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VERTICAL VARIATION OF HARMONIC FUNCTIONS

IN UPPER HALF-SPACES

BY

MICHAEL D. O’NEILL (El Paso, TX)

Abstract. Some results of Bourgain on the radial variation of harmonic functions in
the disk are extended to the setting of harmonic functions in upper half-spaces.

1. Introduction. Let f be a bounded analytic function in the unit
disk D and let

V (f, θ) =

1\
0

|f ′(̺eiθ)| d̺.

It was shown in [7] that the set

FRV (f) ≡ {θ ∈ T : V (f, θ) <∞}

may have Lebesgue measure zero and may be of first category.

Answering a question from [7], Bourgain showed in [1] that FRV (f) is
always of Hausdorff dimension 1 when f is bounded and analytic or even
when f is a bounded real harmonic function. By similar arguments, it was
shown in [2] that the same conclusion holds if f is a real positive harmonic
function.

Here we will show that the technique and results in [1] and [2] can be
generalized to real-valued harmonic functions in the upper half-space R

n+1
+ .

To be specific, we will replace the notion of radial variation with variation
on vertical lines and prove the following theorems.

Theorem A. If u is a bounded real-valued harmonic function in the up-
per half-space R

n+1
+ then there is a set E ⊂ R

n having Hausdorff dimension

n such that
1\
0

|∇u(x, y)| dy <∞

for each x ∈ E.
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Theorem B. If u is a positive harmonic function in the upper half-space
R
n+1
+ then there is a set E ⊂ R

n having Hausdorff dimension n such that

1\
0

|∇u(x, y)| dy <∞

for each x ∈ E.

The line of reasoning for proving the theorems follows [1] but the results
appear not to have been known. The generalization to higher dimensions
requires some manipulation of convolution kernels and the asymptotic esti-
mation of certain oscillatory integrals by a technique of Wong [9], [10]. The
lemmas containing the required estimates are given in Section 3 and their
proofs in Section 7.

A construction of P. W. Jones [5] shows that there are bounded analytic
functions f1 and f2 in D such that\

γ

(|f ′1|+ |f
′
2|) ds =∞

for any curve γ in D joining 0 to ∂D. Using Jones’ idea, it is easy to generate
examples of bounded complex-valued or vector-valued harmonic functions
in the upper half-space which have infinite vertical variation at every point.
Simple extensions of examples of the type in [7] show that in the real-valued
case, a set of finite vertical variation can be of measure zero and of first
category. In the above two senses then the results are the best possible.

In [6], Bourgain’s result in the disk is used in conjunction with a stop-
ping time construction of Lipschitz subdomains to prove that for any Bloch
function b defined in the disk there is a set E of points in ∂D such that

lim inf
r→1

Re b(rξ)Tr
0
|b′(̺ξ)| d̺

> 0

for each ξ ∈ E. The proof depends upon the Riemann mapping theorem
to pull Bourgain’s result back to the Lipschitz subdomains. It is an open
question whether an analog of the Jones–Mueller result holds for harmonic
Bloch functions in upper half-spaces and in light of Theorems A and B the
question can be reduced to finding a substitute for the Riemann mapping
part of the Jones–Mueller argument.

2. Poisson kernels. Let

py(x) =
\

Rn

e−2πit·xe−2π|t|y dt =
cny

(|x|2 + y2)(n+1)/2

be the usual n-dimensional Poisson kernel and let PN = p1/N .
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We will use the following properties of PN :

1. PN ≥ 0.

2.
T
PN = 1.

3. |∇PN | ≤ CNPN pointwise.

4. If N1 > N and t ∈ R
n then\

Rn

|PN (t+ τ)− PN (t)|PN1(τ) dτ ≤
N

N1
log

(
2 +

N

N1

)
PN (t).

5. If N1 > N and t ∈ R
n then

|PN ∗ PN1 − PN | ≤ (N/N1)
1/2PN (t).

The proofs, being exactly as in Section 1 of [1], are omitted.

3. Two lemmas on convolution kernels. To prove Theorems A and
B we will need two lemmas which give pointwise control of certain con-
volution kernels. The lemmas are stated here for reference and proved in
Section 7.

Let ω denote a fixed unit vector in R
n.

Lemma 3.1. For each positive integer j there is a function Yj such that

Ŷj(ξ) = (P̂2k−2(ξ)P̂2k−1(ξ − 2
k−1ω))−1

on
1
42
j−1 ≤ |ξ| ≤ 322

j−1

and

|Yj(t)| ≤
c

2j(|t|2 + 4−j)(n+1)/2

where c is some numerical constant.

For the second lemma, let σj denote radial multipliers such that

1. 0 ≤ σj(r) ≤ 1.

2. suppσj(r) ⊂
[
1
42
j−1, 322

j−1
]
.

3.
∑
j σj ≡ 1.

4. |σ
(s)
j | ≤ c2

−js, s = 1, 2, 3, . . .

5. σj(r) vanishes to all orders at the endpoints of its support.

6. σj(r) = Q(2−(j+1)r) − Q(2−jr) for some fixed C∞ function Q with
compact support.

Lemma 3.2. For any positive integer j and positive real y, the kernels

Z0,j,y(x) =
\

Rn

|s|

2j
e−2π|s|ye2π(2

j/10)yσj(s)e
−2πis·x ds
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and

Zk,j,y(x) =
\

Rn

sk
2j
e−2π|s|ye2π(2

j/10)yσj(s)e
−2πis·x ds

for k = 1, 2, . . . , n satisfy

|Zl,j,y(x)| ≤
c

2j(|x|2 + 4−j)(n+1)/2

for l = 0, 1, . . . , n. The constant is independent of y and j.

4. Littlewood–Paley estimates for vertical variation. Let f de-
note the boundary values of the bounded harmonic function u in the upper
half-space R

n+1
+ . Let the multipliers σj be as in Lemma 3.2. Considering the

tempered distribution f̂ we estimate
∣∣∣∣
∂u

∂xk

∣∣∣∣ ≤ 2π
∣∣∣
\
ske
−2π|s|ye−2πis·xf̂(s) ds

∣∣∣

≤ 2π
∑

j

2je−2π(2
j/10)y

∣∣∣∣f ∗
\sk
2j
e−2π|s|ye2π(2

j/10)yσj(s)e
−2πis·x ds

∣∣∣∣

and similarly
∣∣∣∣
∂u

∂y

∣∣∣∣ ≤ 2π
∑

j

2je−2π(2
j/10)y

∣∣∣∣f ∗
\|s|
2j
e−2π|s|ye2π(2

j/10)yσj(s)e
−2πis·x ds

∣∣∣∣.

Since
1\
0

2je−2π(2
j/10)y dy ≤

10

2π
,

we find that
1\
0

|∇u(x, y)| dy ≤ C
n∑

l=0

∑

j

|f ∗ Zl,j,y(x)|.

Recalling Lemmas 3.1 and 3.2, write

Xj = P2j−2 ∗ (e
2πi2j−1x·ωP2j−1).

Then

|f ∗Zl,j,y| = |f ∗Xj ∗Yj ∗Zl,j,y| ≤ |f ∗Xj | ∗ |Yj | ∗ |Zl,j,y| ≤ C|f ∗Xj | ∗P2j−1 .

So we have
1\
0

|∇u(x, y)| dy ≤ C
∑

j

|f ∗Xj | ∗ P2j−1(x).

To prove Theorems A and B we show in the next two sections that these
last expressions on the right are finite on a non-empty closed set. Then we
estimate the dimension of these sets in Section 7.
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5. Proof of Theorem A at a point. As before, let f denote the
boundary values of the bounded harmonic function u in the upper half-space
R
n+1
+ . Let ω denote a fixed unit vector in R

n. By the semigroup property of
the Poisson kernel we can define

fk = f ∗ P2k−2 = f ∗ P2k ∗ P2k ∗ P2k+1 ∗ P2k+1 ∗ . . .

For each x ∈ R
n and for each angle ψ,\

Rn

fk+1(η)P2k(x− η)(1 + cos(2π2
k(x− η) · ω + ψ)) dη

= fk+1 ∗ P2k(x) + Re[e
iψfk+1 ∗ (e

2πi2kω·xP2k)(x)].

So we may choose ψ = ψx such that\
Rn

|fk+1(η)|P2k(x− η)(1 + cos(2π2
k(x− η) · ω + ψx)) dη

≥ |fk+1 ∗ P2k(x)|+ |fk+1 ∗ (e
2πi2kω·xP2k)(x)|.

Now with

L(xk, η) =
\
P2k(x

k − x)P2k(x− η)(1 + cos(2π2
k(x− η) · ω + ψx)) dx

we have

(1)
\
|fk+1(η)|L(x

k, η) dη ≥ |fk(x
k)|+ |fk+1 ∗ (e

2πi2kω·xP2k)| ∗ P2k(x
k).

Suppose we have found points x1, . . . , xk ∈ R
n and constants clj > c > 0

for 0 ≤ j ≤ l and 0 ≤ l ≤ k such that

(2) |fk(x
k)| ≥

k∑

j=0

ckj (|fj ∗ (e
2π2j−1x·ωP2j−1)| ∗ P2j−1)(x

k)− C2−j/2.

Writing

gj = fj ∗ (e
2π2j−1x·ωP2j−1)

and using the properties in Section 1 we have\\
|gj(x)| · |P2j−1(η − x)− P2j−1(x

k − η)|L(xk, η) dx dη

≤ C2−(k−j)/2(|gj| ∗ P2j−1)(x
k),

which implies

(3)
\
(|gj | ∗ P2j−1)(η)L(x

k, η) dη ≤ (1 + C2−(k−j)/2)(|gj| ∗ P2j−1)(x
k).
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Putting together (1), (2) and (3) we get\
|fk+1(η)|L(xk, η) dη ≥

\( k∑

j=0

(1 + C2−(k−j)/2)−1ckj (|gj| ∗ P2j−1)(η)

+
1

C
(|gk+1| ∗ P2k)(η)

)
L(xk, η) dη.

As L is positive and \
|η−xk|>2−k/2

L(xk, η) dη ≤ C2−k/2,

we find a point xk+1 such that |xk − xk+1| < 2−k/2 and satisfying (2) with
k increased to k+1. By induction, there is a constant C > 0 and a bounded
closed interval I centered at x0 such that the decreasing sequence of closed
sets

{
x ∈ R

n :
k∑

j=0

(|gj| ∗ P2j−1)(x) ≤ C
}
∩ I

has non-empty intersection. So there is a point x ∈ R
n such that

∞∑

j=0

(|gj| ∗ P2j−1)(x) ≤ C

and by Section 4 such a point satisfies
1\
0

|∇u(x, y)| dy ≤ C ′ <∞.

6. Proof of Theorem B at a point. The argument from the previ-
ous section only requires a few changes. Recall that any positive harmonic
function u in the upper half-space R

n+1
+ has the form\

Rn

py(x− t) dµ(t) + cy, c ≥ 0,

where µ is a positive Borel measure satisfying\
Rn

dµ

(1 + |t|2)(n+1)/2
.

We may assume that c = 0 and now let

fk = µ ∗ P2k ∗ P2k ∗ P2k+1 ∗ P2k+1 ∗ . . .

Choose ψx so that\
Rn

fk+1(η)P2k(x− η)(1 + cos(2π2
k(x− η) · ω + ψx)) dη

= fk+1 ∗ P2k(x)− |fk+1 ∗ (e
2πi2kω·xP2k)(x)|.
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Forming the kernel L as before and assuming inductively that

(4) fk(x
k) ≤ f0(x

0)−
k∑

j=0

ckj (|fj ∗ (e
2π2j−1x·ωP2j−1)| ∗ P2j−1)(x

k)

for points xk and constants ckj > c > 0, we find in the same way a point

xk+1 and constants ck+1j > c > 0 such that (4) holds with k increased to
k + 1. To get a decreasing sequence of compact sets, replace the kernels L
by Lχ{|x−η|<2−k/2} and change the induction assumption to

fk(x
k) ≤

∏

j≤k

(1− c2−j/2)−1f0(x
0)(5)

−
k∑

j=0

ckj (|fj ∗ (e
2π2j−1x·ωP2j−1)| ∗ P2j−1)(x

k).

We can do this because all the fk are positive.

Now we find a point xk+1 such that |xk − xk+1| < 2−k/2 and such that
(5) holds with k increased to k + 1.

The rest of the proof is finished as before, replacing f with µ and f̂ with
µ̂ in Section 4.

7. Proofs of the lemmas

7.1. Proof of Lemma 3.1. It will be enough to consider

(P̂2j−2(ξ))
−1 = e2π|ξ|2

−(j−2)

.

We will define a multiplier which is equal to this function on a sufficiently
large ball so that the translated multiplier will also have the desired prop-
erties. Then the lemma will follow because the convolution of two functions
satisfying the required pointwise estimate will be the desired function Yj .

Let Ŝ2k−2 be a C
∞ function with derivatives satisfying the pointwise

bound

|Ŝ
(m)

2k−2
| ≤ C2−m|k|

and such that

Ŝ2k−2(ξ) =

{
e2π|ξ|2

−(k−2)

if 0 ≤ |ξ| ≤ 32 · 2
(k+1),

e48πe−2π|ξ|2
−(k−2)

if |ξ| ≥ 74 · 2
(k+1).

Let

T̂2k−2 = e
48πe−2π|ξ|2

−(k−2)

− Ŝ2k−2 .

Then

T̂2k−2 = 2e
24π sinh(24π − 2π|ξ|2−(k−2))
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on the set
{
|ξ| ≤ 32 · 2

k+1
}
vanishes to infinite order at |ξ| = 74 · 2

k+1 and
has

|T̂
(m)

2k−2
| ≤ C2−m|k|

pointwise for each m. Since T̂ differs from Ŝ by a Poisson multiplier, it is
enough to estimate T2k−2 .

Noting that the function T̂2k−2 is radial and abusing notation we have

T1(x) =
\

Rn

T̂1(ξ)e
−2πix·ξ dξ = 2π|x|−(n−2)/2

∞\
0

T̂1(r)J(n−2)/2(2π|x|r) r
n/2 dr

where Jν denotes the Bessel function of order ν (see for example [8], p. 155).
By the result of Wong in [9], [10], this equals

(6)
C

|x|n+1
+O

(
1

|x|n+2

)
for |x| > M0

and some M0 > 0. Now by the properties of Fourier transforms when com-
posed with dilations

T2k−2(x) =
C2−(k−2)

|x|n+1
+ . . . , 2k−2|x| > M0.

Since each of the T2j is bounded by C2
nj , the required pointwise estimate

follows.

For the reader’s convenience we briefly explain Wong’s proof of (6).

For x > 0, η ∈ R and Re(µ+ α) > 0,

∞\
0

e−η
2t2Jα(xt)t

µ−1 dt

=
xαΓ (µ/2 + α/2)e−x

2/(4η2)

2α+1ηα+µΓ (α+ 1)
1F1

(
α

2
−
µ

2
+ 1;α+ 1;

x2

4η2

)

where 1F1 denotes Kummer’s hypergeometric function. (See [4], p. 50 or
compute the integral on Mathematica.)

Kummer’s function satisfies

1F1(0; c; z) ≡ 1, z > 0,

and

1F1(a; c; z) ∼
Γ (c)

Γ (a)
ezza−c, z →∞.

So if α/2− µ/2 + 1 = 0 then

lim
η→0

∞\
0

e−η
2t2Jα(xt)t

µ−1 dt = 0
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and otherwise the limit equals

Γ (µ/2 + α/2)2µ−1

Γ (α/2− µ/2 + 1)xµ
.

If we write

T̂1(r) = c0 + c1r + c2r
2 + ε(r)

where ε(r) = O(r3) as r → 0+, it follows that

T1(x) =
C

|x|n+1
+

C ′

|x|n+2
+ δ(|x|)

where

(7) δ(|x|) = 2π|x|−(n−2)/2 lim
η→0

∞\
0

e−η
2r2J(n−2)/2(xr)ε(r)r

n/2 dr.

We require the following well known properties of Bessel functions:

1. (d/dt)[tν+1Jν+1(t)] = t
ν+1Jν(t).

2. Jα(t) ∼ t
α/(2αΓ (α+ 1)), t→ 0.

3. Jα(t) =
√
2/(πt) cos(t− (απ)/2− π/4) +O(t−3/2), t→∞.

Define inductively

ε0(r) = ε(r)r
n/2, εj+1 = ε

′
j(r)−

(
n− 2

2
+ j + 1

)
εj(r)

1

r
.

Using the properties 1–3 and integrating the integral in (7) repeatedly
by parts gives

|x|(n−2)/2δ(|x|) =
2π

|x|m
lim
η→0

∞\
0

eη
2r2εm(r)J(n/2+m−1)(2π|x|r) dr

where m is an integer such that (n+ 5)/2 < m < (n+ 8)/2. Using 1–3 again
and the definition of T shows that

δ(|x|) = o(1/|x|n+2)

and completes the proof of (6).

7.2. Proof of Lemma 3.2. A change of variables shows that

Z0,j,y(x) = 2
njZ0,1,2jy(2

jx).

So it is enough to prove that

|Z0,1,y | ≤ C/|x|
n+1

for a constant C which is independent of y.

But this follows by integrating by parts m = [n/2 + 2] times using the
above property 1 of Bessel functions, the definition of σ and the fact that
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yme−2πrye2πy/10 is bounded independently of y when r ∈ [1/8, 3/4]. For
k > 0, notice that

2jZk,j,y(x) =
∂

∂xk

\
Rn

e−2π|s|ye2π(2
j/10)yσj(s)e

−2πis·x ds.

The pointwise estimate follows again from repeated integration by parts.

8. Dimension estimates. A real non-negative even function φ(t) on R

with φ(0) = 1 and which is convex on (0,∞) will be said to satisfy Pólya’s
criterion. Such a function can be represented as

φ(t) =

∞\
0

(
1−
|t|

|s|

)+
ν(ds)

where ν is a probability measure on (0,∞]. Since (1 − |t|)+ is the Fourier
transform of a positive function, so is any φ satisfying Pólya’s criterion. See
for example [3], p. 87.
Let φ be a function satisfying Pólya’s criterion which is C∞ in (0,∞),

supported in [−1, 1], vanishes to all orders at 1 and is greater than 1/10 on
(1/8, 3/4). We may require further that

φ = 1− ct, t ∈ (0, 1/16),

for some c > 1.
Let Φ̂ denote the radial Fourier multiplier in R

n such that Φ̂(ξ) =

Φ̂(|ξ|) = φ(|ξ|) and let ΦN (t) denote the function whose Fourier transform

is Φ̂(ξ/N).
By Pólya’s criterion and Wong’s technique from the proof of Lemma 3.1,

ΦN is a positive function satisfying the pointwise bound

ΦN (t) ≤
C

N(N−2 + |t|2)(n+1)/2
.

Now defineKN = PN ∗ΦN . ThenKN has the properties 1–5 of Section 2 and
has its Fourier transform supported in the ball of radius N . Since φ is linear
in (0, 1/16), there is a constant c′ > 0 such that the Fourier transform of

K2k ∗K2k ∗K2k+1 ∗K2k+1 . . .

is bounded below by c′ on
{
ξ ∈
[
1
4 · 2

k−1, 32 · 2
k−1
]}
.

All the previous arguments can now be made with K replacing P . In
particular, Lemma 3.1 is proved in a similar way.
Following Bourgain, we note that in each of the inductive arguments for

Theorems A and B, the average of
∑

j≤k

|fj ∗ (e
2πi2j−1x·ωK2j−1)| ∗K2j−1
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with respect to the probability density Ωk defined by

Ωk(η) =
\
L1(x1, x2)L2(x2, x3) . . . Lk−1(xk−1, η) dx1 dx2 . . . dxk−1,

with

Lk(x, y) =
\
K2k(x− η)K2k(η − y)(1 + cos(2π2

k(η − y) + ψη)) dη,

is uniformly bounded in k.
Given ε > 0 we alter the construction as follows: Replace Lk with

Lk(x, y) =
\
K2k(x−η)K2k(η−y)(1+ε cos(2π(2

k+[2k/10])(η−y)+ψη)) dη

and replace Ωk with the densities obtained from the new L.
Replace the Littlewood–Paley expressions which control the vertical vari-

ation with
∑

j≤k

|fj ∗ (e
2πi(2j−1+[2j−1/10])x·ωK2j−1)| ∗K2j−1 .

Neither of these changes affects the argument but now, because of the shift
by [2j−1/10] the densities Ωk have a weak-∗ limit which is a probability
measure µ on R

n. This can be seen by integration of the Ωk against a fixed
function with compactly supported Fourier transform.
The integral of

∞∑

j=0

|fj ∗ (e
2πi(2j−1+[2j−1/10])x·ωK2j−1)| ∗K2j−1

with respect to µ is finite, and if γ is a function with γ̂ supported in
[−2k/20, 2k/20]n then

∣∣∣
\
γ dµ
∣∣∣ ≤ C

\
Ωk(η)[|γ| ∗ (K2k ∗K2k ∗K2k+1 ∗K2k+1 ∗ . . .)](η) dη

≤ C(1 + ε)k‖γ‖L1 .

Approximating the characteristic function of a cube Q with sidelength
|Q| in L1 norm by functions with compactly supported Fourier transform
now shows that

µ(Q) ≤ |Q|n−log(1+ε)/log 2,

which easily implies that the Hausdorff dimension of the support of µ is
greater than n− log(1 + ε)/log 2. By Section 5, this shows that Theorems A
and B hold on a set with Hausdorff dimension n.
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