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ON SOME UNIVERSAL SUMS OF
GENERALIZED POLYGONAL NUMBERS

BY

FAN GE (Rochester, NY) and ZHI-WEI SUN (Nanjing)

Abstract. For m = 3, 4, . . . those pm(x) = (m−2)x(x−1)/2+x with x ∈ Z are called
generalized m-gonal numbers. Sun (2015) studied for what values of positive integers a, b, c
the sum ap5 + bp5 + cp5 is universal over Z (i.e., any n ∈ N = {0, 1, 2, . . .} has the form
ap5(x) + bp5(y) + cp5(z) with x, y, z ∈ Z). We prove that p5 + bp5 + 3p5 (b = 1, 2, 3, 4, 9)
and p5 + 2p5 + 6p5 are universal over Z, as conjectured by Sun. Sun also conjectured
that any n ∈ N can be written as p3(x) + p5(y) + p11(z) and 3p3(x) + p5(y) + p7(z) with
x, y, z ∈ N; in contrast, we show that p3 + p5 + p11 and 3p3 + p5 + p7 are universal over Z.
Our proofs are essentially elementary and hence suitable for general readers.

1. Introduction. For m = 3, 4, . . . we set

(1.1) pm(x) = (m− 2)
x(x− 1)

2
+ x.

Those pm(n) with n ∈ N = {0, 1, 2, . . .} are the well-known m-gonal num-
bers (or polygonal numbers of order m). We call those pm(x) with x ∈ Z
generalized m-gonal numbers. Note that (generalized) 3-gonal numbers are
triangular numbers and (generalized) 4-gonal numbers are squares of inte-
gers.

In 1638, Fermat asserted that each n ∈ N can be written as the sum of
m polygonal numbers of order m. This was proved by Lagrange, Gauss and
Cauchy in the cases m = 4, m = 3 and m ≥ 5 respectively (see Moreno and
Wagstaff [10, pp. 54–57] or Nathanson [11, Chapter 1, pp. 3–34]). The gen-
eralized pentagonal numbers play a crucial role in Euler’s famous recurrence
for the partition function.

For a, b, c ∈ Z+ = {1, 2, . . .} and i, j, k ∈ {3, 4, . . .}, Sun [13] called the
sum api + bpj + cpk universal over N (resp., over Z) if for any n ∈ N the
equation n = api(x)+bpj(y)+cpk(z) has solutions over N (resp., over Z). In
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1862 Liouville (cf. [4, p. 23]) determined all those universal ap3 + bp3 + cp3.
The second author [12] initiated the determination of those universal sums
api + bpj + cpk with {i, j, k} = {3, 4}, and this project was completed via
[12, 5, 9]. For almost universal sums api + bpj + cpk with {i, j, k} ⊆ {3, 4},
see [8, 1, 2].

It is known that generalized hexagonal numbers are identical with trian-
gular numbers (cf. [6] or [13, (1.3)]).

The second author recently established the following result.

Theorem 1.1 (Sun [13, Theorem 1.1]). Suppose that apk + bpk + cpk is
universal over Z, where k ∈ {4, 5, 7, 8, 9, . . .}, a, b, c ∈ Z+ and a ≤ b ≤ c.
Then k = 5, a = 1, and (b, c) is among the following 20 ordered pairs:

(1, c) (c ∈ {1, 2, 3, 4, 5, 6, 8, 9, 10}),
(2, 2), (2, 3), (2, 4), (2, 6), (2, 8),

(3, 3), (3, 4), (3, 6), (3, 7), (3, 8), (3, 9).

Guy [6] realized that p5+p5+p5 is universal over Z, and Sun [13] proved
that the sums

p5 + p5 + 2p5, p5 + p5 + 4p5, p5 + 2p5 + 2p5,

p5 + 2p5 + 4p5, p5 + p5 + 5p5, p5 + 3p5 + 6p5

are universal over Z. So the converse of Theorem 1.1 reduces to the following
conjecture of Sun.

Conjecture 1.2 (Sun [13, Remark 1.2]). The sum p5 + bp5 + cp5 is
universal over Z if the ordered pair (b, c) is among

(1, 3), (1, 6), (1, 8), (1, 9), (1, 10), (2, 3),

(2, 6), (2, 8), (3, 3), (3, 4), (3, 7), (3, 8), (3, 9).

Our following result confirms this conjecture for six ordered pairs (b, c)
for the first time.

Theorem 1.3. For

(b, c) = (1, 3), (2, 3), (2, 6), (3, 3), (3, 4), (3, 9),

the sum p5 + bp5 + cp5 is universal over Z.

Remark. This result appeared in the initial preprint version of this
paper posted to arXiv in 2009.

Sun [13] investigated those universal sums api + bpj + cpk over N. By
[13, Conjectures 1.10 and 1.13], p3 + p5 + p11 and 3p3 + p5 + p7 should be
universal over N. Though we cannot prove this, we are able to show the
following result.
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Theorem 1.4. The sums p3 + p5 + p11 and 3p3 + p5 + p7 are universal
over Z.

Theorems 1.3 and 1.4 will be shown in Sections 2 and 3 respectively. Our
proofs are essentially elementary and hence suitable for general readers.

2. Proof of Theorem 1.3

Lemma 2.1 (Sun [13, Lemma 3.2]). Let w = x2 + 3y2 ≡ 4 (mod 8) with
x, y ∈ Z. Then there are odd integers u and v such that w = u2 + 3v2.

Lemma 2.2. Let w = x2 + 3y2 with x, y odd and 3 - x. Then there are
integers u and v relatively prime to 6 such that w = u2 + 3v2.

Proof. It suffices to consider the case 3 | y. Without loss of generality, we
may assume that x 6≡ y (mod 4) (otherwise we may use −y instead of y).
Thus (x− y)/2 and (x + 3y)/2 = (x− y)/2 + 2y are odd. Observe that

(2.1) x2 + 3y2 =

(
x + 3y

2

)2

+ 3

(
x− y

2

)2

.

As 3 - x and 3 | y, neither (x−y)/2 nor (x+3y)/2 is divisible by 3. Therefore
u = (x + 3y)/2 and v = (x− y)/2 are relatively prime to 6.

Lemma 2.3 (Jacobi’s identity). We have

(2.2) 3(x2 + y2 + z2) = (x + y + z)2 + 2

(
x + y − 2z

2

)2

+ 6

(
x− y

2

)2

.

We need to introduce some more notation. For a, b, c ∈ Z+, we set

E(ax2 + by2 + cz2) = {n ∈ N : n 6= ax2 + by2 + cz2 for any x, y, z ∈ Z}.
Proof of Theorem 1.3. Let b, c ∈ Z+. For n ∈ N we have

n = p5(x) + bp5(y) + cp5(z) =
3x2 − x

2
+ b

3y2 − y

2
+ c

3z2 − z

2
⇔ 24n + b + c + 1 = (6x− 1)2 + b(6y − 1)2 + c(6z − 1)2.

If w ∈ Z is relatively prime to 6, then w or −w is congruent to −1 modulo 6.
Thus, p5 + bp5 + cp5 is universal over Z if and only if for any n ∈ N the
equation 24n + b + c + 1 = x2 + by2 + cz2 has integral solutions with x, y, z
relatively prime to 6.

Below we fix a nonnegative integer n.

(i) By Dickson [3, Theorem III],

(2.3) E(x2 + y2 + 3z2) = {9k(9l + 6) : k, l ∈ N}.
So 24n + 5 = u2 + v2 + 3w2 for some u, v, w ∈ Z. As 3w2 6≡ 5 (mod 4), u or
v is odd. Without loss of generality we assume that 2 - u. Since v2 + 3w2 ≡
5 − u2 ≡ 4 (mod 8), by Lemma 2.1 we can rewrite v2 + 3w2 as s2 + 3t2
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with s, t odd. Now we have 24n + 5 = u2 + s2 + 3t2 with u, s, t odd. By
u2 + s2 ≡ 5 ≡ 2 (mod 3), both u and s are relatively prime to 3. Applying
Lemma 2.2 we can express s2 + 3t2 as y2 + 3z2 with y, z relatively prime
to 6. Thus 24n + 5 = u2 + y2 + 3z2 with u, y, z relatively prime to 6. This
proves the universality of p5 + p5 + 3p5 over Z.

(ii) By Dickson [3, Theorem X],

(2.4) E(x2 + 2y2 + 3z2) = {4k(16l + 10) : k, l ∈ N}.
So 24n+ 6 = 2u2 + v2 + 3w2 for some u, v, w ∈ Z. Clearly v and w have the
same parity. Thus 4 | v2 + 3w2 and hence 2u2 ≡ 6 (mod 4). So u is odd and
v2 + 3w2 ≡ 6 − 2u2 ≡ 4 (mod 8). By Lemma 2.1 we can rewrite v2 + 3w2

as s2 + 3t2 with s, t odd. Now we have 24n + 6 = 2u2 + s2 + 3t2 with u, s, t
odd. Note that s2 + 2u2 > 0 and s2 + 2u2 ≡ 0 (mod 3). By [7, p. 173] or
[13, Lemma 2.1], we can rewrite s2 + 2u2 as x2 + 2y2 with x and y relatively
prime to 3. As x2 + 2y2 = s2 + 2u2 ≡ 3 (mod 8), both x and y are odd. By
Lemma 2.2, x2 + 3t2 = r2 + 3z2 for some integers r, z ∈ Z relatively prime
to 6. Thus 24n + 6 = r2 + 2y2 + 3z2 with r, y, z relatively prime to 6. It
follows that p5 + 2p5 + 3p5 is universal over Z.

(iii) By Dickson [3, Theorem IV],

(2.5) E(x2 + 3y2 + 3z2) = {9k(3l + 2) : k, l ∈ N}.
So 24n + 7 = u2 + 3v2 + 3w2 for some u, v, w ∈ Z. Since u2 6≡ 7 (mod 4),
without loss of generality we assume that 2 - w. As u2 + 3v2 ≡ 7 − 3w2 ≡
4 (mod 8), by Lemma 2.1 there are odd integers s and t such that u2+3v2 =
s2+3t2. Thus 24n+7 = s2+3t2+3w2 with s, t, w odd. Clearly, s is relatively
prime to 6. By Lemma 2.2, s2 + 3t2 = x20 + 3y2 for some integers x0 and y
relatively prime to 6, and x20 + 3w2 = x2 + 3z2 for some integers x and z
relatively prime to 6. Therefore 24n+7 = x2+3y2+3z2 with x, y, z relatively
prime to 6. This proves the universality of p5 + 3p5 + 3p5 over Z.

(iv) By [13, Theorem 1.7(iii)], 24n+8 = u2+v2+3w2 for some u, v, w ∈ Z
with 2 - w. Clearly u 6≡ v (mod 2). Without loss of generality, we assume
that u = 2r with r ∈ Z. Since (2r)2 + v2 ≡ 8 ≡ 2 (mod 3), both r and v are
relatively prime to 3. As v and w are odd, v2 + 3w2 ≡ 4 (mod 8) and hence
r is odd. By Lemma 2.2, we can rewrite v2 + 3w2 as x2 + 3y2 with x and y
relatively prime to 6. Note that 24n + 8 = 4r2 + v2 + 3w2 = x2 + 3y2 + 4r2

with x, y, r relatively prime to 6. It follows that p5 + 3p5 + 4p5 is universal
over Z.

(v) By (2.3), 24n + 13 = u2 + v2 + 3w2 for some u, v, w ∈ Z. Since
3w2 6≡ 13 ≡ 1 (mod 4), without loss of generality we may assume that u is
odd. As v2 + 3w2 ≡ 13 − u2 ≡ 4 (mod 8), by Lemma 2.1 we can rewrite
v2 + 3w2 as s2 + 3t2 with s and t odd. Thus 24n + 13 = u2 + s2 + 3t2 with
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u, s, t odd. Since u2+s2 ≡ 13 ≡ 1 (mod 3), without loss of generality we may
assume that 3 - u and s = 3r with r ∈ Z. By Lemma 2.2, u2 +3t2 = x2 +3y20
for some integers x and y0 relatively prime to 6, also y20 + 3r2 = y2 + 3z2 for
some integers y and z relatively prime to 6. Thus 24n+13 = x2+3y20+9r2 =
x2 + 3y2 + 9z2 with x, y, z relatively prime to 6. This proves the universality
of p5 + 3p5 + 9p5 over Z.

(vi) By the Gauss–Legendre theorem (cf. [11, pp. 17–23]), 8n + 3 =
x2 + y2 + z2 for some odd integers x, y, z. Without loss of generality we may
assume that x 6≡ y (mod 4). By Jacobi’s identity (2.2), we have 3(8n+ 3) =
u2 +2v2 +6w2, where u = x+y+z, v = (x+y)/2−z and w = (x−y)/2 are
odd integers. As u2 + 2v2 is a positive integer divisible by 3, by [7, p. 173]
or [13, Lemma 2.1] we can write u2 + 2v2 = a2 + 2b2 with a and b relatively
prime to 3. Since a2 +2b2 = u2 +2v2 ≡ 3 (mod 8), both a and b are odd. By
Lemma 2.2, we have b2 + 3w2 = c2 + 3d2 for some integers c and d relatively
prime to 6. Thus 24n + 9 = a2 + 2b2 + 6w2 = a2 + 2c2 + 6d2 with a, c, d
relatively prime to 6. It follows that p5 + 2p5 + 6p5 is universal over Z.

In view of the above, we have completed the proof of Theorem 1.3.

3. Proof of Theorem 1.4. (i) Let n ∈ N. By part (v) in the proof of
Theorem 1.3, there are integers u, v, w ∈ Z relatively prime to 6 such that

72n + 61 = 24(3n + 2) + 13 = 9u2 + 3v2 + w2.

Clearly w2 ≡ 61 − 3v2 ≡ 72 (mod 9) and hence w ≡ ±7 (mod 9). So there
are x, y, z ∈ Z such that

72n + 61 = 9(2x + 1)2 + 3(6y − 1)2 + (18z − 7)2

and hence n = p3(x)+p5(y)+p11(z). (Note that p11(x) = 9(x2−x)/2+x =
(9x2 − 7x)/2.)

(ii) Let n ∈ N. It is easy to see that

n = 3p3(x) + p5(y) + p7(z)

⇔ 120n + 77 = 5(3(2x + 1))2 + 5(6y − 1)2 + 3(10z − 3)2.

Suppose 120n + 77 = 5x2 + 5y2 + 3z2 for some x, y, z ∈ Z with z odd.
Then x2 + y2 ≡ 77 − 3z2 ≡ 2 (mod 4) and hence x and y are odd. Note
that 3z2 ≡ 77 ≡ 12 (mod 5) and hence z ≡ ±3 (mod 10). As 5x2 + 5y2 ≡
77 ≡ 5 (mod 3), exactly one of x and y is divisible by 3. Thus there are
u, v, w ∈ Z such that

120n + 77 = 5(3(2u + 1))2 + 5(6v − 1)2 + 3(10w − 3)2.

By the above, to prove the universality of 3p3 + p5 + p7 over Z, we only
need to show that 120n + 77 = 5x2 + 5y2 + 3z2 for some x, y, z ∈ Z with z
odd.
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By (2.3), there are u, v, w ∈ Z such that 120n + 77 = u2 + v2 + 3w2. As
3w2 6≡ 77 ≡ 1 (mod 4), u or v is odd, say, 2 - u. As v2 + 3w2 ≡ 77 − u2 ≡
4 (mod 8), by Lemma 2.1 we may assume that v and w are odd without loss
of generality.

We claim that 120n + 77 = a2 + b2 + 3c2 for some odd integers a, b, c
with c ≡ ±2 (mod 5). This holds if w ≡ ±2 (mod 5). Suppose that w 6≡
±2 (mod 5). If w ≡ ±1 (mod 5), then u2 + v2 ≡ 77 − 3w2 ≡ −1 (mod 5)
and hence u or v is divisible by 5. If w ≡ 0 (mod 5), then u2 + v2 ≡ 77 ≡
2 (mod 5) and hence u2 ≡ v2 ≡ 1 (mod 5). Without loss of generality, we
assume that one of v and w is divisible by 5 and the other one is congruent
to 1 or −1 modulo 5; we may also suppose that v 6≡ w (mod 4) (otherwise
we may use −w instead of w). By the identity (2.1),

v2 + 3w2 =

(
v + 3w

2

)2

+ 3

(
v − w

2

)2

.

Note that both (v − w)/2 and (v + 3w)/2 = (v − w)/2 + 2w are odd. Also,
(v − w)/2 is congruent to 2 or −2 modulo 5. This confirms the claim.

By the above, there are odd integers a, b, c ∈ Z with c ≡ ±2 (mod 5) such
that 120n + 77 = a2 + b2 + 3c2. Since 3c2 ≡ 77 (mod 5), we have 5 | a2 + b2

and hence a2 ≡ (2b)2 (mod 5). Without loss of generality we assume that
a ≡ 2b (mod 5). Then x = (2a + b)/5 and y = (a − 2b)/5 are odd integers,
and

a2 + b2 = (2x + y)2 + (x− 2y)2 = 5(x2 + y2).

Now we have 120n + 77 = 5(x2 + y)2 + 3c2 with x, y, c odd.

This concludes our proof of Theorem 1.4.
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