZgGg, and in view
of Lemma one of conditions (iii), (v) is satisﬁed. Suppose 4 is not
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a 2-coboundary. By Lemma [4.1} the center of Q2B is 2-irreducible. Suppose
that « =1 (mod 8). If n =2 then a # 1 (mod 16). If n > 3 then, by Lemmas

2.3112.6] E 4.3 and Proposition condition (v) is satisfied. =

Under the identification of the field Qy with the field {aue: a € (@2}, we
can reformulate Theorem [4.6] as follows.

THEOREM 4.7. Let Go be a cyclic group of order 2", G = G X B,
pe Z2(Gy,U(Zy)), v € Z2(B,U(Zs)) and A = pu x v. The algebra Z3G is
of OTP representation type if and only if one of the following conditions is
satisfied:

(i) QQLGQ is a totally ramified field extension of Q;
(ii) Q5G2 is a field and the center of QoB is 2-irreducible;
(iii) n <2 and Z“Gg is the group algebra of Go over Zs;
(iv) n =2, the number of simple blocks of Q2 G is 2 and the center of
QQB 1s 2-irreducible; R

(v) Q2 is a splitting field for Q2B.

PROPOSITION 4.8. Let G be a non-cyclic 2-group, G = G2 X B, p €
Z%(G2,Up(Zs)) and A\ = ux 1 € Z*(G,Us(Z3)). The algebra Z3G is of OTP
representation type if and only if Qg is a splitting field for Q2 B.

Proof. By Lemmas [2.2 and 2.10, we may assume that Gz is abelian and
Z“GQ is not the group algebra ZQGQ Denote by H the socle of Gs. If H

is of type (2,2) and Z“ H is not ZoH, the assertion follows from Lemmas

2.3}2-6] 4.1 [4.2 and Prop031t1on n 2.13] Let |H| > 4. There ex1sts a non-cyclic

subgroup D of H such that Z” D is ZoD. By applying Lemmas O and
Proposition 2.13] the proof follows in this case. m

PROPOSITION 4.9. Let Gy be an abelian 2-group, G = G2 X B, u €
Z2(Ga,Uy(Zy)) and X\ = p x 1 € Z2(G,Uy(Z3)). Assume that ZgGg is a
commutative algebra. Then Z%‘G is of OTP representation type if and only
if one of the following conditions is satisfied:

(i) G is cyclic and p is not a 2-coboundary;

(i1) Gy is cyclic of order 2 or 4;

(iii) Gg is of type (2™,2) and the number of simple blocks of QSGQ is 2;

(iv) Qq is a splitting field for Q2 B.

Proof. 1f G2 has at least three invariants, there is a non-cyclic subgroup
H of G4 such that Zg H =17,H. Applying Lemma and Propositionzﬁ
we deduce the proposition.

Assume that Gy has two invariants and g is not a 2-coboundary. Then
Gy = (a) x (b) and ZKGy = [Gy, 72, —1,1]. Let |a| = 2" and |b] = 2™.
Arguing as in the proof of Lemma we conclude that if m > 2 then, for
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any finite field F' of characteristic 2, there is an indecomposable Z’; Go-module
M such that Endng2 (M) = F. In view of Lemmas 73G is of OTP
representation type if and only if @2 is a splitting field for Q2B .

Let m = 1. Denote by & a root of the polynomial X2" + 1. The field
Q2(¢) is a totally ramified extension of Qo of degree 2, and R := Zs[¢] is
the ring of all integral elements of Qg(f ). One can view Zg G> as the group
algebra RH of the group H = (b) of order 2 over R. Up to equivalence, the
indecomposable matrix R-representations of RH are the following:

1

I:upy— 1, Io: up— —1, Fj+31ub'—>(0 1),

where t=1—¢ and j =0,1,...,2" — 1. Denote by M; the underlying RH-
module of the representation I5 for i € {1,...,2" + 2}. Since Endpy (M;) =
R = 7 for every i, we see that Z%G is of OTP representation type, by Lemmas
. Note that in this case the number of simple blocks of Q; G5 equals 2.
In the case when G35 is a cyclic group of order 2" and p is not a
2-coboundary we have Z4Gy = Zo[¢], where €2 = —1. Because Zo[¢] is

a principal ideal domain, each indecomposable Zg G2-module is isomorphic

to the regular module. Moreover, Endyy (Z5G) = Zy. By Lemmas
N 2

and 73G is of OTP representation type. m

PROPOSITION 4.10. Let Gg be an abelian 2-group, G = G2 X B, p €
Z%(Ga,U(Z2)) and X\ = p x 1 € Z*(G,U(Zy)). Assume that the algebra
Z5Go is commutative and the number of invariants of G is at least 3. Then
Z%G is of OTP representation type if and only if Qo is a splitting field for
Q2B.

Proof. Let D = soc Gy. There is a subgroup T of type (2,2) in D such

that Z’; T is either the group algebra, or the algebra as in Lemma Now
we may apply Lemmas [2.3] and Proposition [2.13] =

5. Finite groups of OTP projective representation type. First we
remark that, in view of , Propositions 2.2-2.9 in [5] relating to splitting
fields for a twisted group algebra K* B, where K is a field of characteristic
p and B is a finite p’-group, remain valid also in the case when K = @p and
ve Z3(B,U(Zy)).

PROPOSITION 5.1. Let p # 2 and G = G}, x B with G,,/G), not of type

(", p). The group G is of OTP projective Z,-representation type if and only
if one of the following conditions is satisfied:
(i) Gy s cyclic;

~

(i) Qp is a splitting field of QZB for certain v € Z*(B,Uy(Zy)).



232 L. F. BARANNYK AND D. KLEIN

Proof. Apply Theorems 3.5 and [3.8] =

PROPOSITION 5.2. Let p # 2, G = G}, x B be an abelian group with G),
not of type (p",p). The group G is of OTP projective Z,-representation type
if and only if one of the following conditions is satisfied:

(i) Gp is cyclic;
(ii) B has a subgroup H such that B/H is of symmetric type, i.e. B/H =
D x D, and p — 1 is divisible by m := max{exp H,exp(B/H)}.

Proof. Apply Theorems 3.5, 3.8 and [5, Proposition 2.5]. =

PROPOSITION 5.3. Letp # 2, G, be an abelian p-group, B be a nilpotent
p'-group and G = G, x B. Assume that G, is not of type (p",p) and p — 1
is not dwisible by q for some prime q dividing |B|. The group G is of OTP
projective Zp-representation type if and only if G, is cyclic.

Proof. Apply Theorems 3.5, 3.8 and [5], Proposition 2.7|. =
Our final main result of this paper is the following theorem.

THEOREM 5.4. The group G = G, x B s of purely OTP projective Zp—re—
presentation type if and only if one of the following conditions is satisfied:

(i) p# 2 and Gy is a cyclic group of order p or p?;

(ii) p = 2, Gy is a cyclic group of order 2 or 4 and the center of Q.B
18 2-irreducible;

(iii) p # 2 and there exists a finite central _group extension 1 — A —
B — B — 1 such that any projective Qp representation of B with
a 2-cocycle in Z2(B U(Zy)) lifts projectively to an ordmary Qp
representation ofB and Qp is a splitting field for Qp

(iv) p=2 and Qs is a splitting field for Q2 B.

Proof. Apply Lemma Theorems and [5, Proposition 2.9|. m

COROLLARY 5.5. Let G = G, x B and B' # B. The group G is of purely

OTP projective Zp—representation type if and only if one of the following
conditions is satisfied:

(i) p # 2 and G, is a cyclic group of order p or p?;
(ii) p =2, Go is a cyclic group of order 2 or 4 and the center of Q9B is
2-irreducible.

Proof. Let p # 2. There is a normal subgroup H of B such that B :=
B/H is a cyclic group of order ¢, where ¢ is a prime divisor of |B|. Let
—1=q"k, where m > 1 and (q, k) = 1. Denote by £ a primitive ¢"'th root
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of 1 and by Z;’,/B the algebra

i
L

Zpui, u? =&

ﬂ.
[e=]

Since @, is not a splitting field for Qﬁﬁ =Q, ®z, ZUE there is a twisted
group algebra Z”B such that Qp is not a splitting field for Q” B. If ¢ does
not divide p — 1, then Qp is not a splitting field for QB It follows that
Qp is not a splitting field for QpB Applying Theorem . we conclude that

G is of purely OTP projective Z -representation type if and only if G), is a
cyclic group of order p or p?. In the case when p = 2 the corollary follows in
a similar way. =

COROLLARY 5.6. Letp # 2 and G = G, x B. Assume that p — 1 is not
divisible by every prime q dividing |B|. Then H*(B,U(Z,)) =1 and G is of
purely OTP pmjectwe Z -representation type if and only if either @p 8 a
splitting field for QpB, or G 1s a cyclic group of order p", r < 2.

Proof. Apply [29, Theorem 1.7, p. 11] and Theorem "
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