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EXISTENCE AND INTEGRAL REPRESENTATION OF

REGULAR EXTENSIONS OF MEASURES

BY

WERNER RINKEWITZ (München)

Abstract. Let L be a δ-lattice in a set X, and let ν be a measure on a sub-σ-algebra
of σ(L). It is shown that ν extends to an L-regular measure on σ(L) provided ν∗|L is
σ-smooth at ∅ and ν∗(L) = inf{ν∗(U) | X \ U ∈ L, U ⊃ L} for all L ∈ L. Moreover, a
Choquet type representation theorem is proved for the set of all such extensions.

1. Introduction. Problems concerning the convex set Eσ(ν,A) of all
measures µ on A that extend a given measure ν on a σ-algebra B ⊂ A are of
general interest within measure theory. It is well known that Eσ(ν,A) may
be empty; moreover, even if there exists a measure extension of ν, it may
happen that Eσ(ν,A) has no extreme points ([Pla], [Wz]). In order to obtain
(extremal) measure extensions, it is therefore necessary to impose certain
conditions on ν and A. In §3, the main section of our paper, we will give such
a condition. Namely, there we prove: If A is generated by a δ-lattice L in a
set X, and if ν∗|L is σ-smooth at ∅ and satisfies ν∗(L) = inf{ν∗(U) | X \U ∈
L, U ⊃ L} for all L ∈ L, then there exists an extremal L-regular extension µ
of ν (Theorem 3.2(b)). Furthermore, we show that under these assumptions
the set of all L-regular extensions of ν contains sufficiently many extreme
points to yield a Choquet type integral representation theorem (Theorem
3.3(b); in 3.2(a) and 3.3(a) it is shown that quite similar results hold for
finitely additive measures). Finally, we give an application concerning the
extension of Baire to Borel measures (Corollary 3.5).

Our approach is based on previous work: we use results from [Le] and
[Pla] in the proofs concerning measure extensions, and classical Choquet
theory ([Ph]) in connection with integral representation. For a discussion of
our theorems we refer the reader to Remark 3.4.

2. Preliminaries. In this section, we recall some basic facts from the
theory of additive set functions; moreover, we present Lemma 2.1, an im-
portant tool for our proof of Proposition 3.1.
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Let A be an algebra of subsets of some set X, and let ba(A) be the
family of all additive real-valued bounded functions onA. Equipped with the
topology generated by the evaluations fA : ba(A) ∋ ̺ 7→ fA(̺) := ̺(A) ∈ R,
A ∈ A, and the usual linear structure, ba(A) is a locally convex linear
topological Hausdorff space. If H ⊂ ba(A) is convex, we write exH for the
set of extreme points of H. The family of all contents on A, i.e. the family
{̺ ∈ ba(A) | ̺ ≥ 0}, is denoted by M(A).
Let L ⊂ A be a lattice, i.e., ∅ ∈ L and L is closed under finite unions

and finite intersections. We call ̺ ∈ M(A) (L-)regular provided ̺(A) =
sup{̺(L) | L ∈ L, L ⊂ A} holds for all A ∈ A; the corresponding class
of contents is denoted by Mr(A) (

1). For ̺ ∈ M(α(L)), where α(L) is the
algebra generated by L, we put

N(̺) := {γ ∈M(α(L)) | γ(L) ≥ ̺(L) for all L ∈ L, γ(X) = ̺(X)}.

Observe that N(̺) is a convex compact subset of ba(α(L)).

Lemma 2.1. Let L be a lattice with X ∈ L, and let ̺ ∈M(α(L)). Then
the set Mr(α(L)) ∩ exN(̺) is not empty.

Proof. Let κ be the cardinality of L, and let (Lα)α<κ be an enumeration
of L. Define recursively sets Nα and real numbers rα, α < κ, by

Nα := {γ ∈ N(̺) | γ(Lβ) = rβ for all β < α},

rα := sup{γ(Lα) | γ ∈ Nα}.

By induction we first show that Nα 6= ∅ for all α < κ; hence rα is well
defined. For α = 0 we have Nα = N(̺). Now, let α = δ+1 for some ordinal
δ < κ. Then

Nα = {γ ∈ N(̺) | γ(Lβ) = rβ for all β ≤ δ}

= {γ ∈ Nδ | γ(Lδ) = rδ}

=
⋂

n∈N

{γ ∈ Nδ | rδ − 1//n ≤ γ(Lδ) ≤ rδ} =:
⋂

n∈N

Nnδ .

By hypothesis, Nδ 6= ∅. Together with the definition of Nδ and rδ this shows
that (Nnδ )n∈N is a decreasing sequence of nonempty closed subsets of the
compact set N(̺). Consequently, Nα 6= ∅. For a limit ordinal α we have
Nα =

⋂
β<αNβ . Again, we conclude Nα 6= ∅.

Our definitions show therefore that (Nα)α<κ is a decreasing family of
nonempty compact sets. We claim that any µ ∈

⋂
α<κNα 6= ∅ is a content

with the desired properties.
First, let us prove µ ∈Mr(A), where A := α(L). The definition “γ1 ≺ γ2

iff γ1(L) ≤ γ2(L) for all L ∈ L and γ1(X) = γ2(X)” gives us an order relation

(1) As in our context there is no risk of confusion, we omit an additional label L at
Mr(A).
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on M(A) in the sense of [Le, 2.7] (cf. [Le, 2.2(i)]; here we use X ∈ L). We
claim that µ is maximal in M(A) with respect to ≺. In view of [Le, 2.11],
this proves µ ∈ Mr(A) (see also [Ple, Theorem 2]). Let µ

′ ∈ M(A) with
µ ≺ µ′ and µ′ 6= µ be given. Then µ′ ∈ N(̺). Pick the minimal α < κ such
that µ′(Lα) > µ(Lα) = rα. We obtain µ

′ ∈ Nα, and therefore rα ≥ µ
′(Lα),

a contradiction.

Now, we show µ ∈ exN(̺). Let µ1, µ2 be members of the convex set
N(̺) with µ = 12 (µ1+µ2). If µ1 6= µ2, then µ1|L 6= µ2|L. Hence there exists
a minimal α with µ1(Lα) 6= µ2(Lα). We may assume µ1(Lα) > µ2(Lα), and
obtain µ1(Lα) > µ(Lα) = rα. As µ1 ∈ Nα, this is impossible. Therefore,
µ1 = µ2 = µ.

Remark. (a) The recursive construction used in the proof of Lemma
2.1 is borrowed from [BiŠt, Theorem 4].

(b) The factMr(α(L))∩N(̺) 6= ∅ has already been shown by J. Lembcke
([Le, Korollar 2.12]). For our purposes, however, the existence of an L-
regular content µ ∈ exN(̺) is crucial.

3. The main results. This section contains the central results of the
present paper, Theorem 3.2 and Theorem 3.3. For a discussion we refer the
reader to Remark 3.4.

We introduce the (new) notation used in Proposition 3.1, a cornerstone in
our proceeding. Let L be a lattice in a set X; we write Lc for {X \L | L ∈ L}
and σ(L) for the σ-algebra generated by L. As usual, L is called a δ-lattice
if it is closed under countable intersections. Now, let A,B be algebras with
L ⊂ A ⊃ B. The convex set of all contents µ on A that extend a given
ν ∈ M(B) is denoted by E(ν,A); moreover, we put Er(ν,A) := E(ν,A) ∩
Mr(A). If A is a σ-algebra, Erσ(ν,A) is the set of all L-regular measures
extending ν. The outer content associated with ν ∈M(B) is denoted by ν∗,
i.e., ν∗(P ) = inf{ν(B) | B ∈ B, B ⊃ P} for all P ⊂ X.

Proposition 3.1. Let L be a lattice, and let ν ∈ M(B) be a content
satisfying

(∗) ν∗(L) = inf{ν∗(U) | U ∈ Lc, U ⊃ L} for all L ∈ L.

Then

(a) For every λ ∈ [ex]E(ν, α(L)) there exists µ ∈ [ex]Er(ν, α(L)) with
µ(L) ≥ λ(L) for all L ∈ L.

(b) For every λ ∈ [ex]E(ν, σ(L)) there exists µ ∈ [ex]Erσ(ν, σ(L)) with
µ(L) ≥ λ(L) for all L ∈ L if L is a δ-lattice and ν∗|L is σ-smooth at ∅ (2).

(2) I.e., infn∈N ν
∗(Ln) = 0 for every sequence (Ln)n∈N ⊂ L with Ln ↓ ∅.
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Proof. As the proofs are quite similar, we only show (b). Moreover, we
assume X ∈ L; otherwise, introduce the δ-lattice L′ := L∪{X} and observe
that (due to (∗)) the set of L′-regular measure extensions of ν coincides with
the set of L-regular ones.

1. Let λ ∈ E(ν, σ(L)), and put ̺ := λ|A0, where A0 := α(L). According
to Lemma 2.1, there exists an L-regular content µ ∈ exN(̺) (3). Since
µ(X) = ̺(X), we have µ(U) ≤ ̺(U) = λ(U) for all U ∈ Lc. Together with
λ|B = ν, and the assumption (∗), this yields

µ(L) ≤ inf{λ(U) | U ∈ Lc, U ⊃ L} ≤ inf{ν
∗(U) | U ∈ Lc, U ⊃ L} = ν

∗(L)

for all L ∈ L. Therefore, µ|L is σ-smooth at ∅. Since µ is L-regular, it is also
σ-smooth at ∅ on A0. Hence µ can be extended to an L-regular measure on
A := σ(L); this measure is denoted by µ again. Moreover, we infer

µ(B) = sup{µ(L) | L ∈ L, L ⊂ B} ≤ sup{ν∗(L) | L ∈ L, L ⊂ B} ≤ ν(B)

for all B ∈ B. In view of µ(X) = ̺(X) = ν(X), this gives us µ(B) = ν(B),
and therefore µ ∈ Erσ(ν,A). Hence µ has the desired properties.

2. Now, assume λ ∈ exE(ν,A). We will show that in this case µ ∈
exErσ(ν,A). Let µi ∈ Erσ(ν,A), i = 1, 2, with µ =

1
2 (µ1+µ2) be given. We

claim that

(!) µi|A0 ∈ N(̺).

In view of µ|A0 ∈ exN(̺), this proves µi|A0 = µ|A0, and we are done.

Ad (!). Of course, µi(X) = ̺(X). Now, let us prove µi(U) ≤ ̺(U) for all
U ∈ Lc (the dual condition). Fix U ∈ Lc and ε > 0. As λ is extremal, there
exists, according to [Pla, Theorem 1], a set B ∈ B with

(1) λ(U △B) ≤ ε.

For B we can find a set V ∈ Lc with

(2) µ(B \ V ) ≤ ε and

(3) λ(V \B) ≤ ε

in the following way: Since µ is L-regular, there exists L ∈ L with L ⊂ B
and µ(B \ L) ≤ ε. Due to (∗), there are sets V ∈ Lc and B

′ ∈ B such that
L ⊂ V ⊂ B′ and ν(B′) ≤ ν∗(L) + ε. Thus we obtain µ(B \ V ) ≤ ε and

λ(V \B) ≤ λ(B′ \B) = ν(B′ \B) = ν(B′)−ν(B′∩B) ≤ ν(B′)−ν∗(L) ≤ ε,

as desired. In view of (2), µ ∈ N(̺), (1), and (3), we have

µ(U ∪B) ≤ µ(U ∪ V ) + ε ≤ λ(U ∪ V ) + ε ≤ λ(B ∪ V ) + 2ε ≤ λ(B) + 3ε.

(3) For 1., an L-regular µ ∈ N(̺) would be sufficient (cf. Remark (b) in §2).
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Together with the relations µ = 12 (µ1+µ2), µ2|B = λ|B, and (1), this implies

µ1(U) ≤ µ1(U ∪B) = 2µ(U ∪B)− µ2(U ∪B)

≤ 2(λ(B) + 3ε)− µ2(B) = λ(B) + 6ε

≤ λ(U) + 7ε = ̺(U) + 7ε.

In the same way we obtain µ2(U) ≤ ̺(U) + 7ε. This completes the proof of
Proposition 3.1.

A first consequence of Proposition 3.1 is

Theorem 3.2. Let L and ν be as in Proposition 3.1. Then

(a) exEr(ν, α(L)) 6= ∅;
(b) exErσ(ν, σ(L)) 6= ∅ if L is a δ-lattice and ν

∗|L is σ-smooth at ∅.

Proof. Due to [Pla, Corollary], the sets exE(ν, α(L)), exE(ν, σ(L)) are
not empty. Hence the statements (a), (b) follow from Proposition 3.1(a),
(b), respectively.

The property “µ(L) ≥ λ(L) for all L ∈ L” of the extremal regular exten-
sion µ in Proposition 3.1 was irrelevant for the proof of Theorem 3.2; it will
become important, however, in the proof of 3.3, our integral representation
theorem. The formulation of this result requires some more definitions. (We
use the terminology of [BiŠt].)

ForM ⊂ ba(A) we denote by Σ(M) the σ-algebra (overM) generated by
the evaluations fA|M , A ∈ A (see §2). We say that a convex set H ⊂ ba(A)
has the integral representation property (IRP) if for every µ ∈ H there is a
probability measure γ on Σ(exH) such that

µ(A) =
\
exH

β(A) γ(dβ) for all A ∈ A.

In this case we say that γ represents µ.

Theorem 3.3. Let L and ν be as in Proposition 3.1. Then

(a) Er(ν, α(L)) has IRP ;
(b) Erσ(ν, σ(L)) has IRP if L is a δ-lattice and ν

∗|L is σ-smooth at ∅.

Proof. Again, we only prove (b). Fix µ ∈ Erσ(ν, σ(L)), and put A :=
σ(L), E := E(ν,A), and Erσ := Erσ(ν,A).
1. The formula E =

⋂
B∈B{̺ ∈ M(A) | ̺(B) = ν(B)} shows that the

convex set E ⊂ ba(A) is compact. According to the theorem of Bishop and
de Leeuw ([Ph, Section 4]), there exists therefore a probability measure η0
on the σ-algebra S generated by exE and the Baire sets in E such that

(+) µ(A) =
\
E

β(A) η0(dβ) for all A ∈ A and η0(exE) = 1.
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Due to Σ(exE) ⊂ S, we can define a measure η in the set exE by η(S) :=
η0(S), S ∈ Σ(exE), and (+) shows that η represents µ.

2. By Proposition 3.1(b), there is for every λ ∈ exE a measure h(λ) ∈
exErσ with h(λ)(L) ≥ λ(L) for all L ∈ L and, consequently, h(λ)(U) ≤ λ(U)
for all U ∈ Lc. In this part, we will show that the mapping

h : exE ∋ λ 7→ h(λ) ∈ exErσ

is (Σ(exE)η,Σ(exErσ))-measurable, where Σ(exE)η denotes the completion
of Σ(exE) with respect to η. The sets M tA := {β ∈ exErσ | β(A) > t},
A ∈ A, t ∈ R, generate the σ-algebra Σ(exErσ). Therefore, fix A ∈ A,
t ∈ R, and regard

S := h−1[M tA] = {λ ∈ exE | h(λ)(A) > t}.

Since µ is regular, there exists an increasing sequence (Ln)n∈N ⊂ L and
a decreasing sequence (Un)n∈N ⊂ Lc with Ln ⊂ A ⊂ Un, n ∈ N, and
infn∈N µ(Un \ Ln) = 0. We put

S1 := {λ ∈ exE | sup
n∈N

λ(Ln) > t}, S2 := {λ ∈ exE | inf
n∈N

λ(Un) > t},

and

S3 := {λ ∈ exE | inf
n∈N

λ(Un \ Ln) > 0}.

Then S1, S2, S3 ∈ Σ(exE) and S2 \ S1 ⊂ S3. Moreover, we claim that

(1) S1 ⊂ S ⊂ S2, and

(2) η(S3) = 0.

This proves S ∈ Σ(exErσ)η and, consequently, the measurability of h.

Ad (1). The relations are an easy consequence of

sup
n∈N

λ(Ln) ≤ sup
n∈N

h(λ)(Ln) ≤ h(λ)(A) ≤ inf
n∈N

h(λ)(Un) ≤ inf
n∈N

λ(Un),

where λ ∈ exE.

Ad (2). Since η represents µ, we have\
exE

inf
n∈N

λ(Un \ Ln) η(dλ) = inf
n∈N

\
exE

λ(Un \ Ln) η(dλ)

= inf
n∈N

µ(Un \ Ln) = 0.

Therefore, η(S3) = 0.

3. The image measure γ := h(η) (4) is a probability on Σ(exErσ). We
claim that γ represents µ. Fix A ∈ A and ε > 0. Since µ is regular, there

(4) We identify η with its completion on Σ(exE)η.
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are sets L ∈ L and U ∈ Lc with L ⊂ A ⊂ U and µ(U \L) ≤ ε. Then we get\
exErσ

β(A) γ(dβ) ≥
\

exErσ

β(L)h(η)(dβ) =
\
exE

h(λ)(L) η(dλ)

≥
\
exE

λ(L) η(dλ) = µ(L) ≥ µ(A)− ε

and, analogously,
T
exErσ

β(A) γ(dβ) ≤ µ(U) ≤ µ(A)+ ε. This completes the
proof of Theorem 3.3.

Relations between our results on measure extension and previous ones
are discussed in the following

Remark 3.4. (a) Condition (∗) in Proposition 3.1 is not new; it can be
found, e.g., in a special situation in [Ad1, 3.14]. Therefore, Theorem 3.2(b)
extends the first part of [Ad1, 3.14].
(b) Let L be a lattice, and let ν ∈M(B). [Li, Theorem 1] states implicitly

that there exists an extremal extension of ν to an L-regular content on
α(L ∪ B) provided ν is L-tight, i.e.

ν(B) = sup{ν∗(L) (
5) | L ∈ L, L ⊂ B} for all B ∈ B.

It is instructive to compare this result with Theorem 3.2(a):
Obviously, a content ν is L-tight iff ν∗(P ) = sup{ν∗(L) | L ∈ L, L ⊂ P}

for all P ⊂ X iff ν∗(P ) = inf{ν∗(U) | U ∈ Lc, U ⊃ P} for all P ⊂ X.
Therefore, every L-tight ν ∈ M(B) satisfies (∗), the general supposition
of Theorem 3.2(a). On the other hand, 3.2(a) merely yields an L-regular
extension of ν provided B ⊂ α(L).
Finally, let us note that for B ⊂ α(L) a content on B with property (∗)

need not be L-tight. Example: Let X = {1, 2, 3}, L = {∅, X, {1}, {1, 3}},
B = {∅, X, {1, 2}, {3}}, and let ν be the Dirac measure concentrated at
1 ∈ X restricted to B. Then L is a lattice with α(L) ⊃ B, and ν satisfies
(∗). Since we have ν({1, 2}) = 1 6= 0 = sup{ν∗(L) | L ∈ L, L ⊂ {1, 2}}, ν is
not L-tight.
(c) It is well known that extension problems in topological measure the-

ory can often be reduced to the following abstract situation (see, e.g., [Ad2]
and the references given there): Let K, L be lattices with K ⊂ L, and let
ν ∈ M(α(K)) be K-regular. Then ν is obviously L-tight, and we gather
from (b) that in the described situation ν satisfies the general supposition
(∗) of our theorems. According to 3.2(a), e.g., we deduce that ν admits an
extremal extension to an L-regular content on α(L). This is exactly [Ad2,
Theorem 2.3].
(d) Under condition (∗), Theorem 3.3(a) gives an affirmative answer to a

natural question concerning the set Er(ν, α(L)). Even in the case mentioned

(5) ν∗ denotes the inner content associated with ν.
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in (c) this result has not been known so far. Since in general Er(ν, α(L)) is
not closed in ba(α(L)), we cannot obtain 3.3(a) by a direct application of
a general Choquet integral representation theorem. (The same is true for
3.3(b) or for Corollary 3.5(b).)
(e) Regard the following problem concerning preimage measures: Let

(Y,B, ν) be a finite measure space, L be a δ-lattice, and p : X → Y be
a (σ(L),B)-measurable map. When does there exist an extremal L-regular
measure µ on σ(L) with p(µ) = ν? A straightforward generalization of our
procedure in the proofs of Proposition 3.1 and Theorem 3.2 shows that we
obtain an affirmative answer under the assumptions

• ν∗(p[X]) = ν(Y ) (6),
• ν∗(p [L]) = inf{ν∗(p[U ]) | U ∈ Lc, U ⊃ L} for all L ∈ L,
• infn∈N ν

∗(p[Ln]) = 0 for every sequence (Ln)n∈N ⊂ L with Ln ↓ ∅.

(This result extends [Ad2, 3.4].) Moreover, under these conditions the set of
all L-regular preimage measures µ of ν (with respect to p) has IRP.

It is usual to give some topological applications of abstract theorems like
3.2 or 3.3 (see, e.g., [Ad2, §3]). We restrict ourselves to Corollary 3.5. Recall
that a topological space is said to be Baire dominated if for every sequence
(Fn)n∈N of closed sets with Fn ↓ ∅, there exists a sequence of Baire sets
(Cn)n∈N such that Fn ⊂ Cn for all n ∈ N and Cn ↓ ∅.

Corollary 3.5. Let X be a Baire-dominated topological space, and let
ν be a finite Baire measure in X. Then

(a) there exists an extremal extension of ν to a regular Borel measure;
(b) the set of all regular Borel measures that extend ν has IRP.

Proof. Since every zero-set is closed, and since a Baire measure is regular
with respect to the lattice of zero-sets, Remark 3.4(c) shows that ν satisfies
(∗) of Proposition 3.1. As X is Baire dominated, ν∗ restricted to the closed
sets is σ-smooth at ∅. Hence, the statements (a) and (b) follow from 3.2(b),
3.3(b), respectively.
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