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THE WEAK PHILLIPS PROPERTY

BY

ALI ÜLGER (Istanbul)

Abstract. Let X be a Banach space. If the natural projection p : X∗∗∗ → X∗ is
sequentially weak∗-weak continuous then the space X is said to have the weak Phillips
property. We present several characterizations of the spaces having this property and study
its relationships to other Banach space properties, especially the Grothendieck property.

Introduction. Let X be a Banach space. Corresponding to the decom-
position X∗∗∗ = X∗⊕X⊥, we have a natural projection p : X∗∗∗ → X∗ that
sends each µ ∈ X∗∗∗ to its restriction to X, where X is regarded as a sub-
space of X∗∗. The classical Phillips Lemma [D1, p. 83] says that, for X = c0,
the mapping p is sequentially weak∗-norm continuous. Motivated by this
fact, in [F-Ü], the authors have introduced the so-called Phillips and weak
Phillips properties: A Banach space X is said to have the (weak) Phillips
property if the projection p : X∗∗∗ → X∗ is sequentially weak∗-(weak) norm
continuous.

These two properties and their hereditary versions have been studied,
to a certain extent, in the above mentioned paper. Here we present further
results on weak Phillips property. It turns out that this property is very
closely related to the Grothendieck property (i.e. inX∗ weak∗-null sequences
are weakly null). For instance,X has the weak Phillips property iff, for every
separable Banach space Y and every bounded linear operator T : X∗∗ → Y ,
the restriction T |X : X → Y of T to X is weakly compact. We recall that
X has the Grothendieck property iff every bounded operator from X into
a separable Banach space is weakly compact. Throughout the paper these
kinds of connections will be emphasized.

The class of Banach spaces having the weak Phillips property is much
richer than the class of Banach spaces having the Grothendieck property.
Every C∗-algebra, more generally every Banach space having the property
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(V) of Pełczyński ([Pe] and [Pf]), and hence a good many of the uniform
algebras ([B1], [De] and [S]), have the weak Phillips property. The Banach
spaces X such that X∗∗ has the Grothendieck property, and the Banach
spaces X which are preduals of an L-space also have the weak Phillips
property. In particular, every predual of ℓ1, and more generally, of a von
Neumann algebra, has the weak Phillips property.
Below, X and Y are two Banach spaces, T : X∗∗ → Y a (bounded linear)

operator and T̃ = T |X : X → Y its restriction to X. The main results of
the paper can be summarized as follows:

(a) X has the weak Phillips property iff X∗ is weakly sequentially com-
plete and there exists no operator T : X∗∗ → c0 such that T (X) = c0.
(b) If X has the weak Phillips property and we have an operator T :

X∗∗ → Y such that T (X) = Y then Y has the Grothendieck property. In
particular, X is not complemented in X∗∗, unless it has the Grothendieck
property.
(c) If X has the weak Phillips property, Y is complemented in its second

dual and the space (Y ∗1 , weak
∗) is sequentially compact, then every operator

u : X → Y is weakly compact.
(d) If X has the weak Phillips property and the operator T : X∗∗ → Y

is such that T (X∗∗) = T (X) then either T̃ is weakly compact or it fixes

a copy of ℓ1. Moreover, T̃ is weakly compact iff the space T (X) is weakly
compactly generated. In the case where Y is complemented in its second
dual (this is the case if Y is a dual space, for instance), the same conclusion
remains valid for any operator u : X → Y whose range is dense in Y .
(e) If (i) X has the weak Phillips property and the Dunford–Pettis prop-

erty (DPP for short), and (ii) Y has the Gelfand–Phillips property and is
complemented in its second dual, then every operator u : X → Y is com-
pletely continuous. So, in the case where X also has the reciprocal DPP
(e.g. X = C(K)), u is also weakly compact. This result generalizes a classi-
cal result of Grothendieck stating that a closed subspace of L∞[0, 1] which
is also closed in Lp[0, 1] for some p (1 ≤ p <∞) is finite-dimensional [D-U,
p. 178].
(f) If X has the weak Phillips property and we have an operator T :

X∗∗ → C(K) such that, for each Borel subset B ofK, there exists a bounded
sequence (xn)n∈N inX whose image under T converges pointwise onK to the
characteristic function χB of B, then C(K) has the Grothendieck property.
This result remains valid if we replace C(K) by a Banach space having the
Dieudonné property and χB by Baire-1 functionals.

The paper also contains several corollaries and applications of these re-
sults. The main ingredients of the proofs are the below-mentioned geometric
properties of Banach spaces.



WEAK PHILLIPS PROPERTY 149

1. Notation and preliminaries. Our notation and terminology are
quite standard. In general, X and Y will denote two Banach spaces over the
field of complex numbers. By X∗ we denote the dual space of X, and by X1
its closed unit ball. We identify X with its canonical image in X∗∗. By an
operator we mean a bounded linear operator. For x ∈ X and f ∈ X∗, we
denote by 〈x, f〉, or 〈f, x〉, the evaluation of f on x. The letter p will always
denote the natural projection from X∗∗∗ = X∗ ⊕X⊥ onto X∗.
We now recall the definitions of some of the properties used in the paper.

The reader can find more information about these notions in the indicated
references. We shall give more precise references and information at the
places where these notions are used.

(a) The weak Phillips property. The space X is said to have the weak
Phillips property if the projection p sends weak∗-convergent sequences
in X∗∗∗ to weakly convergent sequences in X∗ [F-Ü].
(b) The Grothendieck property. The space X is said to have the Grothen-

dieck property if in X∗ weak∗-convergent sequences are weakly convergent
[D-U, p. 179].
(c) The Dunford–Pettis property. The Banach space X is said to have

the DPP if every weakly compact operator from X into any other Banach
space is completely continuous, i.e. it sends weakly Cauchy sequences into
norm convergent sequences ([G] and [Di.2]).
(d) The reciprocal Dunford–Pettis property. The Banach space X is said

to have the reciprocal DPP if every completely continuous operator from X
into any other Banach space is weakly compact [G].
(e) The property (V) of Pełczyński. The Banach space X is said to have

the property (V) if every unconditionally converging operator from X into
any other Banach space is weakly compact [Pe].
(f) The Dieudonné property. Let B1(X) be the subspace of X

∗∗ consist-
ing of Baire-1 functionals (i.e. each m ∈ B1(X) is the weak

∗-limit of a se-
quence in X). The Banach space X is said to have the Dieudonné property if
every operator T from X into a Banach space Y such that T ∗∗(B1(X)) ⊆ Y
is weakly compact [G].
(g) The Gelfand–Phillips property. The Banach space X is said to have

the Gelfand–Phillips property if every limited subset of X is relatively com-
pact. We recall that a subset A of X is limited if weak∗-null sequences in
X∗ converge uniformly on A to zero [B-D].

For any undefined notation and terminology, we refer the reader to the
books [L-T, Vols. I and II] or [D1].

2. The weak Phillips property. In this section we present several
characterizations of the weak Phillips property and a number of results
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related to this property. As mentioned in the introduction, this property
is closely related to the Grothendieck property, hence to property (V).
Throughout the paper we shall try to exhibit the connections among these
properties.
Throughout the paper, X and Y will be two general Banach spaces. For

any operator T : X∗∗ → Y , we denote by T̃ the restriction of T to X.
Observe that T̃ ∗ = p ◦ T ∗.
We make repeated use of the following theorem due to Josefson–Nissen-

zweig [D1, p. 219]. The statement we adopt here is taken from [D-S].

Theorem 2.1. Let T : X → Y be an operator such that T ∗ fixes a copy
of ℓ1 and such that whenever , for a sequence (y∗n) in the unit ball of Y

∗, the
sequence (T ∗(y∗n)) is equivalent to the unit basis of ℓ

1, the sequence (T ∗(y∗n))
does not converge weak∗ to zero. Then T fixes a copy of ℓ1.

We shall need the following two lemmas.

Lemma 2.2. Suppose that X∗ is weakly sequentially complete. Then ei-
ther , for every operator T : X∗∗ → c0, T̃ is weakly compact , or there exists
an operator S : X∗∗ → c0 such that S(X

∗∗) = S(X) = c0.

Proof. It is clear that a weakly compact operator from X into c0 cannot
be onto so that the above two cases are exclusive. Suppose T̃ is not weakly
compact. Then, c0 being separable and X

∗ weakly sequentially complete,
there exists a weak∗-null sequence (y∗n) in the unit ball of ℓ

1 = c∗0 such that

the sequence T̃ ∗((y∗n)) has no weakly convergent subsequence. By Rosen-

thal’s ℓ1-theorem, we conclude that T̃ ∗((y∗n)) has a subsequence, denoted

again by T̃ ∗((y∗n)), which is equivalent to the unit vector basis of ℓ
1. From

this we deduce that the sequence (y∗n) is also equivalent to the unit vector

basis of ℓ1 and that T̃ ∗ is an isomorphism from the closed linear span of the
sequence (y∗n) onto that of T̃

∗((y∗n)). So T̃
∗ fixes a copy of ℓ1.

Now, since c0 does not contain a copy of ℓ
1, by the above theorem, there

exists a sequence (zn) in the unit ball of ℓ
1 such that the sequence T̃ ∗((zn))

is equivalent to the unit vector basis of ℓ1 and converges weak∗ to zero.
Passing to a subsequence and translating it, we can assume that zn → 0 in
the weak∗ topology of ℓ1. Then the sequence (T ∗(zn)) converges to zero in
the weak∗ topology of X∗∗∗ and is equivalent to the unit vector basis of ℓ1

since otherwise (T ∗(zn)), and hence T̃
∗((zn)), would have a weakly Cauchy

subsequence. Let µn = T
∗(zn). Then both sequences (µn) and (p(µn)) are

weak∗-null and equivalent to the unit vector basis of ℓ1. Hence the operator
S : X∗∗ → c0 defined by S(m) = (〈µn,m〉) is such that S(X

∗∗) = S(X)
= c0.

Lemma 2.3. Suppose that Y does not contain an isomorphic copy of ℓ∞.
Then any operator u : X∗ → Y is unconditionally converging.



WEAK PHILLIPS PROPERTY 151

Proof. For a contradiction, suppose thatX has a subspaceM isomorphic
to c0 on which u acts as an isomorphism. Let i : M → X

∗ be the natural
injection. Then, since M∗∗ is isomorphic to ℓ∞ and Y does not contain a
copy of ℓ∞, by a result of Rosenthal [R], the operator u ◦ p ◦ i∗∗ : M∗∗ →
X∗∗∗ → X∗ → Y is weakly compact. Hence its restriction to M , which is
just u|M , is also weakly compact, which is not possible since this mapping
is an isomorphism between two copies of c0.

From the paper [F-Ü] we recall the following two results: (a) The space

X has the weak Phillips property iff, for every operator T : X∗∗ → c0, T̃ is
weakly compact. (b) If X has the weak Phillips property then X∗ is weakly
sequentially complete.

We now present several characterizations of the weak Phillips property.

Theorem 2.4. For any Banach space X , the following assertions are
equivalent :

(a) X has the weak Phillips property.

(b) X∗ is weakly sequentially complete and there exists no operator T :
X∗∗ → c0 such that T (X) = c0.

(c) For any nonreflexive Banach space Y not containing a copy of ℓ1

there exists no operator T : X∗∗ → Y such that T (X) = Y .

(d) For any separable Banach space Y and every operator T : X∗∗ → Y ,

T̃ is weakly compact.

(e) For any Banach space Y and every operator T : X∗∗ → Y , T̃ ∗ is
sequentially weak∗-weak continuous.

Proof. By Lemma 2.2 and the characterization of the weak Phillips prop-
erty recalled above, the equivalence (a)⇔(b), as well as the implication
(c)⇒(b), are clear. To prove (b)⇒(c), suppose that (b) holds. Let Y be
a nonreflexive Banach space containing no copy of ℓ1 and T : X∗∗ → Y
be an operator such that T (X) = Y . Then, since Y is nonreflexive and
X∗ is weakly sequentially complete, by Rosenthal’s ℓ1-theorem, there exists
a sequence (y∗n) in Y

∗
1 such that the sequence T̃

∗(y∗n) is equivalent to the
unit vector basis of ℓ1. Then (y∗n) is also equivalent to the unit vector basis

of ℓ1 so that T̃ ∗ fixes a copy of ℓ1. Since Y does not contain a copy of ℓ1,
by Theorem 2.1 above, there exists a sequence (y∗n) in Y

∗
1 such that the

sequence T̃ ∗(y∗n) is weak
∗-null and equivalent to the unit vector basis of ℓ1.

Hence, since T (X) = Y , the sequence (y∗n) is also weak
∗-null and equivalent

to the unit vector basis of ℓ1 so that the operator ϕ : Y → c0, defined by
ϕ(y) = (〈y∗n, y〉), is surjective. Then the operator S = ϕ ◦ T : X

∗∗ → c0
is such that S(X) = c0. As this contradicts (b), we conclude that (b)⇒(c)
holds.
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When Y is separable, the space (Y ∗1 , weak
∗) is sequentially compact, so

the equivalence (a)⇔(d) is clear. To prove that (a)⇒(e), let (y∗n) be a weak
∗

convergent sequence in Y ∗. Then the sequence (T ∗(y∗n)) weak
∗ converges in

X∗∗∗. Hence T̃ ∗(y∗n) = p ◦ T
∗(y∗n) converges weakly in X

∗.. For the reverse
implication it is enough to take Y = c0.

Remarks 2.5. (a) We recall that the Banach space X has the Grothen-
dieck property iff X∗ is weakly sequentially complete and there exists no
onto operator T : X → c0 [Rä, p. 16]. Part (b) of the preceding theorem is
an analog of this characterization of the Grothendieck property. From these
results and Lemma 2.2 it is clear that if X or X∗∗ has the Grothendieck
property then X has the weak Phillips property.

(b) By Lemma 2.3, it is clear that if X or X∗∗ has property (V), or even
the apparently weaker property (V1) (i.e. every unconditionally converging
operator from X into c0 is weakly compact; this notion has been introduced
by Räbiger in his thesis [Rä, p. 18]) then X has the weak Phillips property.
However, the class of Banach spaces having the weak Phillips property and
the class of Banach spaces having property (V1) do not coincide. For in-
stance, the space Y constructed by Bourgain–Delbaen [B-De] has the weak
Phillips property but not property (V1) since it is not reflexive and does not
contain a copy of c0.

(c) If X is complemented in its second dual then X has the weak Phillips
property iff it has property (V1). Indeed, in this case every operator u : X →
c0 extends to X

∗∗, so it is unconditionally converging by Lemma 2.3.

(d) From the preceding theorem it follows that the quotient spaces and
complemented subspaces of a Banach space having the weak Phillips prop-
erty have the weak Phillips property. Actually, a slightly stronger result is
true: IfX has the weak Phillips property and we have an operator u : X → Y
such that u∗∗(X∗∗) = Y ∗∗ then Y also has the weak Phillips property. This
is easy to see.

(e) If X = (
⊕
Xn)0 and each Xn is an M-ideal in its second dual then

X is also an M-ideal in its second dual, so has property (V) [HWW, p. 111],
hence the weak Phillips property. Now let X = (

⊕
ℓ1n)0. Then X has the

weak Phillips property but X∗∗ does not since it contains a complemented
copy of ℓ1 (see e.g. [HWW, p. 163]).

(f) Every predual of an L-space has the weak Phillips property since
its second dual, being an M-space, has property (V). In particular, every
predual of ℓ1 has the weak Phillips property.

(g) In part (c) of the preceding theorem, if instead of assuming that Y
is separable we assume that (Y ∗1 , weak

∗) is sequentially compact then the
conclusion still holds.
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From the preceding remarks the first conclusion to draw is that the
class of Banach spaces having the weak Phillips property is quite large and
rich in content: It contains all the C∗-algebras [Pf]; a good many of the
uniform algebras ([B1] and [S]), in particular the disk algebra A(D) [De]
and the Hardy class H∞(D) [B2]; the spaces which are M-ideals in their
second duals (these spaces have property (V)), and spaces whose duals are
isomorphic to a predual of a von Neumann algebra.
From part (d) of the preceding theorem we deduce the following corollary.

Corollary 2.6. Suppose that

(a) X has the weak Phillips property ,
(b) Y is complemented in its second dual and the space (Y ∗1 , weak

∗) is
sequentially compact.

Then every operator u : X → Y is weakly compact.

Thus, for instance, if X has the weak Phillips property, every operator
from X into the Lebesgue space L1([0, 1]), or into any weakly compactly
generated dual space Y ∗, is weakly compact.
From part (b) of the preceding theorem and part (a) of the above remark,

the next result is immediate as well.

Corollary 2.7. Suppose that we have an operator T : X∗∗ → X such
that T (X) = X. Then X has the weak Phillips property iff it has the
Grothendieck property.

Thus a dual space, and more generally any Banach space which is com-
plemented in its second dual, has the weak Phillips property iff it has the
Grothendieck property. So, a Banach space having property (V) or (V1) is
not complemented in its second dual unless it has the Grothendieck prop-
erty. Next we present a slightly more general result.

Proposition 2.8. Suppose that X has the weak Phillips property and
T : X∗∗ → Y is an operator such that T̃ ∗∗X∗∗ is dense in Y ∗∗ (this is the

case if T̃ is onto). Then Y has the Grothendieck property.

Proof. Let (y∗n) be a weak
∗-null sequence in Y ∗. Then, by part (d) of the

above theorem, the sequence (T̃ (y∗n)) is weakly null. Hence, for m ∈ X
∗∗,

〈T̃ (y∗n),m〉 = 〈y
∗
n, T̃

∗∗(m)〉 → 0. As T̃ ∗∗X∗∗ is dense in Y ∗∗ and the sequence
(y∗n) is bounded, we conclude that y

∗
n → 0 weakly in Y

∗. So Y ∗ has the
Grothendieck property.

It is clear that in this proposition, the hypothesis that T̃ ∗∗X∗∗ = Y ∗∗

cannot be replaced by T̃ (X) = Y . Indeed, the natural injection i : C([0, 1])
→ L1[0, 1] is weakly compact, so i∗∗ maps C([0, 1])∗∗ into L1[0, 1] and i has
dense range but L1[0, 1] does not have the Grothendieck property.
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As is well known, every operator from a space having the Grothendieck
property into any other Banach space is either weakly compact or fixes a
copy of ℓ1 [D-S]. Next we present an analog of this result.

Theorem 2.9. Suppose that X has the weak Phillips property and T :
X∗∗ → Y is an operator such that T (X∗∗) = T (X). Then either T̃ is weakly

compact or it fixes a copy of ℓ1. Moreover , T̃ is weakly compact iff T (X) is
weakly compactly generated.

Proof. Since T (X∗∗) = T (X), if T̃ is weakly compact then T (X) is
weakly compactly generated. Conversely, if Z = T (X) is weakly compactly
generated then (Z∗,weak∗) is sequentially compact [D1, p. 228]. Hence, by

part (d) of Theorem 2.4, T̃ is weakly compact.

Now suppose that T̃ is not weakly compact. Then, taking into account
the fact that X∗ is weakly sequentially complete and using Rosenthal’s ℓ1-
theorem, we find a sequence (y∗n) in the unit ball of Y

∗ such that the sequence

(T̃ ∗(y∗n)) is equivalent to the unit vector basis of ℓ
1. As in the proof of

Lemma 2.2, we conclude that T̃ ∗ fixes a copy of ℓ1. Now let, if there is any,
(y∗n) be a sequence in the unit ball of Y

∗ such that the sequence (T̃ ∗(y∗n))

is equivalent to the unit basis of ℓ1 and T̃ ∗(y∗n) → 0 in (X
∗,weak∗). Since

T (X∗∗) = T (X), T ∗(y∗n)→ 0 in (X
∗∗∗,weak∗). Hence, since X has the weak

Phillips property, T̃ ∗(y∗n)→ 0 weakly in X
∗, which contradicts the fact that

the sequence (T̃ ∗(y∗n)) is equivalent to the unit basis of ℓ
1. From this, by

Theorem 2.1 above, we conclude that T̃ fixes a copy of ℓ1.

As a useful corollary of this theorem we give the next result.

Corollary 2.10. Suppose that X has the weak Phillips property and
that Y is complemented in its second dual. Then every operator u : X → Y
whose range is dense in Y is either weakly compact or fixes a copy of ℓ1.

Proof. Let q : Y ∗∗ → Y be a projection. Then T = q ◦ u∗∗ maps X∗∗

into Y and T̃ = u. So, by the preceding theorem, the conclusion follows.

Since every dual space is complemented in its second dual, from this
corollary it follows, for instance, that every operator from a C∗-algebra into
a dual space with dense range is either weakly compact or fixes a copy of ℓ1.
This also shows that in this corollary it is not possible to drop the condition
that u(X) = Y . Indeed, the identity mapping i : c0 → ℓ

∞ is neither weakly
compact nor fixes a copy of ℓ1.

Let (Ω,Σ, µ) be a finite measure space and M be a closed subspace of
L∞(µ). Let i : L∞(µ) → Lp(µ) (1≤ p < ∞) be the natural injection. A
result due to A. Grothendieck [D-U, p. 178] says that if i(M) is closed in
Lp(µ) then M is finite-dimensional. The space L∞(µ) has the weak Phillips



WEAK PHILLIPS PROPERTY 155

property and the DPP; and the space Lp(µ) has the Gelfand–Phillips prop-
erty and is complemented in its second dual. Moreover, if i(M) is closed
in Lp(µ), the unit ball of M is a weakly precompact subset of L∞(µ) (i.e.
every sequence in M1 has a weakly Cauchy subsequence); see the proof of
[D-U, p. 178, Theorem]. Since, when i(M) is closed in Lp(µ), by the Open
Mapping Theorem, i(M1) contains a multiple of the unit ball of i(M), the
next theorem is a generalization of this result of Grothendieck.

Theorem 2.11. Suppose that

(a) X has the weak Phillips property and the DPP , and
(b) Y is complemented in its second dual and has the Gelfand–Phillips

property.

Then every operator u : X → Y is completely continuous. Hence, if X
also has the reciprocal DPP then u is weakly compact as well.

Proof. Let A be a weakly precompact subset of X. As X has the DPP,
every weakly null sequence in X∗ converges to zero uniformly on A. Now
let q : Y ∗∗ → Y be a projection and let T = q ◦ u∗∗ : X∗∗ → Y . Then
T̃ = u and, for any weak∗-null sequence (y∗n) in Y

∗, since X has the weak
Phillips property, u∗(y∗n)→ 0 weakly inX

∗. It follows that y∗n → 0 uniformly
on u(A). Hence, since Y has the Gelfand–Phillips property, u(A) is relatively
compact. From this we conclude that u is completely continuous.

The above theorem applies, for instance, to the natural injections i :
H∞(D) → Hp(D) and i : A(D) → Hp(D) (1 ≤ p < ∞). As an immediate
corollary we give the next result.

Corollary 2.12. Let Y be as in the preceding theorem. Then every
operator u from a commutative C∗-algebra C(K) into Y is weakly compact
(and completely continuous).

The next result may be used to prove that certain spaces have the
Grothendieck property.

Proposition 2.13. Suppose that X has the weak Phillips property and
Y has the Dieudonné property. Let T : X∗∗ → Y be an operator such that

T̃ ∗∗(X∗∗) ⊇ B1(Y ). Then Y has the Grothendieck property.

Proof. Let (y∗n) be a weak
∗-null sequence in Y ∗. Then, by Theorem 2.4

above, T̃ ∗(y∗n)→ 0 weakly in X
∗. Hence, for m ∈ X∗∗,

〈T̃ ∗(y∗n),m〉 = 〈y
∗
n, T̃

∗∗(m)〉 → 0.

So, since T̃ ∗∗(X∗∗) ⊇ B1(Y ), y
∗
n → 0 for the topology σ(Y

∗, B1(Y )). As
Y has the Dieudonné property, we conclude that y∗n → 0 weakly in Y

∗

[G, Prop. 11] so that Y has the Grothendieck property.
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Thus, in the preceding proposition, if Y = C(K) and if, for each Borel
subset B ofK, there exists a bounded sequence (xn) inX such that T (xn)→
χB pointwise on K then C(K) has the Grothendieck property.
Our final result is a noncomplementation scheme. Suppose that Z is a

weakly compactly generated closed subspace of Y and we have an isomor-
phism i : c0 → Z that extends to an operator ĩ : ℓ

∞ → Y . Then Z is
not complemented in Y. The next result shows that in this scheme one can
use instead of c0 any nonreflexive Banach space X having the weak Phillips
property.

Proposition 2.14. Suppose that

(a) X is nonreflexive and has the weak Phillips property ,
(b) (Z1,weak

∗) is sequentially compact , and
(c) we have an (into) isomorphism u : X → Z that extends to an operator

S : X∗∗ → Y .

Then Z is not complemented in Y.

Proof. For a contradiction, suppose that we have a projection q : Y → Z.
Let T = q ◦S. Then T̃ = u, and by Theorem 2.4(d) or (e), u is weakly com-
pact. This is not possible since X is not reflexive and u is an isomorphism.
Hence Z is not complemented in Y .

Thus a Banach space Y with weak∗ sequentially compact dual ball that
contains a subspace with the weak Phillips property is not complemented
in its second dual unless it is reflexive. At this point we recall that there
exist nonreflexive Banach spaces with the weak Phillips property that do
not contain a copy of c0; for instance, the space Y constructed by Bourgain
and Delbaen in [B-D] is such a space.

3. Remarks and questions. 1. The characterizations of the weak
Phillips property we have given involve the second dual of the space. We
do not know whether it is possible to give a characterization of the weak
Phillips property involving just the space and its dual.
2. The question whether X having the Grothendieck property does or

does not imply that X∗∗ has the same property seems to be open. Concern-
ing this question, we have the following connection: X∗∗ has the Grothen-
dieck property iff X has the weak Phillips property and X∗∗/X has the
Grothendieck property.
3. Suppose X has the weak Phillips property. We know that every com-

plemented subspace of X has the same property. Actually, a somewhat
stronger result holds: Suppose that M is a (closed) subspace of X and that
we have an operator q : X∗∗ →M∗∗ such that q(M) =M . We can assume,
by the Open Mapping Theorem, that q(M1) ⊇ M1. Then, for any operator
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T : M∗∗ → c0, T (M1) ⊆ T (q(M1)) ⊆ T ◦ q(X1). This latter set being rel-

atively weakly compact, we conclude that T̃ is weakly compact so that M
has the weak Phillips property. Thus, in particular, ifM∗∗ is complemented
in X∗∗ then M has the weak Phillips property. If M itself is complemented
in X∗∗ then, by Proposition 2.8, M has the Grothendieck property.

4. We do not know whether X having the weak Phillips property implies,
or is implied by, X∗ having the property (V∗) of Pełczyński. A related
question is this: Suppose that X has the weak Phillips property and Y ∗∗

does not contain a copy of ℓ∞. Is then every operator u : X → Y weakly
compact? We remark that by Lemma 2.3, u is unconditionally converging.

5. We do not know if the space K(X) of compact operators on a reflex-
ive space X (with the approximation property, for instance) has the weak
Phillips property.

6. Suppose thatX has the weak Phillips property and letK be a compact
(Hausdorff) space. We do not know if the space C(K,X) of continuous
functions ϕ : K → X, endowed with the supremum norm, has the weak
Phillips property.

7. Suppose that X has the weak Phillips property. We do not know
whether every operator u : X → X∗ is weakly compact. In connection with
this and with Question 4 above, it is not difficult to see that every operator
fromX into a Banach space Y having property (V∗) is weakly compact. Note
that, by Corollary 2.6, in the case when X is separable and does not contain
a copy of ℓ1, every operator u : X → X∗ is weakly compact since then the
space (X∗∗,weak∗) is sequentially compact [D1, p. 236, Theorem 10].

8. Suppose that X has the weak Phillips property and Y does not con-
tain a copy of ℓ1. Let u : X → Y be an operator with dense range. By
Theorem 2.9, u is weakly compact iff it has a (bounded linear) extension
S : X∗∗ → Y . We do not know if it is possible to drop the density condition
in this result.
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