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PIERI-TYPE INTERSECTION FORMULAS AND PRIMARY

OBSTRUCTIONS FOR DECOMPOSING 2-FORMS

BY

SINAN SERTÖZ (Ankara)

Abstract. We study the homological intersection behaviour for the Chern cells of
the universal bundle of G(d,Qn), the space of [d]-planes in the smooth quadric Qn in
P
n+1 over the field of complex numbers. For this purpose we define some auxiliary cells
in terms of which the intersection properties of the Chern cells can be described. This is
then applied to obtain some new necessary conditions for the global decomposability of a
2-form of constant rank.

1. Introduction. In this article we study from a purely projective-geo-
metric point of view the obstructions to globally decomposing a 2-form. It
was shown by Dibağ [3] that the vanishing of certain Chern classes is neces-
sary for such a decomposition. We construct new classes whose nonvanish-
ing implies the nonvanishing of the Chern classes. Moreover some vanishing
patterns of these new classes imply the vanishing of the Chern class obstruc-
tions. This is achieved by studying the intersection structure of the integral
homology generated by the Chern cells. Our methods are purely geometric
and determine the required products up to a nonzero multiplicative con-
stant. However this suffices for our purposes since we eventually check for
vanishing of obstructions. In the case of maximal planes these coefficients
can be explicitly calculated. This is done by Hiller and Boe [7] who consider
the case of type B maximal isotropic Grassmannians. Type D (which is a
consequence of the result in type B) appeared in [9]. The results of [7] are
further reproved by Pragacz and Ratajski [11] by using divided differences.
Recently similar calculations in type B were done by Sottile [14]. In the
nonmaximal case these calculations are due to Pragacz and Ratajski (see
[12]). However to adopt these general formulas for our cases would lead to
complicated combinatorial formulas. By checking only nonvanishing condi-
tions we are able to present a purely geometrical argument which suffices
for our results.
We denote byG(d,Qn) the space of complex projective [d]-planes lying in

the smooth quadric hypersurfaceQn of P
n+1. Dibağ has shown thatG(d,Qn)
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represents A
(n+2)
d+1 , the space of normalized 2-forms in R

n+2 of rank 2(d+1),
on which the Stiefel bundle Vn+2,2(d+1) of orthonormal 2(d + 1)-frames in
R
n+2 induces a principal U(d+ 1)-bundle (see [2, 3]).

In general if ω is a 2-form of constant rank 2(d + 1) on a trivial Rn+2-
bundle E over some base space B, then it can be represented by a map ω1 :

B → A
(n+2)
d+1 . Lifting this map to Vn+2,2(d+1) is equivalent to decomposing

the 2-form ω globally as ω = y1 ∧ yd+2 + . . . + yd+1 ∧ y2(d+1) for some
1-forms yi on E. Then the images ω

∗
1(ci) ∈ H

2i(B;Z) of the Chern classes

ci ∈ H
2i(A

(n+2)
d+1 ;Z), i = 0, . . . , d + 1, of the principal U(d + 1)-bundle

Vn+2,2(d+1) necessarily vanish. If E is not trivial then the above geometry is
analyzed on a certain subbundle Sω of E, depending on ω, and its triviality
is another necessary condition for the decomposability of ω (see [3]).

We define some cohomology classes PDΩi ∈ H
l−i(A

(n+2)
d+1 ;Z), where

l = dimA
(n+2)
d+1 and i = 0, . . . , d + 1, and show that if ω

∗
1(PDΩs) = 0 for

some 0 ≤ s ≤ d + 1, and ω∗1(PDΩs+i) 6= 0 for i = 1, . . . , d + 1 − s, then
ω∗1(ci) = 0 for i = 1, . . . , d+ 1 − s. Moreover if ω

∗
1(PDΩs) 6= 0 for some s,

then ω∗1(ci) 6= 0 for all i = 1, . . . , d+1− s (see Theorem 3 and Corollary 4).
When n = 2d, a trivial line bundle splits off the universal bundle on each
irreducible component, V0 and V1, of G(d,Qn) forcing cd+1 to vanish. In
this case s > 0 if it exists. These results occupy the last section after we
establish in Section 3 the intersection properties of Chern cells.

For background on intersection problems we refer to [1, 5, 6]. For recent
applications one can refer to [10, 12, 13, 14]. For the existence and the
decomposability of 2-forms see [2, 3, 8]. Finally, for 2-forms on spheres see
[2, 4].

It is my pleasure to thank İ. Dibağ for his constant support and en-
couragement, and for saving me from an error in an early version of this
manuscript.

2. Preliminaries. In this section we summarize some constructions
which help us to understand the geometry of the space of d-planes lying
in a smooth quadric Qn. First we define a set of points which we propose to
call the skeleton points and use in describing flags and Schubert cells. We
refer to [13, pp. 203–207] for further details and here briefly describe the
main lines for completeness.

For two points p = (p1, . . . , pN ) and q = (q1, . . . , qN ) in C
N we say that

p and q are f-orthogonal if p ·q = p1q1+ . . .+pNqN = 0, and m-orthogonal if
p·q = p1q1+. . .+pNqN = 0, where the overbar denotes complex conjugation.
When p and q are used as homogeneous coordinates of the corresponding
points in the projective space the same terminology prevails.



PIERI-TYPE FORMULAS 203

Assume n = 2m. The skeleton points of Q2m is a set of 2m+2 points in
P
2m+1 chosen as follows:

(i) Choose p0 in Q2m arbitrarily. This means that p0 is f-orthogonal to
itself.
(ii) Once p0, . . . , pk−1 are chosen, where 1 ≤ k ≤ m, choose pk as any

point of Q2m which is both f-orthogonal and m-orthogonal to the join p0 ∨
. . .∨pk but not in the join itself. The set of points in P

2m+1 satisfying these
conditions is a 2(m−k)-dimensional subspace so a choice is always possible.
(iii) After having chosen p0, . . . , pm, the remainingm+1 points are chosen

as the complex conjugates of these, indexed as follows:

pm+i = pm+1−i, i = 1, . . . ,m+ 1.

Here again the overbar denotes complex conjugation.
These points p0, . . . , p2m+1 all lie in Q2m and their join is the whole

space P
2m+1. The particular way we choose and index them enables us to

build a link between geometry and algebra. This can be seen in the following
construction.
For any subset L of I2m+1 = {0, 1, . . . , 2m + 1} define SL as the inter-

section of Q2m with the join of those skeleton points whose index is in L:

SL = Qn ∩
( ∨

j∈L

pj

)
.

The link between geometry and algebra comes into play at this stage: the
dimension of SL is determined by the indexing set L. For this define a
particular subset of L which affects the dimension of SL:

J(L) = {i ∈ Im | i ∈ L and 2m+ 1− i ∈ L}.

In other words J(L) contains the indices of only those skeleton points among
p0, . . . , pm whose complex conjugates also lie in SL.
In [13, Lemma 1.3] we proved that

dimC SL =

{
#L− 2 if J(L) 6= ∅,
#L− 1 if J(L) = ∅.

Now we are ready to construct two dual flags for Q2m. The first one is
called the A-flag and consists of a nested sequence of subvarieties of Q2m,

A0 ⊆ . . . ⊆ Am−1 ⊆ Am0 , Am1 ⊆ Am+1 ⊆ . . . ⊆ A2m = Q2m,

such that Ai−Ai−1 is an open cell of dimension i, and each Ai is chosen as
follows:

(i) Ai = S{0,1,...,i} for i = 0, . . . ,m− 1,
(ii) Am0 = S{0,1,...,m} and Am1 = S{0,1,...,m−1,m+1},
(iii) Am+i = S{0,1,...,m+1+i} for i = 1, . . . ,m.
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Note that dimAi = i for i = 0, . . . , 2m, where the indices m0 and m1 are
considered to be different as indices but both equal to m as values.
The second flag is the dual flag, called the B-flag . It also consists of a

nested sequence of subvarieties of Q2m,

B0 ⊆ . . . ⊆ Bm−1 ⊆ Bm0 , Bm1 ⊆ Bm+1 ⊆ . . . ⊆ B2m = Q2m,

where each Bi is chosen as follows:

(i) Bi = S{2m+1,2m,...,2m+1−i} for i = 0, . . . ,m− 1,
(ii) Bm0 = S{2m+1,2m,...,m+2,m} and Bm1 = S{2m+1,2m,...,m+1} if m is

even, Bm1 = S{2m+1,2m,...,m+2,m} and Bm0 = S{2m+1,2m,...,m+1} ifm is odd,
(iii) Bm+i = S{2m+1,2m,...,m−i} for i = 1, . . . ,m.

Note again that dimBi = i for i = 0, . . . , 2m.
For the corresponding constructions in the n = 2m+1 case we refer the

reader to [13, pp. 205–207].
To conclude this section we summarize the construction of Schubert cells

on G(d,Q2m), the space of d-planes in Q2m. In the notation of [3], G(d,Q2m)

is A
(n+2)
d+1 . A Schubert symbol for G(d,Q2m) is a finite sequence of integers

a = (a0, . . . , ad), d ≤ m, satisfying the conditions

(i) 0 ≤ a0 < . . . < ad ≤ 2m,
(ii) ai + aj 6= 2m for i < j. This condition is to avoid assigning different

Schubert symbols to the same cell. See [3, p. 506].

Here again m0 and m1 are used as two different entities but both having
the value m, so if one of them appears in the sequence a the other does not
according to (ii).
The Schubert cell corresponding to the Schubert symbol a is a subvariety

of G(d,Q2m) defined as

Ωa0...ad = {P ∈ G(d,Q2m) | dimC(P ∩Aai) ≥ i}.

Here Aai denotes the corresponding member of the A-flag. It turns out that

dimCΩa0...ad = a0 + . . .+ ad − d(d+ 1) + e

where

e = #{(ai, aj) | i < j and ai + aj < n}.

For further details on the intersection properties of these cells we refer to
[3, 13].

3. Intersecting Chern cells. Following Dibağ, the ith Chern cell Ωi
of the principal U(d+1)-bundle Vn+2,d+1(A

(2n)
d+1 ;U(d+1)) is defined in terms

of Schubert cells on G(d,Qn) as

Ωi = Ω0... ̂(d−i+1)...d+1, 0 ≤ i ≤ d+ 1,
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when n ≥ 2d+3. (Here ̂(d− i+ 1) means “omit d− i+1”). The restriction
on n ensures that the condition ai + aj 6= n for i < j holds in the Schu-
bert symbols corresponding to the Chern cells, which is important to avoid
redundant representations.

It turns out that the homology duals of the Chern cells play a crucial
part in the intersection behaviour of the Chern classes. These are defined as
follows:

∆j = Ωn−d−1... ̂(n−d−1+j)...n
, 0 ≤ j ≤ d+ 1.

Note that ∆j is the “dual” of Ωj , i.e. Ω
t
j = ∆j in the notation of [3]. A

direct calculation shows that dimCΩi = codimC∆i = i for 0 ≤ i ≤ d+ 1.
The intersection properties of the Chern cells can now be described fully

in terms of the dual cells: the ith Chern cell nontrivially intersects a cell
if and only if this cell is the jth dual Chern cell with a j not greater than
i, and in that case the intersection is precisely a multiple of the (i − j)th
Chern cell. We can now formulate this in the following theorem;

Theorem 1. Let Ωi and ∆j be as defined above and let Ω be any Schu-
bert cell of G(d,Qn) with n ≥ 2d+ 3. Then

Ωi ·Ω 6= 0 if and only if Ω = ∆j for some j with 0 ≤ j ≤ i ≤ d+ 1.

Moreover in that case we have

Ωi ·∆j = αΩi−j , 0 ≤ j ≤ i ≤ d+ 1,

where α is a nonzero integer.

Remark. P. Pragacz has communicated these coefficients as powers of
2. In fact Hiller and Boe [7] have shown that for the maximal plane case,
i.e. the n = 2d case, these coefficients are indeed powers of 2 (see also [11,
14]). We will deal with the 2d ≤ n < 2d + 3 cases in the next section.
However we are only interested in the obstruction-theoretical properties of
these intersections so it only matters for us if the coefficients are zero or
not. By appealing to some general facts about Schubert cycles and Bruhat
order it is possible to give a shorter proof of this theorem but we prefer this
approach which is elementary and exhibits the inner workings of geometry.

Proof of Theorem 1. We will give the proof for the n = 2m case which
reflects the main geometric ideas involved. The n = 2m+1 case is similar and
is omitted. First we note that Ω0 is a point and hence nontrivially intersects
only ∆0, with α = 1. Next let 1 ≤ i ≤ d: Suppose Ωi intersects nontrivially
a Schubert cell Ω whose Schubert symbol is a = (a0, . . . , ad). Let P be
a d-plane in G(d,Qn) which lies in the intersection Ωi · Ω. Then P must
satisfy simultaneously the Schubert conditions dictated by the two symbols

(0, . . . , ̂(d− i+ 1), . . . , d + 1) and (a0, . . . , ad) of Ωi and Ω respectively. If
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we use the A-flag of G(d,Qn), the first symbol (0, . . . , ̂(d− i+ 1), . . . , d+1)
implies that the d-plane P contains the join p0 ∨ . . .∨ pd−i and itself lies in
the join p0 ∨ . . .∨ pd+1. Here we used the description of the spaces Ai of the
A-flag. Next we use the dual B-flag to interpret the second symbol. The a0
of a now requires that P intersects the space Ba0 , but dimCBa0 = a0. The
d-dimensional plane q lies in the (d + 1)-dimensional join p0 ∨ . . . ∨ pd+1.
Then this join must have at least a point in common with Ba0 , which forces
(d + 1) + a0 ≥ n or equivalently a0 ≥ n − d − 1. Combining this with the
general properties of Schubert symbols we have

n− d− 1 ≤ a0 < . . . < ad ≤ n.

This means that we have to choose d+1 integers from the interval [n− d−
1, n]. But there are only d + 2 integers in this interval so we take all the
integers from this interval except one

(a0, . . . , ad) = (n− d− 1, . . . , ̂(n− d− 1 + j), . . . , n), 0 ≤ j ≤ d+ 1.

This is precisely the definition of ∆j and thus the first part of the theorem
is proved. That j cannot exceed i will follow from the proof of the second
part of the theorem.
To prove that part, we assume that the intersection of Ωi with ∆j is

nonempty. We may again assume that i > 0. Assume that P is a d-plane
lying in the nonempty intersection Ωi ·∆j . We know from the above analysis
that P must contain the join p0 ∨ . . . ∨ pd−i and must lie in the (d + 1)-
dimensional space defined by the join p0 ∨ . . . ∨ pd+1. These conditions are
imposed on P because it belongs to Ωi. Now we inspect what further con-
ditions will be imposed on P by forcing it to belong to ∆j as well.
The Schubert symbol of ∆j is

(a0, . . . , ad) = (n− d− 1, . . . , ̂(n− d− 1 + j), . . . , n), 1 ≤ j ≤ d+ 1.

If we use the B-flag, the number a0 imposes that

dimC P ∩ (p2m+2 ∨ . . . ∨ pd+1) ≥ 0.

But since P lies only in p0 ∨ . . .∨ pd+1 the condition imposed by a0 holds if
and only if P contains the point pd+1.
In the same vein we argue that since the integers a0, . . . , aj−1 are con-

secutive the condition

dimC P ∩ (p2m+2 ∨ . . . ∨ pd+2−j) ≥ j − 1

can hold if and only if P contains the join pd+1 ∨ . . . ∨ pd+2−j . The other
integers in the Schubert symbol a do not impose any further conditions
on P .
In view of these arguments we find that if the d-plane P lies in the

nonempty intersection Ωi · ∆j then it must contain the following list of
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skeleton points:

p0, . . . , pd+1 and pd+2−j , . . . , pd+1.

The first part of the list is derived from the fact that P ∈ Ωi and the second
part from the fact that P ∈ Q2m. But there are altogether d + 1 − (i − j)
skeleton points in this list and hence their join, which necessarily belongs to
P , has dimension d − (i − j). Since P is a d-plane we must have i − j ≥ 0
or i ≥ j.
We thus find the description for all P ∈ Ωi ·∆j : each such P must live

in the join p0 ∨ . . . ∨ pd+1 and must contain a (d+ 1− (i− j))-dimensional
subspace of this join. This is the description of Ωi−j .

This completes the proof of the theorem.

4. The unstable cases. The cases when 2d ≤ n ≤ 2d+2 are called the
unstable cases (the terminology belongs to Dibağ, see [3]). The theorem of
the previous section holds verbatim in the unstable cases if we provide the
correct definitions of the ∆j ’s. In the following subsections we describe the
necessary modifications in the definitions to make the theorem hold.

4.1. The n = 2d+ 2 case. In this case the Chern cycles are defined as

Ωi = Ω0... ̂(m−i)...m0 +Ω0... ̂(m−i)...m1 , 0 ≤ i ≤ m.

Here note that m = d + 1. For these Chern cycles we define the following
dual Chern cycles:

∆j = Ωm0... ̂(m+j)...n +Ωm1... ̂(m+j)...n, 1 ≤ j ≤ m.

Our theorem of the previous section now holds verbatim with these defini-
tions.

4.2. The n = 2d + 1 case. The Chern cycles for i = 0, . . . , d + 1 are
defined as

Ωi = 2Ω0... ̂(d+1−i)...d,d+i.

Define the required “duals” as

∆j = Ωd+1−j,d+1... ̂(d+j)...2d+1, j = 0, . . . , d+ 1.

4.3. The n = 2d case. This is the maximal plane case. There are two
disjoint, irreducible families of d-planes in Qn. Call these families V0 and
V1. The Schubert cells of G(d,Qn) are evenly divided among these families.
It suffices to consider V0 only. The V1 case is obtained simply by reversing
the marking of d in the following definitions.

First assume that d is even. Ω0 is defined as

Ω0 = 2Ω0...d0 .
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The nontrivial Chern cycles are defined as

Ωi = 2Ω0... ̂(d−i)...d1,d+i, i = 1, . . . , d.

Finally, define Ωd+1 = 0. The “duals” are then defined as

∆0 = Ωd0...2d,

∆j = Ωd−j,d1... ̂(d+j)...2d, j = 1, . . . , d,

∆d+1 = 0.

When d is odd, to obtain the symbolism in V0 reverse the indexing of d
in the definition of Chern cycles but leave the indexing of the “duals” the
same.

With these definitions Theorem 1 holds. Because of the significance of
the maximal plane case we quote this result separately as a corollary to
Theorem 1.

Corollary 2. In the n = 2d case we also have

Ωi ·∆j = αΩi−j

for 0 ≤ j ≤ i ≤ d where α is a nonzero integer.

Proof. We give the proof when d is even. The odd case is similar. Let
Λ be a d-plane in the intersection of Ωi ·∆j . Assume that a set of skeleton
points p0, . . . , p2d+1 is fixed. We interpret the Schubert conditions of Ωi with
respect to the A-flag and those of∆j with respect to the B-flag. Then Λ lives
in p0∨. . .∨pd+i+1, and must have a point p in pd+j+1∨. . .∨pd+i+1. Therefore
the complex conjugate of this join, which is pd−i∨ . . .∨pd−j , can contribute
only i−j−1 to the dimension to Λ, i.e. dim(Λ∩(p0∨ . . .∨pd−j)) = d−j−1.
Since by the Schubert conditions of Ωi the join p0∨. . .∨pd−i−1 belongs to Λ,
it follows that Λ also contains pd−j+1∨ . . .∨pd−1 and pd+1. These conditions
completely describe any Λ in the intersection. To prove the corollary we
translate these descriptions to Schubert conditions. For this purpose define
a new set of skeleton points q0, . . . , q2d+1 as follows:

• qt = pt for t = 0, . . . , d− i− 1.

• qd−i+t = pd−j+1+t for t = 0, . . . , j − 2.

• qd−(i−j)−1 = pd+1.

• qd−(i−j)+t = pd−i+t for t = 0, . . . , (i− j)− 1.

• qd = pd+j . (This is to respect the V0, V1 formalism of maximal planes
in a quadric.)

• qd+t = qd−t+1 for t = 1, . . . , d+ 1.

If we define an A-flag with respect to this set of skeleton points, the above
description of Λ becomes equivalent to the description of Ωi−j as claimed.
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5. Obstruction classes. We first define the Chern classes as

ci = Ω
∗
i = PDΩ

t
i = PD∆i ∈ H

i(A
(n+2)
d+1 ;Z)

where ∗ denotes the cell dual, PD denotes Poincaré duality and t denotes
homology duality (see [3]). Since boundary operations are zero, the cycles
and cocycles constitute the homology and cohomology respectively.
A necessary condition for the decomposability of a 2-form ω of constant

rank 2(d+ 1) on a trivial Rn+2-bundle E, with n > 2d, on some base space
B is the vanishing in H2(d+1)(B;Z) of ω∗1(ci), 0 ≤ i ≤ d + 1, where ci ∈

H2(d+1)(A
(n+2)
d+1 ;Z) is the Chern class of the principal U(d+1)-bundle of the

Stiefel manifold of orthonormal 2(d+1)-frames in R
n+2 with the projection

onto A
(n+2)
d+1 given by (y1, . . . , y2(d+1)) 7→ y1∧yd+1+ . . .+yd+1∧y2(d+1) and

where ω1 : B → A
(n+2)
d+1 represents ω (see [3]).

In this section as an application of our intersection theorem we describe
the vanishing of ω∗1(ci) in terms of the vanishing of ω

∗
1(PDΩi). Intersection

of homology cells being Poincaré dual to cup product in cohomology, we
have the following relations which follow from Theorem 1:

PDΩi−j = PD(Ωi ·∆j) = (PDΩi) ∪ (PD∆j)

= (PDΩi) ∪ cj , 0 ≤ j ≤ i ≤ d+ 1.

We now get our application to obstruction of decomposability:

Theorem 3. If ω∗1(PDΩs) 6= 0 for some fixed s with 0 ≤ s ≤ d + 1,
then ω∗1(ci) 6= 0 for all i = 0, . . . , d+ 1− s.

Proof. This follows from the equation

ω∗1(PDΩs) = ω
∗
1(PDΩs+i) ∪ ω

∗
1(ci).

The left hand side being nonzero, each term on the right hand side has to
be nonzero.

In particular ω∗1(PDΩ0) is an obstruction to the vanishing of every
ω∗1(ci). We conclude with the following remark which we record as a corol-
lary.

Corollary 4. If ω∗1(PDΩs) = 0 and ω
∗
1(PDΩs+i) 6= 0 for i = 1, . . . ,

d+1−s, then ω∗1(ci) = 0 for i = 1, . . . , d+1−s. In particular if ω
∗
1(PDΩi)

vanishes for i = 0 only , then ω∗1(ci) = 0 for all i = 1, . . . , d+ 1.
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