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BY
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Abstract. Let A be a Noetherian ring, let M be a finitely generated A-module and
let Φ be a system of ideals of A. We prove that, for any ideal a in Φ, if, for every prime
ideal p of A, there exists an integer k(p), depending on p, such that ak(p) kills the general

local cohomology module HjΦp
(Mp) for every integer j less than a fixed integer n, where

Φp := {ap : a ∈ Φ}, then there exists an integer k such that akH
j
Φ(M) = 0 for every

j < n.

Introduction. Throughout this paper A denotes a commutative Noe-
therian ring (with non-zero identity), M a finitely generated A-module and
a, b ideals of A. The ith local cohomology module of M with respect to a

is defined by

Hia(M) = lim−→n
ExtiA(A/a

n,M).

One of the basic problems concerning local cohomology theory is the
following question, which will be referred to as the local-global principle
for annihilation of local cohomology [15]: if, for every prime ideal p of A,
there exists an integer k(p), depending on p, such that bk(p) kills the local
cohomology module Hjap

(Mp) for every integer j less than a fixed integer n,

then does there exist an integer k such that bkHja(M) = 0 for every j < n?
This problem has been investigated by Faltings [6, 7], Brodmann [5] and
Raghavan [14, 15].

One of the interesting results in this connection is Faltings’ Lemma [6,
Lemma 3] which reads as follows: For an ideal a of a Noetherian ring A,
a finitely generated A-module M , and a positive integer n, the following
conditions are equivalent:

(1) Hja(M) is finitely generated for all j < n;

(2) Hjap
(Mp) is finitely generated for j < n and all prime ideals p of A;

(3) there exists an integer k such that akHja(M) = 0 for all j < n.
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There are some generalizations of local cohomology theory. The following
one is given in [2]. A system of ideals of A is a non-empty set Φ of ideals
(of A) such that, whenever x, y ∈ Φ, there exists z ∈ Φ with z ⊆ xy. Such a
system Φ determines the Φ-torsion functor ΓΦ : C(A) → C(A) (where C(A)
denotes the category of all A-modules and A-homomorphisms). This is the
subfunctor of the identity functor on C(A) for which

ΓΦ(G) = {g ∈ G : ag = 0 for some a ∈ Φ}

for each A-module G. Note that in [2], ΓΦ is denoted by LΦ and called the
“general local cohomology functor with respect to Φ”. For each i ≥ 0, the
ith right derived functor of ΓΦ is denoted by H

i
Φ. It is shown in [2] that the

study of torsion theories over A is equivalent to studying this general local
cohomology theory.
Our main theme in this paper is to prove the following theorem, which

gives a generalization of Faltings’ Lemma in the context of general local
cohomology modules.

Theorem. Let Φ be a system of ideals of A. For an ideal a ∈ Φ and a
positive integer n, the following conditions are equivalent :

(1) there exists an integer k such that akHjΦ(M) = 0 for all j < n;
(2) for every prime ideal p of A, there exists an integer k(p), depending

on p, such that ak(p)HjΦp
(Mp) = 0 for all j < n, where Φp := {ap : a ∈ Φ}.

The proof begins with a description of the finiteness dimension fΦ(M)
of M relative to Φ, in terms of sequence conditions. Next, we will show that

the set AssA(H
fΦ(M)
Φ (M)) ∩ V (a) is finite, which provides a powerful tool

for proving the main theorem. Finally, we will show that in many cases the

set AssA(H
fΦ(M)
Φ (M)) is not finite (see Example 7).

The results. Throughout, Φ will denote a system of ideals of A.
A sequence x1, . . . , xn of elements of a is said to be an a-filter regular
M -sequence if

Supp

(

(x1, . . . , xi−1)M :M xi
(x1, . . . , xi−1)M

)

⊆ V (a)

for all i = 1, . . . , n, where V (a) denotes the set of prime ideals of A contain-
ing a. In the particular case when A is local, this notion has been studied in
[16], [19], [20] and has led to some interesting results. It is easy to see that
the analogue of [19, Appendix, 2(ii)] holds true whenever A is Noetherian,
M is finitely generated and m is replaced by a; so, if x1, . . . , xn is an a-filter
regular M -sequence, then there is an element y ∈ a such that x1, . . . , xn, y
is an a-filter regular M -sequence. Thus, for a positive integer n, there exists
an a-filter regular M -sequence of length n.
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Our first two results will provide motivation for the formal introduction
of the concept of finiteness dimension in its general sense. In fact, they
suggest a probably close connection between finiteness dimension of general
local cohomology and filter regular sequences.

Lemma 1. Let n be a positive integer and let a be an ideal in Φ such
that aHjΦ(M) = 0 for all j < n. Then, for each i with 0 ≤ i < n, we have

aαiHjΦ

(

M

(x1, . . . , xi)M

)

= 0

for all j = 0, 1, . . . , n− i− 1, all b ∈ Φ and all b-filter regular M -sequences
x1, . . . , xn where αi = 3

i.

Proof. This can be obtained by a slight modification of the proof of
Lemma 2.1 in [11].

Definition 2. A sequence x1, . . . , xn of elements of A is said to be an
a-weak M -sequence if (x1, . . . , xi−1)M :M xi ⊆ (x1, . . . , xi−1)M :M a for all
i = 1, . . . , n. Clearly, every a-weak M -sequence in a is an a-filter regular
M -sequence.

Theorem 3. For a system of ideals Φ of a Noetherian ring A, a finitely
generated A-module M , and a positive integer n, the following conditions
are equivalent :

(1) HjΦ(M) is finitely generated for all j < n;

(2) there exists an ideal a in Φ such that aHjΦ(M) = 0 for all j < n;
(3) there exists an ideal c in Φ such that , for all b ∈ Φ, every b-filter

regular M -sequence of length n is a c-weak M -sequence.

Proof. The equivalence (1)⇔(2) can be easily obtained by extending
the proof of Faltings’ Lemma (see [6, Lemma 3]) mutatis mutandis to this
general case.
(2)⇒(3). We use induction on n. When n = 1, let x be a b-filter regular

M -sequence, for some b ∈ Φ. Since, by [11, 1.2], H0b(M)
∼= H0(x)(M) and

H0b(M) ⊆ H
0
Φ(M), it follows from the assumption that aH0(x)(M) = 0.

Therefore x is an a-weak M -sequence. Hence, in this case, it suffices to put
c = a. Now suppose, inductively, that n > 1 and the result has been proved
for positive integers smaller than n. So there exists an ideal d in Φ such that,
for all b ∈ Φ, every b-filter regular M -sequence of length n − 1 is a d-weak
M -sequence. Since Φ is a system of ideals of A, there exists c ∈ Φ such that
c ⊆ a3

n−1

d. Let b ∈ Φ and let x1, . . . , xn be a b-filter regular M -sequence.
Our inductive hypothesis ensures that x1, . . . , xn−1 is a c-weakM -sequence.
Set

Mn−1 :=
M

(x1, . . . , xn−1)M
.
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Since xn is a c-filter regular Mn−1-sequence, it follows from [11, 1.2] that

H0c (Mn−1)
∼= H0(xn)(Mn−1). Hence, in view of Lemma 1, xn is an a3

n−1

-weak
Mn−1-sequence and so a c-weak Mn−1-sequence. Therefore x1, . . . , xn is a
c-weak M -sequence. This completes the inductive step.

In order to prove the implication (3)⇒(2), by [4, 2.1], it suffices to show
that for all b ∈ Φ, cHjb(M) = 0 for all j < n. This immediately follows from
the following lemma.

Lemma 4. Let b, c be ideals of A such that every b-filter regular M -
sequence of length n is a c-weak M -sequence. Then cHjb(M) = 0 for all
j < n.

Proof. We prove this by induction on n. To begin, note that the case
n = 1 is clear. Now suppose, inductively, that n > 1 and the result has
been proved for positive integers smaller than n. To complete the inductive
step, it is enough to show that cHn−1b (M) = 0. Set M :=M/H0b(M). Since
Hn−1b (M) ∼= Hn−1b (M), and every b-filter regularM -sequence of length n is
a c-weak M -sequence, we may assume that M is a b-torsion-free A-module.
So we can deduce that b contains an element r which is a non-zero divisor on
M . Let m ∈ Hn−1b (M). Since Hn−1b (M) is a b-torsion module, there exists
a positive integer t such that rtm = 0. Now from the exact sequence

0→M
rt

→M →
M

rtM
→ 0

we obtain the induced exact sequence

Hn−2b

(

M

rtM

)

→ Hn−1b (M)
rt

→Hn−1b (M),

which in turn, by applying the inductive hypothesis to the module M/rtM ,
yields cm = 0. Now, it follows that cHn−1b (M) = 0. The inductive step is
therefore complete.

The previous theorem provides some motivation for the following defi-
nition. Here, we adopt the convention that the infimum of the empty set of
integers is ∞.

Definition 5. Let M be a finitely generated A-module. In the light of
Theorem 3, we define the finiteness dimension fΦ(M) of M relative to Φ by

fΦ(M) = inf{i ∈ N : HiΦ(M) is not finitely generated}

= inf{i ∈ N : aHiΦ(M) 6= 0 for all a ∈ Φ}.

Proposition 6. Let n be a positive integer such that HjΦ(M) is finitely
generated for all j < n. Then, for all a ∈ Φ, the set AssA(H

n
Φ(M)) ∩ V (a)

is finite.
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Proof. It follows from Theorem 3 that there exists an ideal c in Φ such
that every b-filter regular M -sequence of length n is a c-weak M -sequence
for all b ∈ Φ. Let a ∈ Φ. Since Φ is a system of ideals of A, we obtain an
ideal c′ ∈ Φ such that c′ ⊆ ac. Hence

AssA(H
n
Φ(M)) ∩ V (a) ⊆ AssA(H

n
Φ(M)) ∩ V (c

′)

and every b-filter regular M -sequence of length n is a c′-weak M -sequence
for all b ∈ Φ. So we may assume without loss of generality that, for all
b ∈ Φ, every b-filter regular M -sequence is an a-weak M -sequence. Now,
let p ∈ AssA(H

n
Φ(M)) ∩ V (a). Then, in view of [3, 2.1], there exists b′ ∈ Φ

such that p ∈ AssA(H
n
d (M)) for all ideals d ∈ Φ with d ⊆ b′. Assume that

d′ is an ideal in Φ such that d′ ⊆ b′a. Hence p ∈ AssA(H
n
d′(M)). Now,

let x1, . . . , xn be a d′-filter regular M -sequence. (Note that the existence
of such sequences is explained at the beginning of this section.) By [11,
1.2], Hnd′(M)

∼= H0d′(H
n
(x1,...,xn)

(M)) and so p ∈ AssA(H
n
(x1,...,xn)

(M)). Since
the sequence x1, . . . , xn is an a-weak M -sequence, it becomes an a-filter
regular M -sequence and hence, by [11, 1.2] again, we obtain Hna (M)

∼=
H0a(H

n
(x1,...,xn)

(M)). On the other hand, p ∈ V (a). Hence, by [1, p. 138], p ∈

AssA(H
n
a (M)). So the required assertion follows from [12, Theorem B(β)].

It is an open problem, in local cohomology theory, whether every local
cohomology module has finitely many associated primes (see [9]). Huneke
and Sharp [10] have shown that, for each j ∈ N, the set AssA(H

j
a(A)) is

finite if A is regular local ring of positive characteristic. Also, in [12, Theo-
rem B(β)], it is shown that the set AssA(H

n
a (M)) is finite whenever H

j
a(M)

is finitely generated for all j < n. Now we propose an example to show that,
for positive integers n, the set of associated primes of HnΦ(A) is not finite in
many cases. This example is based on the theory of modules of generalized
fractions which was introduced in [17]. The reader is referred to [17, 18] for
details of the following brief résumé of this theory.
Let k be a positive integer. We denote by Dk(A) the set of all k×k lower

triangular matrices with entries in A; for H ∈ Dk(A), the determinant of H
is denoted by |H|; and we use T to denote matrix transpose.
A triangular subset of Ak is a non-empty subset U of Ak such that

(i) whenever (u1, . . . , uk) ∈ U , then (u
n1
1 , . . . , u

nk
k ) ∈ U for all choices of

positive integers n1, . . . , nk, and
(ii) whenever (u1, . . . , uk) and (v1, . . . , vk) are in U , then there exist

(w1, . . . , wk) ∈ U and H,K ∈ Dk(A) such that

H[u1, . . . , uk]
T = [w1, . . . , wk]

T = K[v1, . . . , vk]
T.

Given such a U and an A-module M , R. Y. Sharp and H. Zakeri have
constructed the module of generalized fractions U−kM of M with respect
to U as follows.
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Let α = ((u1, . . . , uk), x), β = ((v1, . . . , vk), y) ∈ U ×M . Then we write
α ∼ β when there exist (w1, . . . , wk) ∈ U and H,K ∈ Dk(A) such that

H[u1, . . . , uk]
T = [w1, . . . , wk]

T = K[v1, . . . , vk]
T

and

|H|x− |K|y ∈
(

k−1
∑

i=1

Awi

)

M.

This is an equivalence relation on the set U×M . For x ∈M and (u1, . . . , uk)
∈ U , we define the formal symbol x/(u1, . . . , uk) to be the equivalence class
of ((u1, . . . , uk), x) and let U

−kM denote the set of all these equivalence
classes. Then U−kM has an A-module structure described as follows. If
x, y ∈M and (u1, . . . , uk), (v1, . . . , vk) ∈ U , then

x/(u1, . . . , uk) + y/(v1, . . . vk) = (|H|+ |K|)/(w1, . . . , wk)

for any choice of (w1, . . . , wk) ∈ U and H,K ∈ Dk(A) such that

H[u1, . . . , uk]
T = [w1, . . . , wk]

T = K[v1, . . . , vk]
T.

Also, with the above notation, and for a ∈ A,

a(x/(u1, . . . , uk)) = ax/(u1, . . . , uk).

Example 7. Let A be a Gorenstein ring of dimension at least 3. For
i = 1, 2, set

Ui := {(x1, . . . , xi) : x1, . . . , xi is an A-weak A-sequence}.

It is easy to see that Ui is a triangular subset of A; and so one can construct
the module of generalized fractions U−ii A of A with respect to Ui. By [18,
5.8] and [13, 18.8], U−22 A

∼=
⊕

ht p=1E(A/p). Therefore the set AssA(U
−2
2 A)

is not finite. Now, for i = 1, 2, set Φi := {x1A+. . .+xiA : (x1, . . . , xi) ∈ Ui}.
It is routine to check that Φi is a system of ideals of A, that H

0
Φ1
(A) = 0

and that H0Φ2(A) = H
1
Φ2
(A) = 0. Moreover, by using the exactness theorem

in [18, 3.3], the complex

0→ A→ U−11 A→ U
−2
2 A

is exact. Hence, by [8, 3.3], we have the exact sequence

0→ U1[1]
−2A→ U−22 A→ U2[1]

−3A→ 0

where the triangular set Ui[1] is as follows:

Ui[1] = {(x1, . . . , xi, 1) ∈ A
i+1 : (x1, . . . , xi) ∈ Ui}

for i = 1, 2. Hence either the set AssA(U1[1]
−2A) or the set AssA(U2[1]

−3A)
is not finite. Therefore, by [4, Theorem], either the set AssA(H

1
Φ1
(A)) or the

set AssA(H
2
Φ2
(A)) is not finite, as claimed.
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Definition 8. Let Φ be a system of ideals of A and let a be an ideal of
A. We define the a-finiteness dimension fa

Φ(M) of M relative to Φ by

fa
Φ(M) = inf{i ∈ N : a 6⊆

√

(0 : HiΦ(M))}.

Note that fa
Φ(M) is either a positive integer or ∞.

We are now in a position to prove the main theorem, mentioned in the
Introduction.

Theorem 9. Let a ∈ Φ and let n ∈ N. Then fa
Φ(M) ≥ n if and only if

f
ap

Φp
(Mp) ≥ n for all prime ideals p of A, where Φp := {ap : a ∈ Φ}.

Proof. Only the “if” part requires proof. We prove it by induction on n.
To begin, let n = 1. Suppose that AssA(H

0
Φ(M)) = {p1, . . . , pt}. Since for

all prime ideals p of A, f
ap

Φp
(Mp) ≥ 1 for each i = 1, . . . , t, there exists ki ∈ N

such that

aki(H0Φ(M))pi = 0.

Let k = max{k1, . . . , kt}. Then

(akH0Φ(M))pi = 0 for all i = 1, . . . , t.

Therefore akH0Φ(M) = 0 since AssA(a
kH0Φ(M)) ⊆ AssA(H

0
Φ(M)). Now sup-

pose, inductively, that n > 1 and the result has been proved for smaller val-
ues of n. It follows from the assumption that for each prime ideal p of A there
exists an integer k(p) such that ak(p)Hn−1Φp

(Mp) = 0. So Supp(H
n−1
Φ (M)) ⊆

V (a). Hence, by the inductive hypothesis in conjunction with Theorem 3
and Proposition 6, AssA(H

n−1
Φ (M)) is finite. We are therefore able to com-

plete the inductive step by applying arguments similar to those used when
n = 1. This completes the proof.
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[6] G. Faltings, Über die Annulatoren lokaler Kohomologiegruppen, Arch. Math.
(Basel) 30 (1978), 473–476.

[7] —, Der Endlichkeitssatz der lokalen Kohomologie, Math. Ann. 255 (1981), 45–56.
[8] G. J. Gibson and L. O’Carroll, Direct limit systems, generalized fractions and com-

plexes of cousin type, J. Pure Appl. Algebra 54 (1998), 249–259.
[9] C. Huneke, Problems on local cohomology, in: Free Resolutions in Commutative

Algebra and Algebraic Geometry, D. Eisenbud and C. Huneke (eds.), Res. Notes
Math. 2, Jones and Bartlett, Boston, 1992, 93–108.

[10] C. Huneke and R. Y. Sharp, Bass numbers of local cohomology modules, Trans.
Amer. Math. Soc. 339 (1993), 765–779.

[11] K. Khashyarmanesh and Sh. Salarian, Filter regular sequences and the finiteness of
local cohomology modules, Comm. Algebra 26 (1998), 2483–2490.

[12] —, —, On the associated primes of local cohomology modules, ibid. 27 (1999), 6191–
6198.

[13] H. Matsumura, Commutative Ring Theory, Cambridge Univ. Press, 1986.
[14] K. Raghavan, Uniform annihilation of local cohomology and of Koszul homology,

Math. Proc. Cambridge Philos. Soc. 112 (1992), 487–494.
[15] —, Local-global principle for annihilation of local cohomology, in: Commutative Al-

gebra: Syzygies, Multiplicities, and Birational Algebra (South Hadley, MA, 1992),
Contemp. Math. 159, Amer. Math. Soc., Providence, RI, 1994, 329–331.

[16] P. Schenzel, N. V. Trung and N. T. Cuong, Verallgemeinerte Cohen–Macaulay–
Moduln, Math. Nachr. 85 (1978), 57–73.

[17] R. Y. Sharp and H. Zakeri,Modules of generalized fractions, Mathematica 29 (1982),
32–41.

[18] —, —, Modules of generalized fractions and balanced big Cohen–Macaulay modules,
in: Commutative Algebra: Durham 1981, R. Y. Sharp (ed.), London Math. Soc.
Lecture Note Ser. 72, Cambridge Univ. Press, Cambridge, 1982, 61–82.

[19] J. Stückrad and W. Vogel, Buchsbaum Rings and Applications, Deutscher Verlag
Wiss., Berlin, 1986.

[20] N. V. Trung, Absolutely superficial sequences, Math. Proc. Cambridge Philos. Soc.
93 (1983), 35–47.

J. Asadollahi
School of Science
Tarbiat Modarres University
P.O. Box 14155-4838
Tehran, Iran

K. Khashyarmanesh and Sh. Salarian
Institute for Studies in

Theoretical Physics and Mathematics
P.O. Box 19395-5746

Tehran, Iran
E-mail: khashyar@rose.ipm.ac.ir

Department of Mathematics
Damghan University
P.O. Box 36715-364
Damghan, Iran

Received 6 September 1999;

revised 21 February 2000 (3831)


