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REMARKS ON NORMAL BASES

BY

MARCIN MAZUR (Urbana, IL)

Abstract. We prove that any Galois extension of a commutative ring with a normal
basis and abelian Galois group of odd order has a self-dual normal basis. We apply this
result to get a very simple proof of nonexistence of normal bases for certain extensions
which are of interest in number theory.

1. Introduction. Let R ⊂ S be an extension of commutative rings.
Suppose that G is a finite group of automorphisms of S and R = SG (fixed
points of G). The investigation of S as an RG-module is a classical problem
with applications to (and motivations from) number theory, algebra and
topology. In this note we present a very simple approach to this problem
in some special cases of interest in number theory. First, we need to recall
several basic notions and facts.

By S(G) we denote the ring Map(G,S) of all functions from G to S. The
group G acts on S(G) by fg(h) = f(gh) and S (= constant functions) is the
ring of invariants. There is an obvious ring homomorphism φ : S⊗RS → S(G)

given by φ(s1 ⊗ s2)(g) = s1s
g
2. This map is G-equivariant, where G acts on

S ⊗R S via the second component.

Recall that S is called Galois over R if φ is surjective (and then φ is
in fact an isomorphism). Clearly S(G)/S is Galois. If R, S are Dedekind
domains then the extension S/R is Galois iff the corresponding extension of
fields of fractions is Galois with group G, SG = R and S/R is unramified
(see [4] for more about Galois extensions of rings).

It is well known that if S/R is Galois then S is a projective, faithfully
flat R-module of constant rank |G|. Moreover, the trace map tr : S → R,
tr(s) =

∑

sg, coincides with the module-theoretic trace and is surjective
(for a proof base change to S where the situation is clear and then use f.f.
descent).

A first step toward a description of the structure of S as an RG-module
is the following well known lemma:
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Lemma 1. Let S/R be an extension of commutative rings such that R =
SG, S is R-projective and the trace map is surjective. Then S is a projective
RG-module.

Proof. There exists an RG-modules epimorphism p : F → S with F a
free RG-module. Since S is R-projective there exists an R-module splitting
f of p. Let c ∈ S be such that tr(c) = 1. Define a new map h : S → F by
h(s) =

∑

g−1f(sgc). Clearly h is an RG-module map and

ph(s) =
∑

g−1(sgc) = s tr(c) = s.

A natural question to ask is under what circumstances S is a free RG-
module. For rings of integers in finite extensions of the rationals (we call
such rings number rings) this is an old and still unsolved problem.
If S is a free RG-module then there is an element s ∈ S such that the

orbit of s under G is an R-basis of S. We call any such basis a normal basis
of S. If, moreover, this basis is self-dual with respect to the trace form then
we call it a self-dual normal basis. For example, the extension S(G)/S always
has a self-dual normal basis generated by δ1

−
where

δ1
−
(g) = δ1g =

{

1 if g = 1,
0 if g 6= 1.

In the present note we discuss some basic properties of self-dual normal
bases and use them to give very simple proofs of the following theorems:

Theorem 1. Let R be the ring of integers in a totally real number field.
If S/R is a non-trivial Galois extension of number rings with Galois group
G of odd order then it does not have a normal basis.

Theorem 2. Let R = Z[ξpk + ξ
−1
pk
], where p is an odd prime and ξn is

a primitive nth root of 1. Let S be the ring of integers in a cyclic extension
L of K = Q(ξpk + ξ

−1
pk
) of degree pn. If S[1/p]/R[1/p] is Galois and has a

normal basis then it coincides with the cyclotomic pn-extension of R[1/p]
(i.e. L is the unique extension of K of degree pn contained in Q(ξpt) for
some t).

These results are not new. Theorem 1 and some generalizations have
been obtained before by a slightly different method by J. Brinkhuis [3]. We
do not know of any explicit reference for Theorem 2, but it can be derived
from a much more general result of Cornelius Greither [4] (see Theorem
III.3.6 there). Nevertheless, the simplicity of our approach is appealing and
we think that it is of some interest.

2. Self-dual normal bases. The following observation describes a very
useful relation between Galois extensions of rings and some units of the
group ring of the Galois group:
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Proposition 1. Let S be a commutative ring , G a finite group of au-
tomorphisms of S and R = SG. For u ∈ S the following are equivalent :

(1)
∑

ugg−1 is a unit in SG;
(2) S/R is Galois with normal basis generated by u.

Proof. Let (
∑

ugg−1)(
∑

wgg) = 1. In other words, for any h ∈ G we

have
∑

ugwgh = δ1h, i.e.
∑

ugh
−1

wg = δ1h, so also
∑

ugwhg = δ1h. Since

φ(
∑

ug ⊗ wg)(h) =
∑

ugwhg = δ1h, the natural map φ : S ⊗R S → S(G)

is surjective and S/R is Galois. In particular, φ is an isomorphism of SG-
modules. Now φ(1⊗u) = (

∑

ugg−1)δ1
−
is a free generator of the SG-module

S(G), so 1⊗u is a free generator of S⊗RS. SinceRGu ⊆ S and after tensoring
with S we get equality, u is a free generator of S (note that S/R is faithfully
flat). This shows that (1) implies (2).
For the converse observe that the SG-module isomorphism φ maps the

element 1⊗ u to a free generator f : g 7→ ug. But δ1
−
is also a free generator

and (
∑

ugg−1)δ1
−
= f so

∑

ugg−1 is a unit.

Corollary 1. If S/R is a Galois extension of commutative rings with
group G having a normal basis, then for any normal subgroup H of G the
extension SH/R is Galois and has a normal basis.

Proof. If
∑

ugg−1 is a unit of SG then under the natural surjection
SG → SG/H it maps to a unit

∑

vhh−1 of SG/H, where v = trS/SH u.

But this is a unit in SHG/H so the result follows by Proposition 1.

Now we can prove the following very useful proposition, which is the
heart of our approach:

Proposition 2. If S/R is a Galois extension of commutative rings with
abelian Galois group of odd order and if it has a normal basis then it has a

self-dual normal basis.

For cyclic groups of odd order this result has been obtained by Kersten
and Michaliček [5]. We were informed that some form of Proposition 2 was
pointed out to L. McCulloh by Miyamoto many years ago, but we do not
know of any written reference. Note also that Bayer and Lenstra ([2], [1])
proved that for odd degree Galois extensions of fields a self-dual normal
basis always exists.

Question. Does Proposition 2 remain true without the assumption that
the Galois group is abelian?

Proof of Proposition 2. Suppose that u generates a normal basis of S.
By Proposition 1, U =

∑

ugg−1 is a unit in SG. Note that G acts on SG via
its action on S (i.e. (

∑

agg)
h =
∑

ahgg). Observe that U
h = hU for every

h ∈ G.
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Recall that in the group ring SG we have an S-involution ∗ which acts
on G as an inverse (i.e. (

∑

agg)
∗ =
∑

agg
−1). Clearly, ∗ commutes with

the G-action. Since G is abelian of odd order, it has an automorphism ψ
which maps g2 to g for all g ∈ G. The automorphism ψ extends to a ring
automorphism of SG which we also denote by ψ. Note that ψ commutes
with ∗ and with the G-action.
Consider the unit W = ψ(U(U−1)∗). Easy calculations show that WW ∗

= 1 and that Wh = hW for all h ∈ G. Equivalently, W =
∑

wgg−1 for
some w ∈ S. In particular, w generates a normal basis of S and the equality
WW ∗ = 1 means exactly that this basis is self-dual.

3. Number rings. Now we are in a position to prove Theorems 1 and 2.
Recall that by a number ring we mean the ring of integers in a finite exten-
sion of the rationals.

Proof of Theorem 1. Suppose that S/R is a Galois extension of number
rings with an abelian Galois group G of odd order and having a normal
basis. By Proposition 2, S has a self-dual normal basis generated by a ∈ S.
Thus X =

∑

agg−1 is a unit in SG andXX∗ = 1. In particular, trS/R(a
2) =

∑

ag · ag = 1, so trS/Z(a
2) = [R : Z].

Suppose now that R is totally real (and so is S). Then all the conju-
gates of a2 are positive real numbers, so by the arithmetic-geometric mean
inequality we get trS/Z(a

2) ≥ n n

√

NS/Z(a2), where n = [S : Z]. Since a
2 is

an algebraic integer, its norm is at least 1. Consequently, [R : Z] ≥ [S : Z],
which is possible only if R = S (alternatively, one could note that all con-
jugates of a2 have absolute value at most 1, so a2 is a root of unity in S,
hence 1, by a well known theorem of Kronecker). This proves Theorem 1
for abelian extensions. The general case follows by Corollary 1 and the fact
that groups of odd order are solvable.

Remark. Before asking whether S is a freeRG-module one should check
if S is a free R-module. In the situation of Theorem 1 this is indeed true.
In fact, S is an unramified extension of R. The class of S in the class group
of R is called the Steinitz class of S. An excellent description of Steinitz
classes is given in Narkiewicz’s book [7]. From the method of computing the
Steinitz class described there one can relatively easily deduce that if L/K is
an odd degree, unramified Galois extension of number fields then the ring
of integers of L is a free module over the integers on K.

A more conceptual argument goes as follows. First recall that the square
of the Steinitz class coincides with the class of the discriminant ideal. In
particular, for unramified extensions the square of the Steinitz class is trivial.
On the other hand, the definition of the Galois extensions of rings given in
the introduction implies that S ⊗R S is a free S-module (it is even free over
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SG). In other words, the Steinitz class is in the kernel of the base-change
map from the class group of R to the class group of S. But the composition
of base change and the norm induces multiplication by [L : K] on the class
group of R. Consequently, the Steinitz class has order dividing both 2 and
[L,K]. Since [L : K] is odd, the Steinitz class vanishes.
Note that Taylor [8] proved that in the situation of the above theorem

S is always a free ZG-module.

Proof of Theorem 2. Recall that R = Z[ξpk + ξ
−1
pk
] and S is the ring of

integers in a cyclic extension L of K = Q(ξpk + ξ
−1
pk
) of degree pn such that

S[1/p]/R[1/p] is Galois and has a normal basis, where p is an odd prime.
By Proposition 2, S[1/p]/R[1/p] has a self-dual normal basis generated by
some a ∈ S[1/p]. In other words, X =

∑

agg−1 is a unit in S[1/p]G and
XX∗ = 1.
Consider any ring homomorphism ψ : LG → C. Clearly ψ(R) = R (we

consider K as a subfield of C), ψ(SG) ⊆ ψ(S)[ξpn ] and ψ(S) is the ring of
integers in a cyclic extension ψ(L) of K of degree pn. Since L is totally real,
we have ψ(u∗) = ψ(u) for any u ∈ LG. In particular, ψ(X2) = ψ(X/X∗) =
ψ(X)/ψ(X) has absolute value 1. If σ is any embedding of ψ(L)(ξpn) into C,
then σψ is another homomorhism of LG into C. It follows that all conjugates
of ψ(X2) have absolute value 1.
We show now that ψ(X2) is an algebraic integer. Note that all primes

of ψ(L)(ξpn) over p are stable under complex conjugation. To show this let
m = max{n, k}. There is only one prime π over p in Q(ξpm + ξ

−1
pm) and it

ramifies in Q(ξpm). Thus the ramification index of any prime β of ψ(L)(ξpm)
over π is even. On the other hand, ψ(L)(ξpm + ξ

−1
pm)/Q(ξpm + ξ

−1
pm) is Galois

of odd degree, so the ramification index of β is even iff β ramifies in the
quadratic extension L(ξpm)/L(ξpm + ξ

−1
pm). In particular, β is stable under

complex conjugation. Consequently, the p-parts of ψ(X) and ψ(X) are the
same. Thus ψ(X)/ψ(X) = ψ(X2) is a p-unit of ψ(L)(ξpm). Observe that
ψ(X) is a q-unit for every prime q 6= p, since X is a unit of S[1/p]G. Thus
ψ(X2) is a q-unit for every prime q. In particular, it is an algebraic integer.
We proved so far that ψ(X2) is an algebraic integer all of whose con-

jugates have absolute value 1. Thus ψ(X2) is a root of 1 by a theorem of
Kronecker. Consequently, ψ(X) is a root of 1 in ψ(L)(ξpn). Since p is the only
prime ramified in ψ(L)(ξpn), we conclude that the group of roots of unity
in this field has order 2ps for some m ≤ s. Consequently, ψ(X)2p

s

= 1 for
all ring homomorphisms ψ, and therefore X2p

s

= 1 (recall that the common
kernel of all the homomorphisms of LG into C is trivial).
Now note that the trace of a regular representation of LG is given by

T (
∑

ugg) = |G|u1. But the trace of an element of finite order dividing 2p
s

is a sum of 2psth roots of 1, so in particular |G|a = T (X) ∈ Q(ξps). Thus
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we showed that L = K(a) ⊆ K(ξps) = Q(ξps). This finishes the proof of
Theorem 2.

Remark. The cyclotomic pn-extension of R[1/p] has a normal basis, as
shown in [4].

As a direct consequence we get the following result of Kersten and
Michaliček [6]:

Corollary 2. If k = n = 1 and S/R is Galois then S[1/p]/R[1/p]
does not have a normal basis.

Remark. Corollary 2 suggests the following attack on Vandiver’s Con-
jecture: show that any extension as above has to have a normal basis and
conclude that there is no such extension. Of course, at present nobody knows
how to do that.
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[8] M. J. Taylor, On Fröhlich conjecture for rings of integers of tame extensions, Invent.

Math. 63 (1981), 41–79.

Department of Mathematics
University of Illinois at Urbana-Champaign
1409 W. Green Street
Urbana, IL 61801, U.S.A.
E-mail: mazur1@math.uiuc.edu

Received 20 January 2000 (3871)


