
COLLOQU IUM MATHEMAT ICUM
VOL. 87 2001 NO. 1

TWO EXAMPLES OF SUBSPACES IN L2l

SPANNED BY CHARACTERS OF FINITE ORDER

BY

MATS ERIK ANDERSSON (Stockholm)

Abstract. By a Fourier multiplier technique on Cantor-like Abelian groups with
characters of finite order, the norms from L2 into L2l of certain embeddings of character
sums are computed. It turns out that the orders of the characters are immaterial as soon
as they are at least four.

Introduction. For a long time Khinchin’s inequality has proven its
value in analysis. There is a proof for one of its parts that can be performed
with the aid of thin sets from commutative harmonic analysis. It has the
benefit of providing a more general statement of how ±1-valued characters
can be used to embed L2 into Lp for p > 2. This method served as the
motivation for the present work. The result alluded to is as follows:

Let {rj}∞j=1 be a realization of the Rademacher functions. Consider the
family Ck consisting of all σ =

∏k
n=1 rjn , where 1 ≤ j1 < . . . < jk. Then

for all exponents p ≥ 2 and coefficient functions a : Ck → C,
∥∥∥
∑

σ∈Ck

a(σ)σ
∥∥∥
p
≤ (p− 1)k/2

∥∥∥
∑

σ∈Ck

a(σ)σ
∥∥∥
2
.

In fact , the base (p− 1)1/2 is optimal in the sense that no exponential func-
tion ̺k with ̺ <

√
p− 1 can replace the numerical factor in the displayed

inequality without invalidating the conclusion for some k and suitable a.

A proof can be found in Bonami [B]. Instead of independent characters
on a binary Cantor group, that is, the Rademacher functions, one could
imagine other systems of characters. When the compact Abelian group Z∞2
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is replaced by the infinite torsion group T∞, the characters exp(ixj) will sub-
stitute the functions rj . (On the product group we number the independent
variables as x1, x2, and so on.) This program has been initiated in Bonami
[B] and continued in Hare [H]. We arrive at a setting where conjugation
produces new characters, so two results are the proper generalization of the
previous proposition. Consider therefore two classes of characters Ak and
Bk. A character σ =

∏∞
j=1 exp(injxj) belongs to Bk when all nj ∈ {0,±1}

and
∑ |nj | = k, whereas membership in Ak means nj ∈ {0, 1} with the

same sum.
To wit, the outcome in this setting is:

For the respective coefficient functions and all p ≥ 2, two embeddings of
L2 into Lp hold :∥∥∥

∑

σ∈Ak

a(σ)σ
∥∥∥
p
≤ (p/2)k/2

∥∥∥
∑

σ∈Ak

a(σ)σ
∥∥∥
2
,

∥∥∥
∑

σ∈Bk

a(σ)σ
∥∥∥
p
≤ (p− 1)k/2

∥∥∥
∑

σ∈Bk

a(σ)σ
∥∥∥
2
.

Each numerical factor displays the optimal exponential rate of growth.

An alternative proof of this result of Bonami for the case of even integers
p = 2l will be an easy consequence of the method of the present paper.
Our aim now is to understand what happens if the characters used are

of arbitrary finite order; in this note we specialize to the case p = 2l at all
times. It turns out that for general order, of at least four, the outcome is
formally identical with the last stated result. It is obvious from the sample
results above that order two behaves differently, and the reason why order
three is exceptional will also become apparent in due time. The first part
of this paper contains the translation of the program into the language of
Λ(p)-sets. The final section, the bulk of the paper, establishes the exact
multiplier inequalities which yield the norm bounds of the two embeddings.

1. Embeddings generated by Λ(p)-sets. We fix once and for all a
sequence n = {nj}∞j=1 ⊆ {n ∈ N : n ≥ 4} ∪ {∞}. Our main object is the
compact Abelian group Gn with the product topology, described by

Gn =
∞∏

j=1

Cnj , where Cnj ≃
{

T if nj =∞,
Znj if nj <∞.

In each of the factors Cnj we also fix one character χj with maximal order,
that is, χj has order nj . We extend each χj to Gn by setting χj(θ) = χj(θj),
where θ = (θj)

∞
j=1 ∈ Gn. No notational change is upheld. This means that

{χj}∞j=1 is a sequence of independent characters on Gn with prescribed
orders nj ≥ 4.
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For the embedding of character sums we need the following result on
multipliers. In the proof we make a reference to the last section of this
paper, which is acceptable since those later considerations are independent
of the arguments in this section.

Theorem 1.1. The generalized Riesz product mr =
∏∞
j=1(1+rχj+rχj)

is a multiplier from L2(Gn) to L
2l(Gn) exactly when r ∈ C satisfies |r| ≤

1/
√
2l − 1. The one-sided product φr =

∏∞
j=1(1+ rχj) is a multiplier in the

same sense precisely when |r| ≤ 1/
√
l. In both cases, the multiplier norm is

1 whenever the stated condition on r holds.

Proof. The necessity of |r| ≤ 1/
√
2l − 1 and |r| ≤ 1/

√
l, respectively,

for boundedness is a consequence of Hare [H], Proposition 1.4. Here it is
decisive that the same number r appears in each factor. According to our
Corollary 2.9 each factor 1+rχj+rχj has (L

2, L2l)-multiplier norm 1 when

|r| ≤ 1/
√
2l − 1, and likewise for 1 + rχj when |r| ≤ 1/

√
l. By Bonami–

Segal’s lemma [B], Chapitre III, Lemme 1, it follows that mr and φr have
norm 1 for their indicated parameter sets.

Recall now the two classes of characters that interest us at present:

Ak =
{
χ ∈ Ĝn : χ =

∏
χ
εj
j , εj ∈ {0, 1},

∑
|εj | = k

}
,

Bk =
{
χ ∈ Ĝn : χ =

∏
χ
εj
j , εj ∈ {0,±1},

∑
|εj | = k

}
.

The properties of synthesis for these two classes are relevant at the moment.

In classical theory, a subset E ⊂ Ĝ, where G is a compact Abelian group,
is said to be a Λ(p)-set for p > 2 if there exists a constant C such that for
every E-polynomial f we have ‖f‖p ≤ C‖f‖2. The least possible value of C
is denoted by Λ(p,E). Here “E-polynomial” simply means that supp f̂ ⊆ E
is finite.

Theorem 1.2. For all positive integers k and l the sets Ak and Bk are
Λ(2l)-sets with respect to the group Gn. More precisely ,

Λ(2l,Ak) ≤ lk/2 and Λ(2l,Bk) ≤ (2l − 1)k/2.
In addition,

lim
k→∞
Λ(2l,Ak)1/k =

√
l and lim

k→∞
Λ(2l,Bk)1/k =

√
2l − 1.

Proof. We will use the multipliers mr and φr from the last theorem.
Fix an integer k and take any Bk-polynomial f . It is plain that real r give
mr ∗ f = rkf . It follows that for all 0 ≤ r ≤ 1/

√
2l − 1,

‖f‖2l = r−k‖mr ∗ f‖2l ≤ r−k‖f‖2.
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Since f does not depend on r we have Λ(2l,Bk) ≤ (2l − 1)k/2. A similar
argument with φr provides Λ(2l,Ak) ≤ lk/2.
This first step also tells us that the upper limits in the statement of the

theorem do not exceed
√
l and

√
2l − 1, respectively. We need to prove the

reverse inequalities.

Take any ̺ > 0 such that

lim
k→∞
Λ(2l,Bk)1/k < 1/̺.

It follows that
∞∑

k=0

̺kΛ(2l,Bk) = C <∞.

We claim that m̺ must be an (L
2, L2l)-multiplier of norm 1. Consider any

polynomial g ∈ L2(Gn). We may decompose g =
∑
gk, where the sum is

finite and each gk is a Bk-polynomial. Obviously, ‖gk‖2 ≤ ‖g‖2 andm̺∗gk =
̺kgk, whence

‖m̺ ∗ g‖2l ≤
∑
‖m̺ ∗ gk‖2l =

∑
̺k‖gk‖2l

≤
∑
̺kΛ(2l,Bk)‖gk‖2 ≤ C‖g‖2.

Consequently, m̺ is a bounded multiplier from L
2 to L2l. By Theorem 1.1

the multiplier norm must even be 1. The choice of ̺ thus allows the conclu-
sion that

0 ≤ ̺ < [ limΛ(2l,Bk)1/k]−1 implies ‖m̺‖L2→L2l = 1.

On the other hand Theorem 1.1 states the exact condition on ̺ that
allows the norm 1 on the right-hand side. In consequence,

limΛ(2l,Bk)1/k ≥
√
2l − 1.

An analogous line of argument with Ak and φr determines the upper limit
for Ak.

For clarity let us now duplicate the preceding result so as to exhibit the
embedding properties of character sums.

Proposition 1.3. Let {χj}∞j=1 be independent characters of finite or-
ders nj ≥ 4 or of infinite order on a compact Abelian group. Take Ak to
consist of all products of at most k different χj (no duplication) and take the
elements in Bk to be products of at most k factors in {χj}∪{χj}, still with-
out duplication. For any coefficient functions a : Ak → C and a : Bk → C
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and any integer l ≥ 1 we have
∥∥∥
∑

σ∈Ak

a(σ)σ
∥∥∥
2l
≤ lk/2

∥∥∥
∑

σ∈Ak

a(σ)σ
∥∥∥
2
,

∥∥∥
∑

σ∈Bk

a(σ)σ
∥∥∥
2l
≤ (2l − 1)k/2

∥∥∥
∑

σ∈Bk

a(σ)σ
∥∥∥
2
.

Each numerical factor displays the optimal exponential rate of growth.

The statement is intentionally made for “at most k factors”, which may
be founded on the inequality

∥∥∥
∑

σ∈Ak

a(σ)σ
∥∥∥
2l
≤
∥∥∥
∑

σ∈Ak

l|σ|/2a(σ)σ
∥∥∥
2
≤ lk/2

∥∥∥
∑

σ∈Ak

a(σ)σ
∥∥∥
2

and similarly for Bk. Here the length |σ| is the number of different χj and χj
appearing in σ.
The generalization to other p > 2 replacing 2l requires other methods

and will have to await future developments. Instead, we continue to describe
the precise multiplier actions alluded to in the proof of Theorem 1.1.

2. The multiplier inequalities. Consider a compact Abelian group G
and its dual Ĝ. Normalized Haar measure on G will henceforth be denoted
by µ. We will deal with a general torsion character χ ∈ Ĝ, χ 6≡ 1, of order
n, that is, n is the least positive integer such that χn ≡ 1. In consequence,T
χk dµ = 0 or 1 according as n ∤ k or n | k.
In the technical calculations below we need a quantity qn(k). Let An(k)

denote the set {j ∈ [0, k] : j ∈ N, k − 2j ≡ 0 (modn)}. We define

qn(k) =
k∑

j=0

(
k

j

)\
χk−2j dµ =

∑{(k
j

)
: j ∈ An(k)

}
.

Observe next that qn can be reinterpreted as\
G

(χ+ χ)k dµ =
k∑

j=0

(
k

j

) \
G

χk−2j dµ = qn(k)

and it is via this integral that qn enters the proof. An elementary but im-
portant lemma captures two useful properties.

Lemma 2.1. For all n ≥ 3 and k ≥ 1 we have
(1) 0 ≤ qn(k) ≤ 2k−1, and
(2) qn+2(k) ≤ qn(k).
Proof. SinceAn(k) contains at most every second integer, the elementary

fact that the sum of all odd (or even) numbered binomial coefficients equals
2k−1 leads to (1).
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Membership in An+2(k), on the other hand, hinges on k − 2j ≡ 0
modn+ 2, which may be separated into two cases:

(A1) j = k/2 ∈ An+2(k) gives j + r ∈ An(k) with r = 0.
(A2) j 6= k/2, j ∈ An+2(k) give j = 12 [k + r(n+ 2)] for an integer r 6= 0.

Then j − r = 12 [k + rn] ∈ An(k).
Clearly the map j 7→ r is an injection from An+2(k) into the integer set
{m ∈ Z : |m| ≤ k/(2n + 4)}. The two cases thus produce an injection
An+2(k) → An(k) via j 7→ j − r, with the additional property

(
k
j

)
≤
(
k
j−r

)

since j ≤ j − r ≤ k/2 for 0 ≤ j ≤ k/2, and for the remaining case one has
j > j − r > k/2. From this, claim (2) follows.
For any complex number b the expression 1+bχ+bχ is real on G, whence

‖1 + bχ+ bχ‖2l2l =
2l∑

k=0

(
2l

k

) \
G

(bχ+ bχ )k dµ

=

2l∑

k=0

(
2l

k

) k∑

j=0

(
k

j

)
bk−j b

j
\
χk−2j dµ

≤
2l∑

k=0

(
2l

k

)
|b|k

k∑

j=0

(
k

j

)\
χk−2j dµ =

2l∑

k=0

(
2l

k

)
|b|kqn(k).

The inequality holds since the integrals are either 0 or 1. Observe also that
the Hilbert norm ‖1 + bχ+ bχ‖2 is independent of the order n.

Lemma 2.2. Denote by S
(n)
2l (x) the polynomial

∑2l
k=0

(
2l
k

)
qn(k)x

k. When

b ∈ C, l ≥ 1, and n ≥ 3, we have ‖1 + bχ + bχ‖2l2l ≤ S
(n)
2l (|b|). In addition,

S
(n+2)
2l (x) ≤ S(n)2l (x) for all x ≥ 0.

Proof. The domination by S
(n)
2l (|b|) has already been established. Next,

Lemma 2.1 proves that the coefficients could only increase when n + 2 is
changed to n. Thus both claims hold true.

The idea of the ensuing computations is the following. Suppose we could

guarantee S
(n)
2l (x/

√
2l − 1)≤(1+2x2)l for x≥0. Repeated use of Lemma 2.2

would then give the same inequality for n + 2, n + 4, and so forth. As a
consequence we would be able to derive

∥∥∥∥1 +
bχ+ bχ√
2l − 1

∥∥∥∥
2l

≤ ‖1 + bχ+ bχ‖2

for all orders n, n+ 2, n+ 4, and so on.
A similar program, but more laborious, also works for the one-sided case,

at the cost of a coefficient alteration:
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‖1 + bχ‖2l2l =
\
[1 + |b|2 + bχ+ bχ ]l dµ

=
l∑

k=0

(
l

k

)
(1 + |b|2)l−k

\
(bχ+ bχ )k dµ

≤
l∑

k=0

(
l

k

)
qn(k)

l−k∑

m=0

(
l − k
m

)
|b|k+2m

=

l∑

p=0

|b|2p
p∑

k=0

(
l

2k

)(
l − 2k
p− k

)
qn(2k)

+

l∑

p=2

|b|2p−1
p∑

k=2

(
l

2k − 1

)(
l − 2k + 1
p− k

)
qn(2k − 1).

Here qn(1) = 0 is responsible for the lower limit “p = 2” in the odd part.
Two elementary identities are useful (the second one is used for k ≥ 1 only):

(
l

2k

)(
l − 2k
p− k

)
=

(
l

p

)(
l − p
k

)(
p

k

)(
2k

k

)−1
,

(
l

2k − 1

)(
l − 2k + 1
p− k

)
=

(
l

p

)(
l − p
k − 1

)(
p

k

)(
2k − 1
k

)−1
.

Motivated by the above calculation we introduce the polynomials

U
(n)
2l (x) =

l∑

p=0

(
l

p

)
x2p

p∑

k=0

(
l − p
k

)(
p

k

)(
2k

k

)−1
qn(2k),

V
(n)
2l (x) =

l∑

p=2

(
l

p

)
x2p−1

p∑

k=2

(
l − p
k − 1

)(
p

k

)(
2k − 1
k

)−1
qn(2k − 1).

Lemma 2.3. Any character χ of order n ≥ 2 and integer l ≥ 1 provide
‖1 + bχ‖2l2l ≤ U

(n)
2l (|b|) + V

(n)
2l (|b|).

For even orders n this is the same as ‖1 + bχ‖2l2l ≤ U
(n)
2l (|b|). Also, for all

x ≥ 0,
U
(n+2)
2l (x) ≤ U (n)2l (x) and V

(n+2)
2l (x) ≤ V (n)2l (x).

Proof. The first claim is contained in the motivating calculation above.

For even n we have qn(2k − 1) = 0 and hence V (n)2l ≡ 0. Since generally
qn+2(k) ≤ qn(k), the last claims also follow.
Remarks 2.4. (i) The program sketched above is easy for even order.

As an alternative, the first part of the following lemma could have been
derived as a corollary of a construction in [BJJ]. The present calculation
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is, however, a good illustration of the technique chosen here, without the
further difficulties arising when odd orders are treated.
(ii) The above line of reasoning is a kind of transference from small cyclic

groups to larger ones. It is useful to notice for all k and n the inequality
0 ≤

T
(eiθ+ e−iθ)k dθ/(2π) = εk

(
k
k/2

)
≤ qn(k). Here εk = 0 or 1 according as

k is odd or even. A result for any of the finite cyclic groups thus produces
the same norm inequality for T as those for finite groups, to be derived later
in this section.

Lemma 2.5. S
(4)
2l (x/

√
2l − 1) ≤ (1 + 2x2)l and U (4)2l (x/

√
l) ≤ (1 + x2)l.

Proof. We have q4(k) =
∑{(k

j

)
: k−2j ≡ 0 (mod 4)

}
, whence q4(0) = 1

and q4(2k − 1) = 0, q4(2k) = 22k−1 for all k ≥ 1. It is plain that

S
(4)
2l (x) = 1 +

l∑

k=1

(
2l

2k

)
22k−1x2k

≤ 1 +
l∑

k=1

(
l

k

)
(2x2)k(2l − 1)k 2

2k−1k!

(2k)!

≤
l∑

k=0

(
l

k

)
(2[2l − 1]x2)k = (1 + 2(2l − 1)x2)l,

since 22k−1k!/(2k)! ≤ 1 when k ≥ 1. This proves the first claim.
For U

(4)
2l the calculation is similar:

U
(4)
2l (x) = 1 +

l∑

p=1

(
l

p

)
x2p
{
1 +

p∑

k=1

(
l − p
k

)(
p

k

)(
2k

k

)
22k−1

}

≤ 1 +
l∑

p=1

(
l

p

)
x2p
{
1 +

p∑

k=1

(
p

k

)
(l − p)k 2

2k−1k!

(2k)!

}

≤ 1 +
l∑

p=1

(
l

p

)
x2p
{
1 +

p∑

k=1

(
p

k

)
(l − p)k

}

= 1 +
l∑

p=1

(
l

p

)
x2p(l − p+ 1)p ≤ (1 + lx2)l.

Observe that this establishes Theorem 2.7 below for even orders n. The
treatment of order five demands a method of transforming the odd powers

in V
(5)
2l into even powers and this efficiently enough not to disturb U

(5)
2l .

Lemma 2.6. For all x ≥ 0 the inequalities S(5)2l (x/
√
2l − 1 ) ≤ (1+2x2)l

and U
(5)
2l (x/

√
l ) + V

(5)
2l (x/

√
l ) ≤ (1 + x2)l hold true.
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Proof. Consider the decomposition

S
(5)
2l (x) =

l∑

k=0

(
2l

2k

)
q5(2k)x

2k +
l−1∑

k=2

(
2l

2k + 1

)
q5(2k + 1)x

2k+1.

We need two elementary inequalities for l ≥ k ≥ 1, easily obtained by
expanding into factors and applying q5(j) ≤ 2j−1. For even orders we use

(
2l

2k

)
q5(2k) ≤ 2k

(
l

k

)
(2l − 1)k 2k−1

(2k − 1)!! .

The corresponding result for odd orders is
(
2l

2k + 1

)
q5(2k + 1) ≤ 2k

(
l

k

)
(2l − 1)k+1 2k

(2k + 1)!!
.

In case 0 ≤ x
√
2l − 1 ≤ 1 this yields

S
(5)
2l

(
x√
2l − 1

)
≤ 1 +

l∑

k=1

2k
(
l

k

)
x2k

2k−1

(2k − 1)!!

+
l−1∑

k=2

2k
(
l

k

)√
2l − 1x2k+1 2k

(2k + 1)!!

≤ 1 + 2lx2 +
l−1∑

k=2

2k
(
l

k

)
x2k
{
2k−1

(2k − 1)!! +
2k

(2k + 1)!!

}

+ 2lx2l
2l−1

(2l − 1)!!

≤ 1 + 2lx2 +
l−1∑

k=2

(
l

k

)
2kx2k · 14

15
+ 2lx2l ≤ (1 + 2x2)l.

For the remaining case we first observe that k ≥ 1 provides
(
2l

2k − 1

)
≤
(
l

k

)
2k(2l − 1)k−1
(2k − 1)!! ,

and hence (
2l

2k − 1

)
q5(2k − 1) ≤ 2k

(
l

k

)
(2l − 1)k−1 2

k−1k

(2k − 1)!! .

Applying this to the decomposition above we find

S
(5)
2l (x) ≤ 1 +

l∑

k=1

(
l

k

)
2k(2l − 1)kx2k 2k−1

(2k − 1)!!

+

l∑

k=3

(
l

k

)
2k(2l − 1)k−1x2k−1 2

k−1k

(2k − 1)!! ,
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and hence the inequality 1 ≤ x
√
2l − 1 produces

S
(5)
2l

(
x√
2l − 1

)
≤ 1 +

l∑

k=1

(
l

k

)
2kx2k

2k−1

(2k − 1)!!

+
l∑

k=3

(
l

k

)
2kx2k

1

x
√
2l − 1

2k−1k

(2k − 1)!!

≤ 1 + 2lx2 +
(
l

2

)
4x4 · 2

3

+
l∑

k=3

(
l

k

)
2kx2k

2k−1(k + 1)

(2k − 1)!! .

Except for the k = 3 term every member is at most the desired
(
l
k

)
2kx2k.

Consequently,

S
(5)
2l

(
x√
2l − 1

)
≤ 1 + 2lx2 + 4

(
l

2

)
x4 +

(
2l

5

)
q5(5)

x5

(2l − 1)5/2

+

(
2l

6

)
q5(6)

x6

(2l − 1)3 +
l∑

k=4

(
l

k

)
2kx2k.

By using 1 ≤ x
√
2l − 1 it is straightforward to verify that the exact values

q5(5) = 2 and q5(6) = 6 combine to make the sum of the fifth and sixth
degree terms at most

(
l
3

)
8x6, as desired. Hence we have proven for all x ≥ 0

that

S
(5)
2l

(
x√
2l − 1

)
≤

l∑

k=0

(
l

k

)
2kx2k ≤ (1 + 2x2)l.

In the single-sided case, matters become more laborious. We must con-

sider the two polynomials U
(5)
2l and V

(5)
2l . The inner sum in their definition

is related to the quantity
p∑

k=0

(
l − p
k

)(
p

k

)
=

p∑

k=0

(
l − p
k

)(
p

p− k

)
=

(
l

p

)
.

The additional factor can be controlled by using

(
2k

k

)−1
q5(2k)






= 1, 0 ≤ k ≤ 4,

≤ 2k−1k!

(2k − 1)!! <
1

2
k, k ≥ 5.

For 0 ≤ p ≤ 4 we get the obvious estimate
p∑

k=0

(
l − p
k

)(
p

k

)(
2k

k

)−1
q5(2k) =

(
l

p

)
≤ l
p

p!
,
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while for p ≥ 5 the simple estimate
(
2k
k

)−1
q5(2k) < p/2, for all 0 ≤ k ≤ p,

leads to
p∑

k=0

(
l − p
k

)(
p

k

)(
2k

k

)−1
q5(2k) ≤

p

2

(
l

p

)
≤ lp

2(p− 1)! .

Our basic estimate for the even part is thus

U
(5)
2l (x) ≤

l∑

p=0

(
l

p

)
lpx2pγp, where γp =

{
p!−1, 0 ≤ p ≤ 4,
1
2 (p− 1)!−1, p ≥ 5.

When 3 ≤ k ≤ 7 one finds

q5(2k − 1) = 2
(
2k − 1
k − 3

)
, so

(
2k − 1
k

)−1
q5(2k − 1) < 1.

For k ≥ 8 one observes on the other hand that
(
2k − 1
k

)−1
q5(2k − 1) ≤

22k−2k!(k − 1)!
(2k − 1)! <

k

2
.

In consequence, p ≥ 8 yields
p∑

k=3

(
l − p
k − 1

)(
p

k

)(
2k − 1
k

)−1
q5(2k − 1) <

p

2

p∑

k=1

(
l − p
k − 1

)(
p

k

)

=
p

2

(
l

p− 1

)
<
p lp−1

2(p− 1)! .

For 3 ≤ p ≤ 7 the factor p/2 may be removed from the right-hand side.
We have thus established for x ≥ 0 the estimate

V
(5)
2l (x) ≤

l∑

p=1

(
l

p

)
x2p−1lp−1βp, where

βp =






0, p ≤ 2,
(p− 1)!−1, 3 ≤ p ≤ 7,
1
2p(p− 1)!−1, p ≥ 8.

Consider next the two possibilities (i) lx ≥ 1, and (ii) 0 ≤ lx ≤ 1. In the
first case

V
(5)
2l (x) ≤

l∑

p=0

(
l

p

)
lpx2pβp,

whence

U
(5)
2l (x) + V

(5)
2l (x) ≤

l∑

p=0

(
l

p

)
lpx2p(γp + βp).
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For the second possibility we observe

V
(5)
2l (x) ≤

l∑

p=3

(
l

p

)
x2p−1lp−1βp ≤

l∑

p=3

(
l

p− 1

)
lp−1x2p−2p−1βp lx

≤
l−1∑

p=2

(
l

p

)
lpx2p

βp+1
p+ 1

.

This implies that in the case 0 ≤ lx ≤ 1,

U
(5)
2l (x) + V

(5)
2l (x) ≤

l∑

p=0

(
l

p

)
lpx2p
(
γp +

βp+1
p+ 1

)
.

Since neither γp+βp nor γp+βp+1(p+1)
−1 exceeds 1, we have established,

for all x ≥ 0,

U
(5)
2l (x) + V

(5)
2l (x) ≤

l∑

p=0

(
l

p

)
lpx2p = (1 + lx2)l.

Combination of the four lemmata now demonstrates the central result.

Theorem 2.7. Let a character χ ∈ Ĝ have order n ≥ 4. For all b ∈ C
and integers l ≥ 1 the following two norm inequalities hold :

‖1 + bχ/
√
l ‖2l ≤ ‖1 + bχ‖2,

‖1 + (bχ+ bχ)/
√
2l − 1 ‖2l ≤ ‖1 + bχ+ bχ‖2.

Inspection of the calculations above shows that equality holds only for
the choice b = 0 or the trivial l = 1.

Remark. Consider the exceptional order n = 3. The quantity q3(3) = 2
is decisive for the norm inequalities. For small real b and p > 2 it is not
difficult to establish ‖1+(bχ+bχ)/√p− 1 ‖pp = 1+pb2+p(p−2)b3/3+O(b4),
which can be made to exceed ‖1+bχ+bχ ‖p2 = 1+pb2+O(b4) by choosing b
suitably. Hence the second part of Theorem 2.7 fails for n = 3. It is difficult to
calculate the correct number to replace (2l− 1)−1/2. With some elementary
considerations l = 2 can be shown to demand exactly (1 + 3/

√
2 )−1/2. For

l ≥ 3 the exact value is not known.
Concerning the one-sided case with n = 3, a combinatorial argument

establishes the particular case ‖1+bχ/
√
2 ‖4 ≤ ‖1+bχ‖2. However, for n = 3

this is the only inequality of a kind similar to the result established for higher
orders. This singularity follows from the expressions ‖1 + bχ/

√
p/2 ‖pp =

1+ pb2/2+ p(p− 2)(p− 4)b3/24+O(b4) and ‖1+ bχ‖p2 = 1+ pb2/2+O(b4),
valid for small real b.

We need a slightly more general statement than the second part of the
preceding theorem.
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Theorem 2.8. If the order of χ is at least 4, then for all a, b ∈ C and
l ∈ Z+,

‖1 + (aχ+ bχ)/
√
2l − 1 ‖2l ≤ ‖1 + aχ+ bχ‖2.

Proof. The function kl = 1+(χ+χ)/
√
2l − 1 is positive when l ≥ 3 and

of L1-norm 1. Consequently, ‖kl ∗ f‖p ≤ ‖kl ∗ |f | ‖p ≤ ‖ |f | ‖p for all p ≥ 1.
Consider f = 1 + aχ + bχ, not constant. Then |f | is positive, whence

for suitable c ∈ C and t > 0 we find kl ∗ |f | = t
[
1 + (cχ + cχ)/

√
2l − 1

]
.

Theorem 2.7 now justifies the calculation
∥∥∥∥1 +

aχ+ bχ√
2l − 1

∥∥∥∥
2l

≤ ‖kl ∗ |f | ‖2l ≤ t ‖1 + cχ+ cχ ‖2 = ‖kl ∗ |f | ‖2

≤ ‖ |f | ‖2 = ‖f‖2 = ‖1 + aχ+ bχ ‖2.
The case l = 2 does not involve positivity and a calculation is necessary.

We use at one instance below the trivial inequality |a+ b|2 ≤ 2|a|2 + 2|b|2.
The case of order n ≥ 5 is dealt with in the following manner:

‖1 + (aχ+ bχ)/
√
3 ‖44 =

(
1 + 13 |a|

2 + 13 |b|
2
)2
+ 23 |a+ b|

2 + 29 |a|
2|b|2

≤ 1 + 2|a|2 + 2|b|2 + 49 |a|
2|b|2 + 19 |a|

4 + 19 |b|
4

≤ (1 + |a|2 + |b|2)2 = ‖1 + aχ+ bχ ‖42.

With order n = 4 we observe χ2 = χ2 and therefore

‖1 + (aχ+ bχ)/
√
3 ‖44 =

(
1 + 13 |a|

2 + 13 |b|
2
)2
+ 23 |a+ b|

2 + 19 (ab+ ab)
2

≤ 1 + 2|a|2 + 2|b|2 + 23 |a|
2|b|2 + 19 |a|

4 + 19 |b|
4

≤ ‖1 + aχ+ bχ ‖42.

Corollary 2.9. (1) ‖1 + rbχ‖2l ≤ ‖1 + bχ‖2 for any r ∈ C with |r| ≤
1/
√
l.

(2) ‖1 + saχ+ tbχ‖2l ≤ ‖1 + aχ+ bχ‖2 when |s|, |t| ≤ 1/
√
2l − 1.

Proof. By Theorem 2.7 the first condition on r yields

‖1 + rbχ‖2l ≤ ‖1 + bχr
√
l ‖2 ≤ ‖1 + bχ‖2.

The second condition, when applied after Theorem 2.8, secures

‖1 + saχ+ tbχ ‖2l ≤ ‖1 + (saχ+ tbχ)
√
2l − 1 ‖2 ≤ ‖1 + aχ+ bχ ‖2.

As a concluding remark it should be noted that some of the results
remain true for general p > 2 replacing 2l. However, technical obstructions
arise, which will be dealt with elsewhere.

Acknowledgments. I owe gratitude to the anonymous referee for
pointing out an originally fallacious phrasing in the proof of Lemma 2.1.
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