COLLOQUIUM MATHEMATICUM

ON MODULAR PROJECTIVE
 REPRESENTATIONS OF FINITE
 NILPOTENT GROUPS

BY
LEONID F. BARANNYK and KAMILA SOBOLEWSKA (Słupsk)

Abstract

Our aim is to determine necessary and sufficient conditions for a finite nilpotent group to have a faithful irreducible projective representation over a field of characteristic $p \geq 0$.

1. Introduction. Frucht [4] proved that a finite abelian group G admits a faithful irreducible projective representation over an algebraically closed field K of characteristic not dividing the order of the group G if and only if G is of symmetric type, i.e. it decomposes into a direct product of two isomorphic groups. Yamazaki [11] showed that sufficiency of Frucht's theorem holds for an arbitrary field L containing the primitive $(\exp G)$ th root of 1 . Moreover, he established that the group G is of symmetric type if and only if for some factor system $\lambda \in Z^{2}\left(G, L^{*}\right)$ the twisted group algebra $L^{\lambda} G$ is a central simple algebra over the field L. Frucht's theorem is supplemented by Zhmud's result [14]: the minimal number of irreducible components of a faithful projective K-representation of the group G equals 1 if G is of symmetric type and equals 2 otherwise. A generalization of Frucht's and Zhmud's results to an arbitrary field with a restriction on the characteristic was given in [1]-[2]. A study of metabelian groups admitting a faithful irreducible projective representation over the field of complex numbers was performed by Ng [8]-[9]. Some general results on faithful projective representations of finite groups over a field with a restriction on the characteristic are obtained in [8]-[9] and [11]-[12]. Let us note that the above results are partially presented in Karpilovsky's monograph [6].

In this paper we look for necessary and sufficient conditions for finite nilpotent groups to have faithful irreducible projective representations over a field of any characteristic. In Section 2 we prove a number of propositions about semisimple twisted group algebras of finite groups. Since for an algebraically closed field there exists a close connection between the existence of

[^0]simple twisted group algebras and the fact that any given group has a faithful irreducible projective representation, we show later how this connection is preserved for an arbitrary field. This fact leads to the description in Section 3 of simple twisted group algebras of finite abelian groups. In Section 4 we generalize the results of [9], [11] and [12] by giving conditions for a nilpotent group to have a class of faithful irreducible projective λ-representations (Propositions 8-10). However, the main Theorems 3 and 4 concern abelian groups and generalize the results of [2]. We assume in some propositions that cocycles are not taken from the whole second group of cocycles, but only from its subgroup. This approach to cocycles is more general than that in [2]. It is worth noting that the case of abelian groups can be investigated completely because, by [13], each finite abelian group is an extension of a group of symmetric type by a cyclic group.
2. Semisimple twisted group algebras. We use the following notations: G is a finite group; $o(g)$ is the order of $g \in G ; e$ is the unity of $G ; Z(G)$ is the center of $G ; F$ is a field of characteristic $p \geq 0 ; F^{*}$ is the multiplicative group of $F ; F^{m}=\left\{\alpha^{m}: \alpha \in F\right\} ; \lambda \in Z^{2}\left(G, F^{*}\right)$ is an F-factor system of the group $G ; F^{\lambda} G$ is the twisted group algebra of the group G and the field F for the factor system $\lambda ; J\left(F^{\lambda} G\right)$ is the Jacobson radical of the algebra $F^{\lambda} G$; $\operatorname{soc} G$ is the socle of the abelian group $G ;\left\{u_{g}: g \in G\right\}$ is a natural F-basis of the algebra $F^{\lambda} G$, i.e. a basis satisfying $u_{a} u_{e}=u_{e} u_{a}=u_{a}, u_{a} u_{b}=\lambda_{a, b} u_{a b}$ for all $a, b \in G$. We often denote the restriction of $\lambda \in Z^{2}\left(G, F^{*}\right)$ to a subgroup H of G by λ as well. We identify u_{e} with the unity of the field F. Therefore, we write γ instead of $\gamma u_{e}(\gamma \in F)$.

Let $G=\left\langle a_{1}\right\rangle \times \ldots \times\left\langle a_{s}\right\rangle$. The elements $u_{a_{1}}, \ldots, u_{a_{s}}$ of the natural F-basis of the algebra $F^{\lambda} G$ are generators of this algebra. Therefore, if

$$
u_{a_{i}}^{o\left(a_{i}\right)}=\alpha_{i} \quad\left(\alpha_{i} \in F^{*} ; i=1, \ldots, s\right)
$$

then we denote the algebra $F^{\lambda} G$ also by $\left[G, F, \alpha_{1}, \ldots, \alpha_{s}\right]$.
If the order of the group G is divisible by p, then we always assume that F is a field of positive characteristic p.

Let $G=\left\langle a_{1}\right\rangle \times \ldots \times\left\langle a_{s}\right\rangle$ be an abelian p-group of type $\left(p^{n_{1}}, \ldots, p^{n_{s}}\right)$, $F^{\lambda} G=\left[G, F, \alpha_{1}, \ldots, \alpha_{s}\right]$ and ϱ_{i} be a root of the polynomial $x^{p^{n_{i}}}-\alpha_{i}$ in the algebraic closure of the field F. We denote by $x^{p^{m_{1}}}-\beta_{1}$ an irreducible factor of the polynomial $x^{p^{n_{1}}}-\alpha_{1}$ over F and by

$$
x^{p^{m_{j}}}-\beta_{j}\left(\varrho_{1}, \ldots, \varrho_{j-1}\right)
$$

an irreducible factor of $x^{p^{n_{j}}}-\alpha_{j}$ over the field $F\left(\varrho_{1}, \ldots, \varrho_{j-1}\right)$ for $j \geq 2$. Moreover, $\beta_{j}\left(\varrho_{1}, \ldots, \varrho_{j-1}\right)$ is the value of the polynomial $\beta_{j}\left(x_{1}, \ldots, x_{j-1}\right) \in$ $F\left[x_{1}, \ldots, x_{j-1}\right]$ for $x_{1}=\varrho_{1}, \ldots, x_{j-1}=\varrho_{j-1}$.

Theorem 1. Let $G=\left\langle a_{1}\right\rangle \times \ldots \times\left\langle a_{s}\right\rangle$ be an abelian p-group of type $\left(p^{n_{1}}, \ldots, p^{n_{s}}\right)$, and

$$
v_{j}= \begin{cases}u_{a_{j}}^{p^{m_{j}}}-\beta_{j}\left(u_{a_{1}}, \ldots, u_{a_{j-1}}\right) & \text { for } m_{j}<n_{j} \\ 0 & \text { for } m_{j}=n_{j}\end{cases}
$$

Then $J\left(F^{\lambda} G\right)=F^{\lambda} G v_{1}+\ldots+F^{\lambda} G v_{s}, F^{\lambda} G / J\left(F^{\lambda} G\right) \cong F\left(\varrho_{1}, \ldots, \varrho_{s}\right)$ and $\left[F\left(\varrho_{1}, \ldots, \varrho_{s}\right): F\right]=p^{m_{1}+\ldots+m_{s}}$.

Proof. By the hypothesis,

$$
\varrho_{j}^{p^{n_{j}}}=\alpha_{j}, \quad\left[\beta_{j}\left(\varrho_{1}, \ldots, \varrho_{j-1}\right)\right]^{p^{n_{j}-m_{j}}}=\alpha_{j}
$$

Therefore,

$$
\begin{aligned}
& \alpha_{j}^{p^{n_{1}+n_{2}+\ldots+n_{j-1}}} \\
& \quad=\left\{\widetilde{\beta}_{j}\left(\alpha_{1}^{p^{n_{2}+n_{3}+\ldots+n_{j-1}}}, \alpha_{2}^{p^{n_{1}+n_{3}+\ldots+n_{j-1}}}, \ldots, \alpha_{j-1}^{p^{n_{1}+n_{2}+\ldots+n_{j-2}}}\right)\right\}^{p^{n_{j}-m_{j}}}
\end{aligned}
$$

where $\widetilde{\beta}_{j}\left(x_{1}, \ldots, x_{j-1}\right)$ is a polynomial of x_{1}, \ldots, x_{j-1} over the field F^{d}, where $d=p^{n_{1}+\ldots+n_{j-1}}$. Consequently, $v_{j}^{p^{t}}=0$, where $t=n_{1}+\ldots+n_{j-1}+$ $n_{j}-m_{j}$. Hence, the ideal

$$
V=F^{\lambda} G v_{1}+\ldots+F^{\lambda} G v_{s}
$$

is nilpotent.
Let $w_{i}=u_{a_{i}}+V(i=1, \ldots, s)$. We identify $\alpha+V$ with α for each $\alpha \in F$. Since $\beta_{1} \notin F^{p}$, it follows that $F\left[w_{1}\right]$ is a field. We can consider the F-algebra $F^{\lambda} G / V$ as an F_{1}-algebra, where $F_{1}=F\left[w_{1}\right]$. Since

$$
w_{2}^{p^{m_{2}}}=\beta_{2}\left(u_{a_{1}}\right)+V=\beta_{2}\left(w_{1}\right)
$$

and $\beta_{2}\left(w_{1}\right) \notin F_{1}^{p}, F_{2}=F_{1}\left[w_{2}\right]$ is a field and $F^{\lambda} G / V$ is an F_{2}-algebra. Continuing, we deduce that

$$
F^{\lambda} G / V=F\left[w_{1}, \ldots, w_{s}\right]
$$

is a field and its degree over F equals $p^{m_{1}+\ldots+m_{s}}$. Hence, V is the radical of the algebra $F^{\lambda} G$.

Proposition 1. Let $G=\left\langle a_{1}\right\rangle \times \ldots \times\left\langle a_{s}\right\rangle$ be an abelian p-group, $F^{\lambda} G=$ $\left[G, F, \alpha_{1}, \ldots, \alpha_{s}\right]$ and θ_{i} be a root of the polynomial $x^{p}-\alpha_{i}$. Then the following conditions are equivalent:
(1) the algebra $F^{\lambda} G$ is semisimple;
(2) $F^{\lambda} G$ is a field;
(3) $\left[F\left(\theta_{1}, \ldots, \theta_{s}\right): F\right]=p^{s}$.

Proposition 1 follows from Theorem 1 and from the criterion of irreducibility of a polynomial $x^{p^{n}}-\alpha$.

Proposition 2 (see [10]). Let G be a finite p-group. The algebra $F^{\lambda} G$ is semisimple if and only if G is abelian and $F^{\lambda} G$ is a field.

Proof. Let $|G|=p^{n}$ and suppose $F^{\lambda} G$ is a semisimple algebra. By induction on n, we show that $F^{\lambda} G$ is a field. If $n=1$, then G is a cyclic group and, by Proposition $1, F^{\lambda} G$ is a field. Let H be the center of G. Then $F^{\lambda} H$ is a semisimple algebra of an abelian group and therefore, by Proposition $1, F^{\lambda} H$ is a field. One can consider the algebra $F^{\lambda} G$ as a twisted group algebra of the group G / H and the field $F^{\lambda} H$. Since $|G / H|<|G|$, by the inductive assumption, $F^{\lambda} G$ is a field.

Theorem 2. Let $G=G_{p} \times H$, where G_{p} is a Sylow p-subgroup. The algebra $F^{\lambda} G$ is semisimple if and only if $F^{\lambda} G_{p}$ is a field. If $F^{\lambda} G$ is semisimple, then each system of minimal pairwise orthogonal idempotents of the algebra $F^{\lambda} H$ (resp. of the center of $F^{\lambda} H$) is also a system of minimal pairwise orthogonal idempotents of the algebra $F^{\lambda} G$ (resp. of the center of $F^{\lambda} G$).

Proof. Suppose $K=F^{\lambda} G_{p}$ is a field. The algebra $F^{\lambda} H$ is separable, therefore the centers of its simple components are separable extensions of the field $F[3, \S 71]$. Let A be a simple component of $F^{\lambda} H$ and $Z(A)$ be its center. Since K is a purely inseparable extension of the field F, we conclude that $K \otimes_{F} Z(A)$ is a field [7], so that the algebra $K \otimes_{F} A$ is simple. Its index coincides with the index of the algebra A, since by $[3, \S 68]$, $[8]$, the index of A divides $|H|$ and therefore it is relatively prime to $[K: F]$.

Corollary. Let $G=G_{p} \times H$, where G_{p} is a Sylow p-subgroup. The algebra $F^{\lambda} G$ is simple if and only if $F^{\lambda} G_{p}$ is a field and $F^{\lambda} H$ is a simple algebra.

3. Simple twisted group algebras

Proposition 3. Let G be an abelian q-group, $q \neq 2, q \neq p ; F^{\lambda} G=$ $\left[G, F, \beta_{1}, \ldots, \beta_{m}\right]$ be a commutative algebra; θ_{i} be a root of the polynomial $x^{q}-\beta_{i}(i=1, \ldots, m)$. Then the following conditions are equivalent:
(1) $F^{\lambda} G$ is a field;
(2) $\left[F\left(\theta_{1}, \ldots, \theta_{m}\right): F\right]=q^{m}$;
(3) none of the elements $\beta_{1}^{t_{1}} \ldots \beta_{m}^{t_{m}}$ is the q th power of an element of the field F, where $0 \leq t_{1}, \ldots, t_{m}<q$ and $t_{1}+\ldots+t_{m} \neq 0$.

Proof. Denote by ε a primitive q th root of 1 . Without loss of generality, one can assume $\varepsilon \in F$. Suppose the condition (2) does not hold. Consider a sequence of fields

$$
\begin{equation*}
F_{0}=F \subset F_{1} \subset \ldots \subset F_{m}, \tag{*}
\end{equation*}
$$

where $F_{i}=F\left(\theta_{1}, \ldots, \theta_{i}\right)(i=1, \ldots, m)$. If $F\left(\theta_{1}\right)=F$, then $\beta_{1}=\mu^{q}$, $\mu \in F$. Suppose $F_{r_{1}} \neq F_{r_{1}-1}$ and $F_{r_{1}}=F_{r_{1}-1}\left(\theta_{d}\right)$, where $1 \leq r_{1}<d \leq m$.

Since for some $k_{1}, 1 \leq k_{1}<q$, the element $\theta_{d} / \theta_{r_{1}}^{k_{1}}$ cancels the action of automorphisms of the Galois group $G\left(F_{r_{1}} / F_{r_{1}-1}\right)$, it follows that $\theta_{d}=\theta_{r_{1}}^{k_{1}} \varrho_{r_{1}}$, where $\varrho_{r_{1}} \in F_{r_{1}-1}$. If $\varrho_{r_{1}} \notin F_{0}$, then by a similar reasoning we obtain $\varrho_{r_{1}}=\theta_{r_{2}}^{k_{2}} \varrho_{r_{2}}$, where $\varrho_{r_{2}} \in F_{r_{2}-1}\left(r_{2}<r_{1}\right)$ and $1 \leq k_{2}<q$. Moving along the sequence $(*)$ from right to left, we obtain the equality

$$
\theta_{d}=\theta_{r_{1}}^{k_{1}} \ldots \theta_{r_{v}}^{k_{v}} \varrho_{r_{v}}
$$

where $\varrho_{r_{v}} \in F$. Raising to the power q, we find

$$
(* *) \quad \beta_{d}=\beta_{r_{1}}^{k_{1}} \ldots \beta_{r_{v}}^{k_{v}} \varrho_{r_{v}}^{q} .
$$

But this means that the condition (3) does not hold.
Conversely, if (3) does not hold, then ($* *$) holds for some $1 \leq r_{1}<\ldots<$ $r_{v}<d \leq m$. Therefore $F_{d}=F_{d-1}$, hence $\left[F\left(\theta_{1}, \ldots, \theta_{m}\right): F\right]<q^{m}$, i.e. (2) does not hold.

Remark 8 If $q=2$, then, generally speaking, Proposition 3 is invalid. Indeed, let $F=\mathbb{Q}(\sqrt{2})$, where \mathbb{Q} is the field of the rational numbers. If $G=\langle a\rangle$ is a group of order 4, then the algebra $F^{\lambda} G=[G, F,-1]$ is not a field. However, $-1 \neq \mu^{2}$ for each $\mu \in F$.

If F contains a primitive 4th root of 1 , then Proposition 3 also holds for abelian 2-groups.

Let G be a finite group, $Z(G)$ be the center of G and $\lambda \in Z^{2}\left(G, F^{*}\right)$. The set $\left\{g \in Z(G): \forall a \in G, \lambda_{a, g}=\lambda_{g, a}\right\}$ forms a subgroup of G. We call it the λ-center of G. If G is an abelian group and H is its λ-center, then the center of the algebra $F^{\lambda} G$ coincides with $F^{\lambda} H$. In this case, the algebra $F^{\lambda} G$ is simple if and only if its center $F^{\lambda} H$ is a field. Proposition 3 gives necessary and sufficient conditions for $F^{\lambda} H$ to be a field in the case where H is a q-group and $q \neq 2, q \neq p$.

Let G be an abelian group of exponent $o(G), a \in G$ be an element of order $o(G)$ and m be the exponent of the group $G /\langle a\rangle$. If $\lambda \in Z^{2}\left(G, F^{*}\right)$, then

$$
\left(\lambda_{a, b} \cdot \lambda_{b, a}^{-1}\right)^{m}=1
$$

for all $a, b \in G$. This condition can also hold for some divisors of m. If d is such a divisor, then we write $\lambda \in Z^{2}\left(G, F^{*}, d\right)$.

The number $t_{q}=\sup \{0, m\}$ is important in describing simple twisted group algebras of abelian q-groups, where m is a natural number such that for some $\gamma_{1}, \ldots, \gamma_{m} \in F^{*}$ the algebra

$$
F[x] /\left(x^{q}-\gamma_{1}\right) \otimes_{F} \cdots \otimes_{F} F[x] /\left(x^{q}-\gamma_{m}\right)
$$

is a field. The dimension of $F^{*} /\left(F^{*}\right)^{q}$ as a vector space over a field of q elements is said to be the rank of the group $F^{*} /\left(F^{*}\right)^{q}$. By Proposition 3, t_{q} for $q \neq p$ equals the rank of the group $F^{*} /\left(F^{*}\right)^{q}$.

Proposition 4. Let F^{*} contain a primitive q^{n} th root of 1 , where $n \geq 2$ for $q=2 ; G_{q}$ be an abelian q-group; s_{q} be the number of invariants of the group G_{q}, exceeding q^{n}. The group G_{q} has a simple algebra $F^{\lambda} G_{q}$ for some $\lambda \in Z^{2}\left(G, F^{*}, q^{n}\right)$ if and only if the following conditions hold:
(1) if $t_{q}>0$, then $s_{q} \leq t_{q}$;
(2) if $t_{q}=0$, then $s_{q}=0$ and G_{q} is a group of symmetric type.

Proof. The center of the algebra $F^{\lambda} G_{q}$ coincides with $F^{\lambda} H_{q}$, where H_{q} is the λ-center of the group G_{q}. If $a \in G_{q}$ and $o(a)>q^{n}$, then $a^{q^{n}} \neq e$ and $a^{q^{n}} \in H_{q}$. It follows that for each cocycle $\lambda \in Z^{2}\left(G_{q}, F^{*}, q^{n}\right)$ the group H_{q} decomposes into a direct product of no less than s_{q} cyclic subgroups. The algebra $F^{\lambda} G_{q}$ is simple if and only if $F^{\lambda} H_{q}$ is a field. If $t_{q}=0$, then $F^{\lambda} H_{q}$ is a field if and only if $H_{q}=\{e\}$. In the case $H_{q}=\{e\}$, we have $s_{q}=0$ and, by [11], G_{q} is a group of symmetric type. Conversely, if the last condition holds, then $F^{\lambda} G_{q}$ is a central simple algebra over F.

Let $t_{q}>0$. If $F^{\lambda} G_{q}$ is a simple algebra, then $s_{q} \leq t_{q}$ by Proposition 3 . Conversely, let $s_{q} \leq t_{q}$. If $s_{q}=0$, then there exists [13] a cyclic subgroup H_{q} of G_{q} such that G_{q} / H_{q} is a group of symmetric type and $\exp \left(G_{q} / H_{q}\right) \leq q^{n}$. If $s_{q}>0$, then by Lemma 5 of [2], the group G_{q} has a subgroup $H_{q}=$ $\left\langle a_{1}\right\rangle \times \ldots \times\left\langle a_{s_{q}}\right\rangle$ such that G_{q} / H_{q} is a group of symmetric type and the exponent of G_{q} / H_{q} does not exceed q^{n}. By Proposition 3, there exists a cocycle $\mu \in Z^{2}\left(H_{q}, F^{*}\right)$ such that $F^{\mu} H_{q}$ is a field. By Lemma 6 of [2], there exists a cocycle $\lambda \in Z^{2}\left(G, F^{*}, q^{n}\right)$ such that the center of $F^{\lambda} G_{q}$ coincides with $F^{\mu} H_{q}$.

Proposition 5. Let G be a finite abelian group and G_{q} be a Sylow q subgroup of G. The algebra $F^{\lambda} G$ is simple if and only if $F^{\lambda} G_{q}$ is simple for each prime $q\left||G|\right.$. If $F^{\lambda} G$ is simple and m_{q} is the index of $F^{\lambda} G_{q}$, then the index of $F^{\lambda} G$ equals $\prod_{q| | G \mid} m_{q}$.

Proof. By Theorem 2, one can assume that p does not divide $|G|$. Let $G=G_{q_{1}} \times \ldots \times G_{q_{s}}$ be a decomposition into a direct product of Sylow subgroups. Denote by λ_{i} the restriction of $\lambda \in Z^{2}\left(G, F^{*}\right)$ to $G_{q_{i}}$. If H_{i} is the λ_{i}-center of $G_{q_{i}}$, then $F^{\lambda_{i}} H_{i}$ is the center of $F^{\lambda_{i}} G_{q_{i}}$. Moreover, the center K of $F^{\lambda} G$ is isomorphic to

$$
F^{\lambda_{1}} H_{1} \otimes_{F} \ldots \otimes_{F} F^{\lambda_{s}} H_{s} .
$$

It follows that K is a field if and only if $F^{\lambda_{i}} H_{i}$ is a field for each $i=1, \ldots, s$. For this reason, $F^{\lambda} G$ is simple if and only if each $F^{\lambda} G_{q_{i}}$ is.

Suppose $F^{\lambda} G$ is simple. One can consider $F^{\lambda} G$ as a twisted group algebra $K^{\mu}(G / H)$ of the field K and the group G / H, where $H=H_{1} \times \ldots \times H_{s}$. Hence,

$$
F^{\lambda} G \cong K^{\mu_{1}}\left(G_{q_{1}} / H_{1}\right) \otimes_{K} \ldots \otimes_{K} K^{\mu_{s}}\left(G_{q_{s}} / H_{s}\right)
$$

Let m_{i} be the index of $F^{\lambda_{i}} G_{q_{i}}$. It is known ([3, §68], [8]) that m_{i} is a divisor of $\left|G_{q_{i}}\right|$. Since $\left[K: F^{\lambda_{i}} H_{i}\right.$] is not divisible by q_{i}, it follows that the index of $K^{\mu_{i}}\left(G_{q_{i}} / H_{i}\right)$ equals the index of $F^{\lambda_{i}} G_{q_{i}}$. Since the numbers m_{1}, \ldots, m_{s} are pairwise relatively prime, we conclude [5] that the index of $F^{\lambda} G$ equals $m_{1} \ldots m_{s}$.
4. Faithful projective representations of nilpotent groups. Let $G=G_{q_{1}} \times \ldots \times G_{q_{r}}$ be a decomposition of a nilpotent group G into a direct product of Sylow subgroups. Then

$$
F^{\lambda} G \cong F^{\lambda} G_{q_{1}} \otimes_{F} \ldots \otimes_{F} F^{\lambda} G_{q_{r}}
$$

and

$$
F^{\lambda} G / J\left(F^{\lambda} G\right) \cong F^{\lambda} G_{p} / J\left(F^{\lambda} G_{p}\right) \otimes_{F} \prod_{q \neq p} F^{\lambda} G_{q}
$$

Since each simple $F^{\lambda} G$-module is isomorphic to a component of the semisimple module $F^{\lambda} G / J\left(F^{\lambda} G\right)$, it follows that each simple $F^{\lambda} G$-module is isomorphic to a component of the module

$$
M_{1} \# \ldots \# M_{r}
$$

where M_{j} is a simple $F^{\lambda} G_{q_{j}}$-module $(j=1, \ldots, r)$.
Proposition 6. Let $G=G_{p} \times H$, where G_{p} is a Sylow p-subgroup. Each irreducible λ-representation of G over a field F is equivalent to a representation $\Gamma \# \Delta$, where Γ is an irreducible λ_{1}-representation of G_{p}, Δ is an irreducible λ_{2}-representation of H and the cocycle λ is cohomologous to $\lambda_{1} \times \lambda_{2}$. Conversely, each representation of the form $\Gamma \# \Delta$ is an irreducible $\lambda_{1} \times \lambda_{2}$-representation of G. Representations $\Gamma \# \Delta$ and $\Gamma^{\prime} \# \Delta^{\prime}$ of this type are linearly equivalent if and only if Γ is linearly equivalent to Γ^{\prime} and Δ is linearly equivalent to Δ^{\prime}.

The proof of Proposition 6 is similar to that of Theorem 2.
Proposition 7. Let $G=G_{q_{1}} \times \ldots \times G_{q_{s}}$ be a decomposition of an abelian group G into a direct product of Sylow subgroups. Suppose F contains a primitive qth root of 1 for each prime $q||G|$ different from p. Each irreducible (faithful irreducible) λ-representation of the group G over F is then equivalent to a representation
$(* * *) \quad \Gamma_{1} \# \ldots \# \Gamma_{s}$,
where Γ_{i} is an irreducible (faithful irreducible) λ_{i}-representation of $G_{q_{i}}$ over $F(i=1, \ldots, s)$. Moreover, the cocycle λ is cohomologous to $\lambda_{1} \times \ldots \times \lambda_{s}$ and vice versa, each representation of the form $(* * *)$ is an irreducible (faithful irreducible) $\lambda_{1} \times \ldots \times \lambda_{s}$-representation of G. Representations $\Gamma_{1} \# \ldots \# \Gamma_{s}$
and $\Gamma_{1}^{\prime} \# \ldots \# \Gamma_{s}^{\prime}$ of the form $(* * *)$ are linearly equivalent if and only if Γ_{i} is linearly equivalent to Γ_{i}^{\prime} for each $i=1, \ldots, s$.

Proof. By Proposition 6 one can assume that $|G|$ is not divisible by p. Let λ_{i} be the restriction of λ to $G_{q_{i}}$. If H_{i} is the λ_{i}-center of $G_{q_{i}}$, then $F^{\lambda_{i}} H_{i}$ is the center of $F^{\lambda_{i}} G_{q_{i}}$. Since $F^{\lambda_{i}} H_{i}$ decomposes into a tensor product of algebras of the form $F[x] /\left(x^{q_{i}^{m}}-\alpha\right)$ over F, and F contains a primitive q_{i} th root of 1 , the degree of each simple direct summand of the algebra $F^{\lambda_{i}} H_{i}$ with respect to F is a divisor of $\left|H_{i}\right|$. Let A_{i} be a simple component of $F^{\lambda_{i}} G_{q_{i}}, F_{i}$ be the center of $A_{i}, n_{i}=\left[F_{i}: F\right]$ and m_{i} be the index of A_{i}. The numbers n_{i} and m_{i} are powers of q_{i}. Since n_{1}, \ldots, n_{s} are pairwise relatively prime, it follows that $K=F_{1} \otimes_{F} \ldots \otimes_{F} F_{s}$ is a field. Hence, $A=A_{1} \otimes_{F} \ldots \otimes_{F} A_{s}$ is a simple algebra with center K. We will assume that F_{i} is a subfield of K. Let $B_{i}=K \otimes_{F_{i}} A_{i}$. Since $\left[K: F_{i}\right]$ is not divisible by q_{i}, the index of B_{i} equals the index of A_{i}. As m_{1}, \ldots, m_{s} are pairwise relatively prime and $A \cong B_{1} \otimes_{K} \ldots \otimes_{K} B_{s}$, we conclude [5, Lemma 4.4.8] that the index of A equals $m_{1} \ldots m_{s}$. This proves that each irreducible λ-representation of G is equivalent to a representation of the form $(* * *)$ and, moreover, each representation of the form $(* * *)$ is an irreducible $\lambda_{1} \times \ldots \times \lambda_{s}$-representation of G.

Suppose the irreducible λ-representation $\Gamma=\Gamma_{1} \# \ldots \# \Gamma_{s}$ is not faithful. Then $\Gamma(a)=\alpha E$ for some non-identity $a \in G$. Let $a=b c$, where $b \in G_{q_{j}}$, $c \in \prod_{i \neq j} G_{q_{i}}$ and $b \neq e$. There exists a natural number m, relatively prime to q_{j}, such that $a^{m}=b^{m}$. It follows that Γ is not a faithful representation of $G_{q_{j}}$. However, $\left.\Gamma\right|_{G_{q_{j}}}=\Gamma_{j} \dot{+} \ldots \dot{+} \Gamma_{j}$. Hence, Γ_{j} is not a faithful representation.

Proposition 7 , generally speaking, is not valid in the case when F does not contain a primitive q th root of 1 for some prime $q||G|$ different from p. Indeed, let $G=\langle a\rangle \times\langle b\rangle \times\langle c\rangle$, where $a^{3}=e, b^{3}=e, c^{19}=e$ and $F=\mathbb{Z}_{7}(y)$ be the field of rational functions of the variable y over the residue class field \mathbb{Z}_{7} modulo 7 . The field \mathbb{Z}_{7} contains a primitive 3 rd root ω of 1 , but no primitive 19th root of 1 . Let

$$
F^{\lambda} G \cong F[x] /\left(x^{3}-\omega\right) \otimes_{F} F[x] /\left(x^{3}-y\right) \otimes_{F} F[x] /\left(x^{19}-1\right)
$$

It is obvious that $G=G_{3} \times G_{19}$, where $G_{3}=\langle a\rangle \times\langle b\rangle, G_{19}=\langle c\rangle$. By Proposition 3, the algebra $F^{\lambda} G_{3}$ is a field and the algebra $F^{\lambda} G_{19}$ decomposes into a direct sum of fields and only one of them coincides with F. Hence, there exists a faithful irreducible λ_{1}-representation Γ_{1} of G_{3} and a faithful irreducible λ_{2}-representation Γ_{2} of G_{19}. Moreover, $\lambda_{1} \times \lambda_{2}$ is cohomologous to λ. However, the field $\mathbb{Z}_{7}(\xi), \xi^{3}=\omega$, contains a primitive 19 th root of 1 . Therefore $F^{\lambda} G \cong K \dot{+} \ldots \dot{+} K$, where $K=F^{\lambda} G_{3}$. It follows that the degree
of each irreducible λ-representation of G equals 9 . In consequence, $\Gamma_{1} \# \Gamma_{2}$ is a reducible representation.

Proposition 8. Let G be a finite q-group, $q \neq p, \lambda \in Z^{2}\left(G, F^{*}\right)$ and N be the λ-center of G. The group G has a faithful irreducible λ-representation if and only if N has a faithful irreducible λ-representation.

Proof. If Γ is an irreducible λ-representation of G, then by Clifford's theorem, $\left.\Gamma\right|_{N}=\Delta \dot{+} \ldots \dot{+} \Delta$, where Δ is an irreducible λ-representation of N. It follows that if Γ is faithful, then so is Δ.

Conversely, let Δ be a faithful irreducible λ-representation of N and Γ be an irreducible component of the induced representation Δ^{G}. If Γ is not faithful, then $\operatorname{Ker} \Gamma \cap Z(G) \neq\{e\}$. Let $b \in \operatorname{Ker} \Gamma \cap Z(G)$ and $b \neq e$. Then $\Gamma(b)=\mu E\left(\mu \in F^{*}\right)$ and for each $g \in G$ we have $\Gamma(b) \Gamma(g)=\Gamma(g) \Gamma(b)$ and $\lambda_{b, g} \Gamma(b g)=\lambda_{g, b} \Gamma(g b)$. Since $b g=g b$, we conclude $\lambda_{b, g}=\lambda_{g, b}$. Therefore, b is a non-identity element of the λ-center N. Since $\left.\Delta^{G}\right|_{N}=\Delta \dot{+} \ldots \dot{+} \Delta$, it follows that $\left.\Gamma\right|_{N}=\Delta \dot{+} \ldots \dot{+} \Delta$. Ultimately, we get $\Delta(b)=\mu E$. This is a contradiction. Hence, Γ is a faithful representation.

Proposition 9. Let G be a finite p-group and $\lambda \in Z^{2}\left(G, F^{*}\right)$. If G has a faithful irreducible λ-representation, then G is abelian. Let H be the socle of an abelian p-group G. Then the following conditions are equivalent:
(1) G has a faithful irreducible λ-representation;
(2) H has a faithful irreducible λ-representation;
(3) if $F^{\lambda} H=\left[H, F, \delta_{1}, \ldots, \delta_{m}\right]$, then none of the products

$$
\delta_{1}^{t_{1}} \ldots \delta_{m}^{t_{m}} \quad\left(0 \leq t_{i}<p, t_{1}+\ldots+t_{m} \neq 0\right)
$$

is the pth power of an element of F.
Proof. It is known [6] that an irreducible λ-representation Γ of G is realized in the field $F^{\lambda} G / J\left(F^{\lambda} G\right)$. Hence, $\Gamma(a) \Gamma(b)=\Gamma(b) \Gamma(a)$ for all $a, b \in G$. If Γ is faithful, then from the equality

$$
\Gamma\left(a^{-1} b^{-1} a b\right)=\gamma \Gamma(a)^{-1} \Gamma(b)^{-1} \Gamma(a) \Gamma(b)=\gamma E \quad\left(\gamma \in F^{*}\right)
$$

it follows that $a^{-1} b^{-1} a b=e$, i.e. $a b=b a$ for all $a, b \in G$. Therefore, G is abelian.

Let Γ be an irreducible λ-representation of an abelian group G. If Γ is not faithful, then $\Gamma(a)=\gamma E(\gamma \in F)$ for some non-identity element $a \in H$. Since $\Gamma(a)^{p}=\lambda_{a, a} \lambda_{a, a^{2}} \ldots \lambda_{a, a^{p-1}} E$, we have $\lambda_{a, a} \lambda_{a, a^{2}} \ldots \lambda_{a, a^{p-1}}=\gamma^{p}$. Conversely, if the last equality holds, then an irreducible λ-representation Δ of the subgroup $\langle a\rangle$ is one-dimensional: $\Delta\left(a^{i}\right)=\gamma^{i}, i=0,1, \ldots, p-1$. Hence, by Clifford's theorem, $\Gamma(a)=\Delta(a) \dot{+} \ldots \dot{+} \Delta(a)=\gamma E$.

Let $H=\left\langle b_{1}\right\rangle \times \ldots \times\left\langle b_{m}\right\rangle$ and $a=b_{1}^{t_{1}} \ldots b_{m}^{t_{m}}$. Then $\lambda_{a, a} \ldots \lambda_{a, a^{p-1}} \in F^{p}$ if and only if $\delta_{1}^{t_{1}} \ldots \delta_{m}^{t_{m}} \in F^{p}$.

Corollary. An abelian p-group G has a faithful irreducible projective representation over a field F if and only if the number of invariants of the group G does not exceed the rank of the group $F^{*} /\left(F^{*}\right)^{p}$.

Proposition 10. Let G_{q} be a Sylow q-subgroup of a nilpotent group $G, \lambda \in Z^{2}\left(G, F^{*}\right)$ and λ_{q} be the restriction of λ to G_{q}. The group G has a faithful irreducible λ-representation over the field F if and only if for each prime $q\left||G|\right.$ the group G_{q} has a faithful irreducible λ_{q}-representation over F.

Proof. Let Γ be a faithful irreducible λ-representation of G. By Clifford's theorem, the restriction of Γ to G_{q} is a completely reducible representation and all its irreducible components are pairwise conjugate. Let Δ be one of them. If Δ is not faithful, then as in the proof of Proposition 8 , the λ_{q}-center of G_{q} contains a non-identity element a. Since a belongs to the λ-center of G, it follows that $\Gamma(a)=\mu E \quad\left(\mu \in F^{*}\right)$. The contradiction obtained proves the necessity.

Let $G=G_{q_{1}} \times \ldots \times G_{q_{s}}$ be a decomposition into a direct product of Sylow subgroups, Γ_{i} be a faithful irreducible $\lambda_{q_{i}}$-representation of $G_{q_{i}}$ and Δ be an irreducible component of $\Gamma=\Gamma_{1} \# \ldots \# \Gamma_{s}$. Since $\left.\Gamma\right|_{G_{q_{i}}}=\Gamma_{i} \dot{+} \ldots \dot{+} \Gamma_{i}$, we have $\left.\Delta\right|_{G_{q_{i}}}=\Gamma_{i} \dot{+} \ldots \dot{+} \Gamma_{i}$. Therefore, as in the proof of Proposition 7, Δ is a faithful irreducible λ-representation of G. This proves the sufficiency.

Theorem 3. Let G be a finite abelian q-group, $q \neq p, \lambda \in Z^{2}\left(G, F^{*}\right), N$ be the λ-center of G and ε be a primitive q th root of 1 . If $N=\{e\}$, then G is a group of symmetric type and G has a faithful irreducible λ-representation. Let $N \neq\{e\}$ and H be the socle of N. Then the following conditions are equivalent:
(1) G has a faithful irreducible λ-representation;
(2) H has a faithful irreducible λ-representation;
(3) if $\varepsilon \in F$, then $F^{\lambda} H$ is a field, and if $\varepsilon \notin F$, then $F^{\lambda} H$ is a twisted group algebra of a group of order q and of a field $K, K \supset F$;
(4) let $H=\left\langle b_{1}\right\rangle \times \ldots \times\left\langle b_{m}\right\rangle$ and $F^{\lambda} H=\left[H, F, \delta_{1}, \ldots, \delta_{m}\right]$; if $\varepsilon \notin F$, then no more than one of the products

$$
\delta_{1}^{t_{1}} \ldots \delta_{m}^{t_{m}} \quad\left(0 \leq t_{i}<q, t_{1}+\ldots+t_{m} \neq 0\right)
$$

is the qth power of an element of F, and if $\varepsilon \in F$, then none of them is.
Proof. The case $N=\{e\}$ was studied by Yamazaki [11]. Consider the case $N \neq\{e\}$. Let Δ be a faithful irreducible λ-representation of the subgroup H and Δ^{G} be the projective λ-representation of G induced by Δ. Arguing as in the proof of Proposition 8, we deduce that each irreducible
component of Δ^{G} is a faithful λ-representation of G. Together with Clifford's theorem, this proves that conditions (1) and (2) are equivalent.

The equivalence of (2) and (3) is established in Lemma 4 of [2]. Let us prove the equivalence of (2) and (4).

Let $\varrho_{a}=\lambda_{a, a} \lambda_{a, a^{2}} \ldots \lambda_{a, a^{q-1}}$. Consider first the case $\varepsilon \notin F$. Assume that H contains a subgroup $Q=\langle a\rangle \times\langle b\rangle$ of the type (q, q) such that $\varrho_{a}=\gamma^{q}$ and $\varrho_{b}=\delta^{q}(\gamma, \delta \in F)$. Since $F^{\lambda} Q \cong F Q$, no irreducible λ-representation of Q is faithful. Hence, by Clifford's theorem, H does not have faithful irreducible λ-representations. If $H=H^{\prime} \times\langle a\rangle, \varrho_{a}=\gamma^{q}$ and $\varrho_{b} \notin F^{q}$ for each non-identity element $b \in H^{\prime}$, then by Proposition $3, F^{\lambda} H^{\prime}$ is a field and therefore $F^{\lambda} H$ satisfies (3). It follows that H has a faithful irreducible λ-representation. In the case $\varepsilon \in F$, the condition $\varrho_{a}=\gamma^{q}$ is equivalent to the fact that each irreducible λ-representation of the subgroup $\langle a\rangle$ is one-dimensional. Together with Clifford's theorem, this proves that H does not have faithful irreducible λ-representations.

Proposition.*. Let G be a finite abelian group, $p \nmid|G|, \lambda \in Z^{2}\left(G, F^{*}\right)$ and for each prime $q||G|$ let the field F contain a primitive qth root of 1. Assume also that if the exponent of a Sylow 2-subgroup of G is greater than 2, then F also contains a primitive 4 th root of 1 . The group G has a faithful irreducible λ-representation if and only if $F^{\lambda} G$ is a simple algebra.

Proposition 11 is an immediate consequence of Propositions 3,5, 10 and Theorem 3.

Suppose the field F contains a primitive d th root of 1 and let d be a divisor of the exponent of a finite abelian group G. For each prime $q||G|$, we denote by G_{q} a Sylow q-subgroup of G and by d_{q} the q-part of d. The value of t_{q} is the same as in Proposition 4 and s_{q} is the number of invariants of G_{q}, exceeding d_{q}.

Theorem 4. A finite abelian group G has a faithful irreducible λ-representation over F for some cocycle $\lambda \in Z^{2}\left(G, F^{*}, d\right)$ if and only if, for $p\left||G|\right.$, the number of invariants of the subgroup G_{p} does not exceed the rank of the group $F^{*} /\left(F^{*}\right)^{p}$ and for each prime $q||G|$ different from p one of the following conditions holds:
(1) if $t_{q}=0$ and $d_{q} \neq 1$, then $s_{q}=0$ and G_{q} is a group of symmetric type;
(2) if $t_{q} \neq 0$ and $d_{q} \neq 1$, then $s_{q} \leq t_{q}$;
(3) if $d_{q}=1$, then $s_{q} \leq t_{q}+1$.

Proof. By Proposition 10 one can assume $G=G_{q}$. If $q=p$, then we apply the Corollary to Proposition 9 . Let $q \neq p$. If $s_{q}>0$, then by Lemma 5 of [2], the group G_{q} has a subgroup $N_{q}=\left\langle a_{1}\right\rangle \times \ldots \times\left\langle a_{s_{q}}\right\rangle$ such that G_{q} / N_{q} is a group of symmetric type and the exponent of G_{q} / N_{q} does not exceed d_{q}.

By Lemma 6 of [2], for each symmetric cocycle $\mu \in Z^{2}\left(N_{q}, F^{*}\right)$ there exists a cocycle $\lambda \in Z^{2}\left(G_{q}, F^{*}, d_{q}\right)$ such that $\left.\lambda\right|_{N_{q}}=\mu$ and the λ-center of G_{q} coincides with N_{q}. If $s_{q}=0$ then there exists a cocycle $\lambda \in Z^{2}\left(G_{q}, F^{*}, d_{q}\right)$ such that the λ-center of G_{q} is a cyclic group [13]. By Theorem 3, the above reasoning shows that if one of conditions (1)-(3) holds, then G_{q} has a faithful irreducible λ-representation for some $\lambda \in Z^{2}\left(G_{q}, F^{*}, d_{q}\right)$.

Assume that none of (1)-(3) holds for G_{q}. If $d_{q}=q^{m}, c \in G_{q}$ and $o(c)=q^{t}$, where $t>m$, then for each cocycle $\lambda \in Z^{2}\left(G_{q}, F^{*}, d_{q}\right)$ a basis element $u_{c}^{q^{m}}$ belongs to the center of the algebra $F^{\lambda} G_{q}$. It follows that if $s_{q}>0$, then the number of invariants of the λ-center of G_{q} is not less than s_{q}. If $s_{q}=0$ and G_{q} is not a group of symmetric type, then the λ-center of G_{q} differs from $\langle e\rangle$. Let H_{q} be the socle of the λ-center of G_{q}. Since, for $d_{q} \neq 1$, the number of invariants of H_{q} is greater than t_{q}, we conclude that $F^{\lambda} H_{q}$ is not a field. For $d_{q}=1$, the number of invariants of H_{q} is greater than $t_{q}+1$ and therefore $F^{\lambda} H_{q}$ is not a twisted group algebra of a group of order q and of a field $K, K \supset F$. Hence, by Theorem 3, we conclude that G_{q} has a faithful irreducible λ-representation for no cocycle $\lambda \in Z^{2}\left(G_{q}, F^{*}, d_{q}\right)$.

REFERENCES

[1] L. F. Barannik, Faithful projective representations of abelian groups, Mat. Zametki 10 (1971), 630-635 (in Russian).
[2] -, On the problem of faithful projective representations of finite abelian groups over an arbitrary field, Ukrain. Mat. Zh. 26 (1974), 784-790 (in Russian).
[3] C. W. Curtis and I. Reiner, Representation Theory of Finite Groups and Associative Algebras, Interscience, New York, 1962 (2nd ed., 1966).
[4] R. Frucht, Zur Darstellung endlicher abelscher Gruppen durch Kollineationen, Math. Z. 63 (1955), 145-155.
[5] I. N. Herstein, Noncommutative Rings, Carus Math. Monographs, Math. Assoc. Amer., 1968.
[6] G. Karpilovsky, Group Representations, North-Holland Math. Stud. 177, NorthHolland, 1993.
[7] S. Lang, Algebra, Addison-Wesley, Reading, 1965.
[8] H. N. Ng, Degrees of irreducible projective representations of finite groups, J. London Math. Soc. (2) 10 (1975), 379-384.
[9] —, Faithful irreducible projective representations of metabelian groups, J. Algebra 38 (1976), 8-28.
[10] A. Reid, Semi-prime twisted group rings, J. London Math. Soc. (2) 12 (1976), 413418.
[11] K. Yamazaki, On projective representations and ring extensions of finite groups, J. Fac. Sci. Univ. Tokyo 10 (1964), 147-195.
[12] E. M. Zhmud, Isomorphisms of irreducible projective representations of finite groups, Zap. Mekh. Mat. Fak. Kharkov. Univ. i Kharkov. Mat. Obshch. 26 (1960), 333-372 (in Russian); MR 39 N 5724.
[13] E. M. Zhmud, Symplectic geometries over finite abelian groups, Mat. Sb. 86 (1971), 9-34 (in Russian).
[14] -, Symplectic geometries and projective representations of finite abelian groups, ibid. 87 (1972), 1-17.

Institute of Mathematics
Pedagogical University
Arciszewskiego 22b
76-200 Słupsk, Poland
E-mail: Barannyk@wsp.slupsk.pl
Sobolewska@wsp.slupsk.pl

Received 29 October 1999;
revised 14 April 2000

[^0]: 2000 Mathematics Subject Classification: 20C20, 20C25, 16S35.

