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ON MODULAR PROJECTIVE

REPRESENTATIONS OF FINITE

NILPOTENT GROUPS

BY

LEONID F. BARANNYK and KAMILA SOBOLEWSKA (Słupsk)

Abstract. Our aim is to determine necessary and sufficient conditions for a finite
nilpotent group to have a faithful irreducible projective representation over a field of
characteristic p ≥ 0.

1. Introduction. Frucht [4] proved that a finite abelian groupG admits
a faithful irreducible projective representation over an algebraically closed
field K of characteristic not dividing the order of the group G if and only
if G is of symmetric type, i.e. it decomposes into a direct product of two
isomorphic groups. Yamazaki [11] showed that sufficiency of Frucht’s theo-
rem holds for an arbitrary field L containing the primitive (expG)th root
of 1. Moreover, he established that the group G is of symmetric type if and
only if for some factor system λ ∈ Z2(G,L∗) the twisted group algebra LλG
is a central simple algebra over the field L. Frucht’s theorem is supplemented
by Zhmud’s result [14]: the minimal number of irreducible components of
a faithful projective K-representation of the group G equals 1 if G is of
symmetric type and equals 2 otherwise. A generalization of Frucht’s and
Zhmud’s results to an arbitrary field with a restriction on the characteris-
tic was given in [1]–[2]. A study of metabelian groups admitting a faithful
irreducible projective representation over the field of complex numbers was
performed by Ng [8]–[9]. Some general results on faithful projective repre-
sentations of finite groups over a field with a restriction on the characteristic
are obtained in [8]–[9] and [11]–[12]. Let us note that the above results are
partially presented in Karpilovsky’s monograph [6].

In this paper we look for necessary and sufficient conditions for finite
nilpotent groups to have faithful irreducible projective representations over
a field of any characteristic. In Section 2 we prove a number of propositions
about semisimple twisted group algebras of finite groups. Since for an alge-
braically closed field there exists a close connection between the existence of
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simple twisted group algebras and the fact that any given group has a faith-
ful irreducible projective representation, we show later how this connection
is preserved for an arbitrary field. This fact leads to the description in Sec-
tion 3 of simple twisted group algebras of finite abelian groups. In Section 4
we generalize the results of [9], [11] and [12] by giving conditions for a nilpo-
tent group to have a class of faithful irreducible projective λ-representations
(Propositions 8–10). However, the main Theorems 3 and 4 concern abelian
groups and generalize the results of [2]. We assume in some propositions
that cocycles are not taken from the whole second group of cocycles, but
only from its subgroup. This approach to cocycles is more general than that
in [2]. It is worth noting that the case of abelian groups can be investigated
completely because, by [13], each finite abelian group is an extension of a
group of symmetric type by a cyclic group.

2. Semisimple twisted group algebras. We use the following nota-
tions: G is a finite group; o(g) is the order of g ∈ G; e is the unity of G; Z(G)
is the center of G; F is a field of characteristic p ≥ 0; F ∗ is the multiplicative
group of F ; Fm = {αm : α ∈ F}; λ ∈ Z2(G,F ∗) is an F -factor system of the
group G; FλG is the twisted group algebra of the group G and the field F
for the factor system λ; J(FλG) is the Jacobson radical of the algebra FλG;
socG is the socle of the abelian group G; {ug : g ∈ G} is a natural F -basis
of the algebra FλG, i.e. a basis satisfying uaue = ueua = ua, uaub = λa,buab
for all a, b ∈ G. We often denote the restriction of λ ∈ Z2(G,F ∗) to a sub-
group H of G by λ as well. We identify ue with the unity of the field F .
Therefore, we write γ instead of γue (γ ∈ F ).
Let G = 〈a1〉×. . .×〈as〉. The elements ua1 , . . . , uas of the natural F -basis

of the algebra FλG are generators of this algebra. Therefore, if

uo(ai)ai
= αi (αi ∈ F ∗; i = 1, . . . , s),

then we denote the algebra FλG also by [G,F, α1, . . . , αs].

If the order of the group G is divisible by p, then we always assume that
F is a field of positive characteristic p.

Let G = 〈a1〉 × . . . × 〈as〉 be an abelian p-group of type (pn1 , . . . , pns),
FλG = [G,F, α1, . . . , αs] and ̺i be a root of the polynomial x

pni − αi in
the algebraic closure of the field F . We denote by xp

m1 − β1 an irreducible
factor of the polynomial xp

n1 − α1 over F and by

xp
mj − βj(̺1, . . . , ̺j−1)

an irreducible factor of xp
nj − αj over the field F (̺1, . . . , ̺j−1) for j ≥ 2.

Moreover, βj(̺1, . . . , ̺j−1) is the value of the polynomial βj(x1, . . . , xj−1) ∈
F [x1, . . . , xj−1] for x1 = ̺1, . . . , xj−1 = ̺j−1.
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Theorem 1. Let G = 〈a1〉 × . . . × 〈as〉 be an abelian p-group of type
(pn1 , . . . , pns), and

υj =

{
up
mj

aj
− βj(ua1 , . . . , uaj−1) for mj < nj ,

0 for mj = nj .

Then J(FλG) = FλGυ1 + . . .+F
λGυs, F

λG/J(FλG) ∼= F (̺1, . . . , ̺s) and
[F (̺1, . . . , ̺s) : F ] = p

m1+...+ms .

Proof. By the hypothesis,

̺p
nj

j = αj , [βj(̺1, . . . , ̺j−1)]
p
nj−mj

= αj .

Therefore,

αp
n1+n2+...+nj−1

j

= {β̃j(αp
n2+n3+...+nj−1

1 , αp
n1+n3+...+nj−1

2 , . . . , αp
n1+n2+...+nj−2

j−1 )}pnj−mj ,

where β̃j(x1, . . . , xj−1) is a polynomial of x1, . . . , xj−1 over the field F
d,

where d = pn1+...+nj−1 . Consequently, υp
t

j = 0, where t = n1 + . . .+ nj−1 +
nj −mj . Hence, the ideal

V = FλGυ1 + . . .+ F
λGυs

is nilpotent.

Let wi = uai + V (i = 1, . . . , s). We identify α + V with α for each
α ∈ F . Since β1 6∈ F p, it follows that F [w1] is a field. We can consider the
F -algebra FλG/V as an F1-algebra, where F1 = F [w1]. Since

wp
m2

2 = β2(ua1) + V = β2(w1)

and β2(w1) 6∈ F p1 , F2 = F1[w2] is a field and FλG/V is an F2-algebra.
Continuing, we deduce that

FλG/V = F [w1, . . . , ws]

is a field and its degree over F equals pm1+...+ms . Hence, V is the radical of
the algebra FλG.

Proposition 1. Let G = 〈a1〉×. . .×〈as〉 be an abelian p-group, FλG =
[G,F, α1, . . . , αs] and θi be a root of the polynomial x

p − αi. Then the fol-
lowing conditions are equivalent :

(1) the algebra FλG is semisimple;

(2) FλG is a field ;

(3) [F (θ1, . . . , θs) : F ] = p
s.

Proposition 1 follows from Theorem 1 and from the criterion of irre-
ducibility of a polynomial xp

n − α.
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Proposition 2 (see [10]). Let G be a finite p-group. The algebra FλG
is semisimple if and only if G is abelian and FλG is a field.

Proof. Let |G| = pn and suppose FλG is a semisimple algebra. By in-
duction on n, we show that FλG is a field. If n = 1, then G is a cyclic group
and, by Proposition 1, FλG is a field. Let H be the center of G. Then FλH
is a semisimple algebra of an abelian group and therefore, by Proposition
1, FλH is a field. One can consider the algebra FλG as a twisted group
algebra of the group G/H and the field FλH. Since |G/H| < |G|, by the
inductive assumption, FλG is a field.

Theorem 2. Let G = Gp × H, where Gp is a Sylow p-subgroup. The
algebra FλG is semisimple if and only if FλGp is a field. If F

λG is semisim-
ple, then each system of minimal pairwise orthogonal idempotents of the al-
gebra FλH (resp. of the center of FλH) is also a system of minimal pairwise
orthogonal idempotents of the algebra FλG (resp. of the center of FλG).

Proof. Suppose K = FλGp is a field. The algebra F
λH is separable,

therefore the centers of its simple components are separable extensions of
the field F [3, §71]. Let A be a simple component of FλH and Z(A) be its
center. Since K is a purely inseparable extension of the field F , we conclude
that K⊗F Z(A) is a field [7], so that the algebra K⊗F A is simple. Its index
coincides with the index of the algebra A, since by [3, §68], [8], the index of
A divides |H| and therefore it is relatively prime to [K : F ].
Corollary. Let G = Gp × H, where Gp is a Sylow p-subgroup. The

algebra FλG is simple if and only if FλGp is a field and F
λH is a simple

algebra.

3. Simple twisted group algebras

Proposition 3. Let G be an abelian q-group, q 6= 2, q 6= p; FλG =
[G,F, β1, . . . , βm] be a commutative algebra; θi be a root of the polynomial
xq − βi (i = 1, . . . ,m). Then the following conditions are equivalent :
(1) FλG is a field ;
(2) [F (θ1, . . . , θm) : F ] = q

m;
(3) none of the elements βt11 . . . β

tm
m is the qth power of an element of the

field F , where 0 ≤ t1, . . . , tm < q and t1 + . . .+ tm 6= 0.
Proof. Denote by ε a primitive qth root of 1. Without loss of generality,

one can assume ε ∈ F . Suppose the condition (2) does not hold. Consider a
sequence of fields

(∗) F0 = F ⊂ F1 ⊂ . . . ⊂ Fm,
where Fi = F (θ1, . . . , θi) (i = 1, . . . ,m). If F (θ1) = F , then β1 = µ

q,
µ ∈ F . Suppose Fr1 6= Fr1−1 and Fr1 = Fr1−1(θd), where 1 ≤ r1 < d ≤ m.
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Since for some k1, 1 ≤ k1 < q, the element θd/θk1r1 cancels the action of au-
tomorphisms of the Galois group G(Fr1/Fr1−1), it follows that θd = θ

k1
r1
̺r1 ,

where ̺r1 ∈ Fr1−1. If ̺r1 6∈ F0, then by a similar reasoning we obtain
̺r1 = θ

k2
r2
̺r2 , where ̺r2 ∈ Fr2−1 (r2 < r1) and 1 ≤ k2 < q. Moving along

the sequence (∗) from right to left, we obtain the equality
θd = θ

k1
r1
. . . θkvrv ̺rv ,

where ̺rv ∈ F . Raising to the power q, we find
(∗∗) βd = β

k1
r1
. . . βkvrv ̺

q
rv
.

But this means that the condition (3) does not hold.

Conversely, if (3) does not hold, then (∗∗) holds for some 1 ≤ r1 < . . . <
rv < d ≤ m. Therefore Fd = Fd−1, hence [F (θ1, . . . , θm) : F ] < qm, i.e. (2)
does not hold.

Remark 8 If q = 2, then, generally speaking, Proposition 3 is invalid.
Indeed, let F = Q(

√
2), where Q is the field of the rational numbers. If

G = 〈a〉 is a group of order 4, then the algebra FλG = [G,F,−1] is not a
field. However, −1 6= µ2 for each µ ∈ F .
If F contains a primitive 4th root of 1, then Proposition 3 also holds for

abelian 2-groups.

Let G be a finite group, Z(G) be the center of G and λ ∈ Z2(G,F ∗).
The set {g ∈ Z(G) : ∀a ∈ G, λa,g = λg,a} forms a subgroup of G. We call
it the λ-center of G. If G is an abelian group and H is its λ-center, then
the center of the algebra FλG coincides with FλH. In this case, the algebra
FλG is simple if and only if its center FλH is a field. Proposition 3 gives
necessary and sufficient conditions for FλH to be a field in the case where
H is a q-group and q 6= 2, q 6= p.
Let G be an abelian group of exponent o(G), a ∈ G be an element of

order o(G) and m be the exponent of the group G/〈a〉. If λ ∈ Z2(G,F ∗),
then

(λa,b · λ−1b,a)m = 1
for all a, b ∈ G. This condition can also hold for some divisors of m. If d is
such a divisor, then we write λ ∈ Z2(G,F ∗, d).
The number tq = sup{0,m} is important in describing simple twisted

group algebras of abelian q-groups, where m is a natural number such that
for some γ1, . . . , γm ∈ F ∗ the algebra

F [x]/(xq − γ1)⊗F . . .⊗F F [x]/(xq − γm)
is a field. The dimension of F ∗/(F ∗)q as a vector space over a field of q
elements is said to be the rank of the group F ∗/(F ∗)q. By Proposition 3,
tq for q 6= p equals the rank of the group F ∗/(F ∗)q.
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Proposition 4. Let F ∗ contain a primitive qnth root of 1, where n ≥ 2
for q = 2; Gq be an abelian q-group; sq be the number of invariants of the
group Gq, exceeding q

n. The group Gq has a simple algebra F
λGq for some

λ ∈ Z2(G,F ∗, qn) if and only if the following conditions hold :
(1) if tq > 0, then sq ≤ tq;
(2) if tq = 0, then sq = 0 and Gq is a group of symmetric type.

Proof. The center of the algebra FλGq coincides with F
λHq, where Hq

is the λ-center of the group Gq. If a ∈ Gq and o(a) > qn, then aq
n 6= e and

aq
n ∈ Hq. It follows that for each cocycle λ ∈ Z2(Gq, F ∗, qn) the group Hq
decomposes into a direct product of no less than sq cyclic subgroups. The
algebra FλGq is simple if and only if F

λHq is a field. If tq = 0, then F
λHq

is a field if and only if Hq = {e}. In the case Hq = {e}, we have sq = 0 and,
by [11], Gq is a group of symmetric type. Conversely, if the last condition
holds, then FλGq is a central simple algebra over F .

Let tq > 0. If F
λGq is a simple algebra, then sq ≤ tq by Proposition 3.

Conversely, let sq ≤ tq. If sq = 0, then there exists [13] a cyclic subgroup Hq
of Gq such that Gq/Hq is a group of symmetric type and exp(Gq/Hq) ≤ qn.
If sq > 0, then by Lemma 5 of [2], the group Gq has a subgroup Hq =
〈a1〉 × . . . × 〈asq〉 such that Gq/Hq is a group of symmetric type and the
exponent of Gq/Hq does not exceed q

n. By Proposition 3, there exists a
cocycle µ ∈ Z2(Hq, F ∗) such that FµHq is a field. By Lemma 6 of [2], there
exists a cocycle λ ∈ Z2(G,F ∗, qn) such that the center of FλGq coincides
with FµHq.

Proposition 5. Let G be a finite abelian group and Gq be a Sylow q-
subgroup of G. The algebra FλG is simple if and only if FλGq is simple
for each prime q | |G|. If FλG is simple and mq is the index of FλGq, then
the index of FλG equals

∏
q||G|mq.

Proof. By Theorem 2, one can assume that p does not divide |G|. Let
G = Gq1 × . . . × Gqs be a decomposition into a direct product of Sylow
subgroups. Denote by λi the restriction of λ ∈ Z2(G,F ∗) to Gqi . If Hi is
the λi-center of Gqi , then F

λiHi is the center of F
λiGqi . Moreover, the

center K of FλG is isomorphic to

Fλ1H1 ⊗F . . .⊗F FλsHs.
It follows that K is a field if and only if FλiHi is a field for each i = 1, . . . , s.
For this reason, FλG is simple if and only if each FλGqi is.

Suppose FλG is simple. One can consider FλG as a twisted group algebra
Kµ(G/H) of the field K and the group G/H, where H = H1 × . . . × Hs.
Hence,

FλG ∼= Kµ1(Gq1/H1)⊗K . . .⊗K Kµs(Gqs/Hs).
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Let mi be the index of F
λiGqi . It is known ([3, §68], [8]) that mi is a divisor

of |Gqi |. Since [K : FλiHi] is not divisible by qi, it follows that the index
of Kµi(Gqi/Hi) equals the index of F

λiGqi . Since the numbers m1, . . . ,ms
are pairwise relatively prime, we conclude [5] that the index of FλG equals
m1 . . .ms.

4. Faithful projective representations of nilpotent groups. Let
G = Gq1 × . . .×Gqr be a decomposition of a nilpotent group G into a direct
product of Sylow subgroups. Then

FλG ∼= FλGq1 ⊗F . . .⊗F FλGqr
and

FλG/J(FλG) ∼= FλGp/J(FλGp)⊗F
∏

q 6=p

FλGq.

Since each simple FλG-module is isomorphic to a component of the semi-
simple module FλG/J(FλG), it follows that each simple FλG-module is
isomorphic to a component of the module

M1 # . . .#Mr,

where Mj is a simple F
λGqj -module (j = 1, . . . , r).

Proposition 6. Let G = Gp × H, where Gp is a Sylow p-subgroup.
Each irreducible λ-representation of G over a field F is equivalent to a rep-
resentation Γ #∆, where Γ is an irreducible λ1-representation of Gp, ∆ is
an irreducible λ2-representation of H and the cocycle λ is cohomologous to
λ1×λ2. Conversely , each representation of the form Γ #∆ is an irreducible
λ1 × λ2-representation of G. Representations Γ # ∆ and Γ ′ # ∆′ of this
type are linearly equivalent if and only if Γ is linearly equivalent to Γ ′ and
∆ is linearly equivalent to ∆′.

The proof of Proposition 6 is similar to that of Theorem 2.

Proposition 7. Let G = Gq1 × . . . × Gqs be a decomposition of an
abelian group G into a direct product of Sylow subgroups. Suppose F con-
tains a primitive qth root of 1 for each prime q | |G| different from p. Each
irreducible (faithful irreducible) λ-representation of the group G over F is
then equivalent to a representation

(∗∗∗) Γ1 # . . .# Γs,

where Γi is an irreducible (faithful irreducible) λi-representation of Gqi over
F (i = 1, . . . , s). Moreover , the cocycle λ is cohomologous to λ1×. . .×λs and
vice versa, each representation of the form (∗∗∗) is an irreducible (faithful
irreducible) λ1× . . .×λs-representation of G. Representations Γ1# . . .#Γs
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and Γ ′1# . . .#Γ
′
s of the form (∗∗∗) are linearly equivalent if and only if Γi

is linearly equivalent to Γ ′i for each i = 1, . . . , s.

Proof. By Proposition 6 one can assume that |G| is not divisible by p.
Let λi be the restriction of λ to Gqi . If Hi is the λi-center of Gqi , then F

λiHi
is the center of FλiGqi . Since F

λiHi decomposes into a tensor product of
algebras of the form F [x]/(xq

m
i −α) over F , and F contains a primitive qith

root of 1, the degree of each simple direct summand of the algebra FλiHi
with respect to F is a divisor of |Hi|. Let Ai be a simple component of
FλiGqi , Fi be the center of Ai, ni = [Fi : F ] and mi be the index of Ai.
The numbers ni and mi are powers of qi. Since n1, . . . , ns are pairwise
relatively prime, it follows that K = F1 ⊗F . . . ⊗F Fs is a field. Hence,
A = A1⊗F . . .⊗F As is a simple algebra with center K. We will assume that
Fi is a subfield of K. Let Bi = K⊗FiAi. Since [K : Fi] is not divisible by qi,
the index of Bi equals the index of Ai. As m1, . . . ,ms are pairwise relatively
prime and A ∼= B1⊗K . . .⊗KBs, we conclude [5, Lemma 4.4.8] that the index
of A equals m1 . . .ms. This proves that each irreducible λ-representation of
G is equivalent to a representation of the form (∗∗∗) and, moreover, each
representation of the form (∗∗∗) is an irreducible λ1 × . . .× λs-representa-
tion of G.

Suppose the irreducible λ-representation Γ = Γ1#. . .#Γs is not faithful.
Then Γ (a) = αE for some non-identity a ∈ G. Let a = bc, where b ∈ Gqj ,
c ∈ ∏i6=j Gqi and b 6= e. There exists a natural number m, relatively prime
to qj , such that a

m = bm. It follows that Γ is not a faithful representa-
tion of Gqj . However, Γ |Gqj = Γj +̇ . . . +̇ Γj . Hence, Γj is not a faithful
representation.

Proposition 7, generally speaking, is not valid in the case when F does
not contain a primitive qth root of 1 for some prime q | |G| different from p.
Indeed, let G = 〈a〉× 〈b〉× 〈c〉, where a3 = e, b3 = e, c19 = e and F = Z7(y)
be the field of rational functions of the variable y over the residue class
field Z7 modulo 7. The field Z7 contains a primitive 3rd root ω of 1, but no
primitive 19th root of 1. Let

FλG ∼= F [x]/(x3 − ω)⊗F F [x]/(x3 − y)⊗F F [x]/(x19 − 1).

It is obvious that G = G3 × G19, where G3 = 〈a〉 × 〈b〉, G19 = 〈c〉. By
Proposition 3, the algebra FλG3 is a field and the algebra F

λG19decomposes
into a direct sum of fields and only one of them coincides with F . Hence,
there exists a faithful irreducible λ1-representation Γ1 of G3 and a faithful
irreducible λ2-representation Γ2 of G19. Moreover, λ1 × λ2 is cohomologous
to λ. However, the field Z7(ξ), ξ

3 = ω, contains a primitive 19th root of 1.
Therefore FλG ∼= K +̇ . . . +̇K, where K = FλG3. It follows that the degree
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of each irreducible λ-representation of G equals 9. In consequence, Γ1 # Γ2
is a reducible representation.

Proposition 8. Let G be a finite q-group, q 6= p, λ ∈ Z2(G,F ∗) and N
be the λ-center of G. The group G has a faithful irreducible λ-representation
if and only if N has a faithful irreducible λ-representation.

Proof. If Γ is an irreducible λ-representation of G, then by Clifford’s
theorem, Γ |N = ∆ +̇ . . . +̇ ∆, where ∆ is an irreducible λ-representation
of N . It follows that if Γ is faithful, then so is ∆.

Conversely, let ∆ be a faithful irreducible λ-representation of N and Γ
be an irreducible component of the induced representation ∆G. If Γ is not
faithful, then KerΓ ∩ Z(G) 6= {e}. Let b ∈ KerΓ ∩ Z(G) and b 6= e. Then
Γ (b) = µE (µ ∈ F ∗) and for each g ∈ G we have Γ (b)Γ (g) = Γ (g)Γ (b) and
λb,gΓ (bg) = λg,bΓ (gb). Since bg = gb, we conclude λb,g = λg,b. Therefore, b
is a non-identity element of the λ-center N . Since ∆G|N = ∆ +̇ . . . +̇∆, it
follows that Γ |N = ∆ +̇ . . . +̇ ∆. Ultimately, we get ∆(b) = µE. This is a
contradiction. Hence, Γ is a faithful representation.

Proposition 9. Let G be a finite p-group and λ ∈ Z2(G,F ∗). If G has
a faithful irreducible λ-representation, then G is abelian. Let H be the socle
of an abelian p-group G. Then the following conditions are equivalent :

(1) G has a faithful irreducible λ-representation;

(2) H has a faithful irreducible λ-representation;

(3) if FλH = [H,F, δ1, . . . , δm], then none of the products

δt11 . . . δ
tm
m (0 ≤ ti < p, t1 + . . .+ tm 6= 0)

is the pth power of an element of F .

Proof. It is known [6] that an irreducible λ-representation Γ of G is
realized in the field FλG/J(FλG). Hence, Γ (a)Γ (b) = Γ (b)Γ (a) for all
a, b ∈ G. If Γ is faithful, then from the equality

Γ (a−1b−1ab) = γΓ (a)−1Γ (b)−1Γ (a)Γ (b) = γE (γ ∈ F ∗)
it follows that a−1b−1ab = e, i.e. ab = ba for all a, b ∈ G. Therefore, G is
abelian.

Let Γ be an irreducible λ-representation of an abelian group G. If Γ is
not faithful, then Γ (a) = γE (γ ∈ F ) for some non-identity element a ∈ H.
Since Γ (a)p = λa,aλa,a2 . . . λa,ap−1E, we have λa,aλa,a2 . . . λa,ap−1 = γ

p.
Conversely, if the last equality holds, then an irreducible λ-representation
∆ of the subgroup 〈a〉 is one-dimensional: ∆(ai) = γi, i = 0, 1, . . . , p − 1.
Hence, by Clifford’s theorem, Γ (a) = ∆(a) +̇ . . . +̇∆(a) = γE.

Let H = 〈b1〉× . . .×〈bm〉 and a = bt11 . . . btmm . Then λa,a . . . λa,ap−1 ∈ F p
if and only if δt11 . . . δ

tm
m ∈ F p.
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Corollary. An abelian p-group G has a faithful irreducible projective
representation over a field F if and only if the number of invariants of the
group G does not exceed the rank of the group F ∗/(F ∗)p.

Proposition 10. Let Gq be a Sylow q-subgroup of a nilpotent group
G, λ ∈ Z2(G,F ∗) and λq be the restriction of λ to Gq. The group G has
a faithful irreducible λ-representation over the field F if and only if for
each prime q | |G| the group Gq has a faithful irreducible λq-representation
over F .

Proof. Let Γ be a faithful irreducible λ-representation of G. By Clifford’s
theorem, the restriction of Γ to Gq is a completely reducible representation
and all its irreducible components are pairwise conjugate. Let ∆ be one of
them. If ∆ is not faithful, then as in the proof of Proposition 8, the λq-center
of Gq contains a non-identity element a. Since a belongs to the λ-center of
G, it follows that Γ (a) = µE (µ ∈ F ∗). The contradiction obtained proves
the necessity.

Let G = Gq1×. . .×Gqs be a decomposition into a direct product of Sylow
subgroups, Γi be a faithful irreducible λqi-representation of Gqi and ∆ be an
irreducible component of Γ = Γ1# . . .#Γs. Since Γ |Gqi = Γi +̇ . . . +̇Γi, we
have ∆|Gqi = Γi +̇ . . . +̇ Γi. Therefore, as in the proof of Proposition 7,
∆ is a faithful irreducible λ-representation of G. This proves the suffi-
ciency.

Theorem 3. Let G be a finite abelian q-group, q 6= p, λ ∈ Z2(G,F ∗), N
be the λ-center of G and ε be a primitive qth root of 1. If N = {e}, then G is
a group of symmetric type and G has a faithful irreducible λ-representation.
Let N 6= {e} and H be the socle of N . Then the following conditions are
equivalent :

(1) G has a faithful irreducible λ-representation;

(2) H has a faithful irreducible λ-representation;

(3) if ε ∈ F , then FλH is a field , and if ε 6∈ F , then FλH is a twisted
group algebra of a group of order q and of a field K, K ⊃ F ;
(4) let H = 〈b1〉 × . . . × 〈bm〉 and FλH = [H,F, δ1, . . . , δm]; if ε 6∈ F ,

then no more than one of the products

δt11 . . . δ
tm
m (0 ≤ ti < q, t1 + . . .+ tm 6= 0)

is the qth power of an element of F , and if ε ∈ F , then none of them is.

Proof. The case N = {e} was studied by Yamazaki [11]. Consider the
case N 6= {e}. Let ∆ be a faithful irreducible λ-representation of the sub-
group H and ∆G be the projective λ-representation of G induced by ∆.
Arguing as in the proof of Proposition 8, we deduce that each irreducible



PROJECTIVE REPRESENTATIONS 191

component of∆G is a faithful λ-representation of G. Together with Clifford’s
theorem, this proves that conditions (1) and (2) are equivalent.
The equivalence of (2) and (3) is established in Lemma 4 of [2]. Let us

prove the equivalence of (2) and (4).
Let ̺a = λa,aλa,a2 . . . λa,aq−1 . Consider first the case ε 6∈ F . Assume that

H contains a subgroup Q = 〈a〉 × 〈b〉 of the type (q, q) such that ̺a = γq
and ̺b = δ

q (γ, δ ∈ F ). Since FλQ ∼= FQ, no irreducible λ-representation
of Q is faithful. Hence, by Clifford’s theorem, H does not have faithful
irreducible λ-representations. If H = H ′ × 〈a〉, ̺a = γq and ̺b 6∈ F q for
each non-identity element b ∈ H ′, then by Proposition 3, FλH ′ is a field
and therefore FλH satisfies (3). It follows that H has a faithful irreducible
λ-representation. In the case ε ∈ F , the condition ̺a = γq is equivalent
to the fact that each irreducible λ-representation of the subgroup 〈a〉 is
one-dimensional. Together with Clifford’s theorem, this proves that H does
not have faithful irreducible λ-representations.

Proposition.*. Let G be a finite abelian group, p ∤ |G|, λ ∈ Z2(G,F ∗)
and for each prime q | |G| let the field F contain a primitive qth root of
1. Assume also that if the exponent of a Sylow 2-subgroup of G is greater
than 2, then F also contains a primitive 4th root of 1. The group G has a
faithful irreducible λ-representation if and only if FλG is a simple algebra.

Proposition 11 is an immediate consequence of Propositions 3, 5, 10 and
Theorem 3.

Suppose the field F contains a primitive dth root of 1 and let d be a
divisor of the exponent of a finite abelian group G. For each prime q | |G|,
we denote by Gq a Sylow q-subgroup of G and by dq the q-part of d. The
value of tq is the same as in Proposition 4 and sq is the number of invariants
of Gq, exceeding dq.

Theorem 4. A finite abelian group G has a faithful irreducible λ-repre-
sentation over F for some cocycle λ ∈ Z2(G,F ∗, d) if and only if , for
p | |G|, the number of invariants of the subgroup Gp does not exceed the rank
of the group F ∗/(F ∗)p and for each prime q | |G| different from p one of the
following conditions holds:

(1) if tq = 0 and dq 6= 1, then sq = 0 and Gq is a group of symmetric
type;
(2) if tq 6= 0 and dq 6= 1, then sq ≤ tq;
(3) if dq = 1, then sq ≤ tq + 1.
Proof. By Proposition 10 one can assume G = Gq. If q = p, then we

apply the Corollary to Proposition 9. Let q 6= p. If sq > 0, then by Lemma 5
of [2], the group Gq has a subgroup Nq = 〈a1〉× . . .×〈asq〉 such that Gq/Nq
is a group of symmetric type and the exponent of Gq/Nq does not exceed dq.
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By Lemma 6 of [2], for each symmetric cocycle µ ∈ Z2(Nq, F ∗) there exists
a cocycle λ ∈ Z2(Gq, F ∗, dq) such that λ|Nq = µ and the λ-center of Gq
coincides with Nq. If sq = 0 then there exists a cocycle λ ∈ Z2(Gq, F ∗, dq)
such that the λ-center of Gq is a cyclic group [13]. By Theorem 3, the above
reasoning shows that if one of conditions (1)–(3) holds, then Gq has a faithful
irreducible λ-representation for some λ ∈ Z2(Gq, F ∗, dq).
Assume that none of (1)–(3) holds for Gq. If dq = q

m, c ∈ Gq and
o(c) = qt, where t > m, then for each cocycle λ ∈ Z2(Gq, F ∗, dq) a basis
element uq

m

c belongs to the center of the algebra F
λGq. It follows that if

sq > 0, then the number of invariants of the λ-center ofGq is not less than sq.
If sq = 0 and Gq is not a group of symmetric type, then the λ-center of Gq
differs from 〈e〉. Let Hq be the socle of the λ-center of Gq. Since, for dq 6= 1,
the number of invariants of Hq is greater than tq, we conclude that F

λHq
is not a field. For dq = 1, the number of invariants of Hq is greater than
tq+1 and therefore F

λHq is not a twisted group algebra of a group of order
q and of a field K, K ⊃ F . Hence, by Theorem 3, we conclude that Gq has
a faithful irreducible λ-representation for no cocycle λ ∈ Z2(Gq, F ∗, dq).
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