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SUBCATEGORIES OF THE DERIVED CATEGORY AND

COTILTING COMPLEXES

BY

ASLAK BAKKE BUAN (Trondheim)

Abstract. We show that there is a one-to-one correspondence between basic cotilting
complexes and certain contravariantly finite subcategories of the bounded derived category
of an artin algebra. This is a triangulated version of a result by Auslander and Reiten.
We use this to find an existence criterion for complements to exceptional complexes.

Introduction. Homologically finite subcategories were introduced by
Auslander and Smalø [3], and they have proved to be important in the
study of artin algebras. Homologically finite subcategories of the category
of finitely generated modules have been studied by several authors. In [1],
Auslander and Reiten showed that there is a correspondence between cer-
tain contravariantly finite subcategories and basic cotilting modules. In this
paper we consider some subcategories of the bounded derived category of an
artin algebra that are associated with cotilting complexes. In the first sec-
tion we give definitions and basic results that we use in the second section,
where we show that there is a correspondence between cotilting complexes
and certain contravariantly finite subcategories of the derived category. The
third section is devoted to examples. In the fourth section we use the cor-
respondence to prove an existence criterion for complements of exceptional
complexes.

1. Subcategories of the derived category. Let Λ be an artin algebra.
Let modΛ be the category of finitely generated left Λ-modules, and let
D = Db(modΛ) be the bounded derived category. This is a triangulated
category. We denote the shift functor by [1], and its inverse by [−1]. We let
I(Λ) be the full subcategory of modΛ formed by the injective objects, and,
similarly, P(Λ) stands for the projectives. Then Db(modΛ) is equivalent to
K+,b(I(Λ)). We consider this an identification, and let Kb(I(Λ)) denote the
coperfect complexes. By a subcategory, we will always mean a full additive
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2 A. B. BUAN

subcategory of Db(modΛ). Triangles will be denoted by A → B → C →
A[1], or sometimes by A → B → C →. By Hom( , ) we always mean
homomorphisms in the derived category.

The existence of base change diagrams in triangulated categories is an
important tool. For any diagram

A //

��

B

D

there exists a commutative diagram

X[−1]

��

X[−1]

��
C[−1] // A

��

// B

��

// C

C[−1] // D

��

// E

��

// C

X X

where the rows and columns are triangles. This is called a cobase change,
and there is a dual notion of base change.

We also need the following basic facts about maps in the derived category.

Lemma 1.1. Let Λ be an artin algebra over a commutative artin ring R

and let A and B be in D.

(a) HomD(A, B) is a finitely generated R-module.

(b) EndD(A) and EndD(A)op are artin algebras.

(c) HomD(A, B) is a finitely generated EndD(A)op-module.

(d) HomD(A, ) induces an equivalence addA → P(EndD(A)op).

Proof. We only prove (a). To see that HomD(A, B) is an R-module is
easy. We show that it is finitely generated. Consider A = (ai) and B = (bi)
as objects in K+,b(I(Λ)). Then maps are represented by chain maps modulo
homotopy. There are numbers M and N such that am = bm = 0 for m ≤ M

and Hn(A) = Hn(B) = 0 for n ≥ N . Let A>N be the complex

. . . → 0 → 0 → aN+1 → aN+2 → aN+3 → . . .

and let A≤N be the complex

. . . → aN−2 → aN−1 → aN → 0 → 0 → . . .
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Let XA = ker(aN+1 → aN+2). Similarly define B>N , B≤N and XB. Then
HomD(A, B) is an R-submodule of HomD(A>N , B>N )⊕HomD(A≤N , B≤N).
We see that HomD(A>N , B>N ) is finitely generated, because of the isomor-
phism HomD(A>N , B>N ) ≃ HomΛ(XA, XB). Moreover HomD(A≤N , B≤N )
is obviously finitely generated. The claim now follows.

We also need minimal versions of maps. A map f : A → B is called right

minimal if for any g : A → A such that fg = f , the map g must be an
automorphism. There is a dual notion of left minimal.

Lemma 1.2. Let f : A → B be a map in D. Then there is a decomposition

A = A′ ⊕ A′′ such that f |A′ is right minimal and f |A′′ = 0.

Proof. Apply the functor Hom(A, ) to f . Choose A′ such that
Hom(A, A′) → Im Hom(A, f) is a projective cover, and let A′′ be such that
A′ ⊕ A′′ = A. The claim now follows from Lemma 1.1(d).

A subcategory X is called extension closed if for any triangle A → B →
C → in Db(modΛ), B is in X whenever A and C are in X . It is called
resolving if it is extension closed and closed under [−1] (that means X[−1]
is in X whenever X is). For any subcategory X let ⊥X = {Y ∈ Db(modΛ) |
Hom(Y,X [i]) = 0 for all i > 0}. When T is a complex we denote ⊥(addT )
by ⊥T . For any subcategory X , the category ⊥X is obviously resolving.
We also define X⊥ = {Y ∈ Db(modΛ) | Hom(X , Y [i]) = 0 for all i > 0},
and this is always a coresolving category (that is, closed under extensions
and [1]).

Let X denote a subcategory, and let C be any object in Db(modΛ). A
right X -approximation to C is a map f : X → C with X in X such that
all maps from an object in X to C factor through f . If this map is right
minimal, it is called a minimal right X -approximation. A subcategory is con-

travariantly finite if there exists a right X -approximation for any object C

in Db(modΛ). We have dual notions of left approximations, and covariantly

finite subcategories. It follows easily from Lemma 1.1 that finite subcate-
gories of D are contravariantly finite and covariantly finite. The next lemma
is a triangulated version of Wakamatsu’s Lemma [6].

Lemma 1.3. Let X be an extension closed subcategory of Db(modΛ).

Let YC → XC
f
→ C → be a triangle, where f is a minimal right X -

approximation. Then Hom(X, YC [1]) = 0 for all X in X . If X is resolving ,
then YC is in X⊥.

Proof. Assume there is a map X[−1] → YC , where X is in X . Then
there is a cobase change diagram
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X[−1]

��

X[−1]

��
C[−1] // YC

��

// XC

��

// C

C[−1] // B

��

// E

��

// C

X X

Since X is extension closed, E is in X and the map E → C factors
through f . By this we get the commutative diagram of triangles

YC

��

// XC

��

// C

B

��

// E

��

// C

YC
// XC

// C

Since XC → C is minimal, the composition XC → E → XC is an isomor-
phism, and therefore also the composition YC → B → YC is an isomorphism.
Thus YC → B is a split monomorphism, and thus the map X[−1] → YC

is 0. The second statement follows now by definition.

Let X be any subcategory of Db(modΛ). Let X̂ be the full subcategory
of Db(modΛ) with objects C such that there is an integer n and a sequence
of triangles

Xn → Xn−1 → Kn−1 →

Kn−1 → Xn−2 → Kn−2 →
...

K1 → X0 → C →

with all the Xi in X .
When X is resolving, the category X̂ has a particularly nice description.

Lemma 1.4. Let X be a resolving subcategory. Then C is in X̂ if and

only if there is an n > 0 such that C[−n] is in X .

Proof. Observe that when we have a triangle A → B → C → with B

and C in X , then also A is in X . Assume C is in X̂ , and that there is a
sequence of triangles as in the definition of X̂ . Then Kn−i[−i] is in X for
i = 1, . . . , n − 1, and C[−n] is in X .
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Assume C[−n] is in X . Consider the triangle

C[−1] → 0 → C →.

Since 0 is in X , and C[−n] is in X , the claim follows by considering shifts
of this triangle.

The following two lemmas will be useful in the next section, where we
consider the subcategory ω = X ∩ X⊥.

Lemma 1.5. Let X be resolving. If X̂ = Db(modΛ), then X⊥ consists

of coperfect complexes.

Proof. Assume Λ has r simple modules up to isomorphism, and let
C1, . . . , Cr be stalk complexes with the simples in degree 0. Then there
is an N , such that Ci[−n] is in X for n > N and all i = 1, . . . , r. Let Y

be an object in X⊥. Then Y can be represented by a complex of injective
modules yi, with differential δi, bounded to the left, and there is a t such
that s > t implies Hs(Y ) = 0 and Ht(Y ) 6= 0. We can also assume that

0 → ker δt → yt → yt+1 → . . .

is a minimal injective resolution of ker δt. To prove our claim, we need to
show that this resolution is always finite. So assume ker δt has a summand
of infinite injective dimension. Choose k > N + 1 such that Hs(Y ) = 0 for
s ≥ k−1. If we can show that Hom(C[−(k−1)], Y [1]) = Hom(C[−k], Y ) 6= 0,
then C[−(k− 1)] is not in X , and we have a contradiction, since k− 1 > N .
Let m be a non-injective indecomposable summand of Im δk−1, and let s be
a simple submodule of m. The inclusion map s →֒ m induces a chain map β

. . . // 0 //

��

j0 α0
//

β0

��

j1 α1
//

β1

��

j2 α2
//

β2

��

. . .

. . . // yk−1 δk−1
// yk δk

// yk+1 δk+1
// yk+2 δk+2

// . . .

where the upper row is a minimal injective resolution of s. We need to show
that this map is not nullhomotopic. Assume there is a homotopy γ. Since

γ1α0|s = 0 and β0|s = δk−1γ0|s + γ1α0|s 6= 0, the composition (s →֒ j0 γ0

→

yk−1 δk−1

→ m) 6= 0, and thus j0 must be isomorphic to m, and we have a
contradiction.

Lemma 1.6. Let X be a contravariantly finite, resolving subcategory of

Db(modΛ), and assume X̂ = Db(modΛ). Then ω̂ = X⊥.

Proof. Observe that for a triangle A → B → C →, if A and B are in
X⊥, then so is C. Therefore ω̂ is in X⊥, since ω obviously is. Let C be
in X⊥, and assume C[−n] is in X , where n > 0. Choose minimal right
X -approximations to find triangles
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K1 → X0 → C →

K2 → X1 → K1 →
...

Kn → Xn−1 → Kn−1 →

with Xi in X . Then the Ki are in X⊥ by Lemma 1.3. Then also the Xi are in
X⊥ since X⊥ is closed under extensions. Thus, we need only show that Kn

is in X . But since X is resolving and C[−n] is in X , we see that Ki[−n + i]
is in X .

Let X be any subcategory of Db(modΛ) and let C be any object in

Db(modΛ). If C is in X̂ , then we define the resolution dimension X -resdimC

to be the smallest integer n such that there are triangles

Xn → Xn−1 → Kn−1 →

Kn−1 → Xn−2 → Kn−2 →
...

K1 → X0 → C →

with all the Xi in X . If C is not in X̂ , we let X -resdimC = ∞. We then
have the following.

Lemma 1.7. Let X be closed under shift. Then for any triangle A → B →
C →, we have X -resdimC ≤ X -resdimA + X -resdimB + 1.

Proof. Let a = X -resdimA, b = X -resdimB and c = X -resdimC. The
proof is by induction on b. For b = 0, we have c ≤ 1 + a = 1 + a + b, by the
definition of the resolution dimension. Assume 1 ≤ b < ∞. Then there is a
triangle Q → X → B →, with X in X , and X -resdimQ ≤ b − 1. Consider
the diagram

A

��

A

��
Q //

��

X // B

��

// Q[1]

��
K // X // C

��

// K[1]

��
A[1] A[1]

Then (by the octahedral axiom) A → Q[1] → K[1] → is a triangle. By
induction we have X -resdimK ≤ a + b− 1 + 1, and therefore X -resdimC ≤
a + b + 1.
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For any subcategory ω let ω̃ denote the closure under shift. A full subcat-
egory T ′ of a triangulated category T is said to generate T if the smallest
triangulated subcategory of T containing T ′ is equal to T . We have the
following obvious consequence of the preceding lemma.

Proposition 1.8. Let X be a triangulated subcategory of Db(modΛ).
Assume ω ⊆ X ⊆ Db(modΛ) and that ω generates X . Then for any object

X in X , we have ω̃-resdimX < ∞.

2. Subcategories and cotilting complexes. In this section we show
that there is a 1-1 correspondence between certain contravariantly finite sub-
categories of Db(modΛ) and basic cotilting complexes. A cotilting complex

is a complex T in Db(modΛ) with the following properties:

• T is in Kb(I(Λ)).

• Hom(T, T [i]) = 0 for all i 6= 0.

• T generates Kb(I(Λ)).

The dual notion of tilting complexes was introduced by Rickard [5]. If we
write T as a sum of indecomposable objects T1 ⊕ . . . ⊕ Tr, then T is called
basic if Ti is not isomorphic to Tj , when i 6= j.

To show our promised correspondence we will need the following lemmas.

Lemma 2.1. Let X be a contravariantly finite, resolving subcategory with

X̂ = Db(modΛ). Assume X⊥ generates Kb(I(Λ)) and that ω = X ∩ X⊥ is

selforthogonal. Then ω = addT for a cotilting complex T .

Proof. Since X⊥ = ω̂ by Lemma 1.6, we find that ω generates Kb(I(Λ)).
By Lemma 1.5, ω is coperfect. Thus, we need only show that ω is of finite
type. By Proposition 1.8 the ω̃-resdim of I is finite, where I is the stalk
complex with an injective cogenerator of modΛ in degree zero. Thus, there
exist triangles

Wn[in] → Wn−1[in−1] → Kn−1 →

Kn−1 → Wn−2[in−2] → Kn−2 →

...

K1 → W0[i0] → I →

with the Wi in ω. The direct sum T =
⊕n

i=0 Wi is a cotilting complex. For
any Y in ω, also T ⊕ Y is a cotilting complex. This means that Y is in
addT , since the number of nonisomorphic indecomposable summands for
all cotilting complexes over a fixed algebra Λ is constant.

Lemma 2.2. Let T be a selforthogonal coperfect complex. Then ⊥T is

contravariantly finite.
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Proof. Choose an object X0 in Db(modΛ). Since T is coperfect, there
is an integer r and an integer s ≥ 0 such that Hom(X0, T [i]) = 0 when
i 6∈ [r − s, r]. If r ≤ 0, then X0 is in ⊥T . Assume r ≥ 1. Choose a minimal
left addT [r]-approximation such that we have a triangle X0 → T0[r] →
X1 →. Then, apply the functor Hom( , T ) to this triangle, and consider the
corresponding long exact sequence. By applying Wakamatsu’s Lemma we
then have Hom(X1, T [i]) = 0 when i 6∈ [r − s + 1, r] if s 6= 0. If s = 0, then
also Hom(X1, T [i]) = 0 for i 6= r. Repeat this r times. If 2r − s ≤ r, then
Hom(Xr, T [i]) = 0 for i 6∈ [2r−s, r]. Otherwise, Hom(Xr, T [i]) = 0 for i 6= r.
In both cases Xr[−r] is in X = ⊥T . We have a composition of maps

Xr[−r] → Xr−1[−r + 1] → . . . → X1[−1] → X0.

This map is a right X -approximation. To prove this, assume there is a map
f : X → X0 with X in X . Since the composition X → X0 → T0[r] is 0, the
map f factors through X1[−1] → X0. Repeat this argument for Xi[−i] for
i = 1, . . . , r − 1.

Lemma 2.3. Let T be a selforthogonal coperfect complex. Then ⊥T is

resolving , and ⊥T ∩ (⊥T )⊥ = addT . Also ⊥̂T = Db(modΛ) and (⊥T )⊥ =

âddT .

Proof. The subcategory ⊥T = X is obviously resolving, and add T ⊆
X ∩ X⊥ by assumption. Let X be in X ∩ X⊥, and choose a minimal left
addT -approximation X → T0 → X1 →. Then X1 is in ⊥T by the dual
of Wakamatsu’s Lemma. Therefore X1 → X[1] is the 0 map, and X is in

addT . Thus addT = ⊥T ∩ (⊥T )⊥. It follows from Lemma 1.4 that ⊥̂T =

Db(modΛ). It remains to show that (⊥T )⊥ = âddT , but this follows from
Lemma 1.6.

We are now ready to prove the main theorem.

Theorem 2.4. There is a 1-1 correspondence between the basic cotilt-

ing complexes, and the subcategories X of Db(modΛ) with the following

properties:

(a) X is contravariantly finite.

(b) X is resolving.

(c) X̂ = Db(modΛ).

(d) X ∩ X⊥ is selforthogonal.

(e) X⊥ generates Kb(I(Λ)).

The correspondence is given by X 7→ X ∩ X⊥ and T 7→ ⊥T .

Proof. By Lemmas 2.1, 2.2 and 2.3 we only need to show that the given
maps are bijections. Also, by Lemma 2.3 we know that given a cotilting
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complex T , we have ⊥T ∩ (⊥T )⊥ = addT , so it is enough to show that given
an X such that (a)–(e) are satisfied, we have ⊥(X ∩X⊥) = X . The inclusion
X ⊆ ⊥(X ∩ X⊥) is obvious. Let ω = X ∩ X⊥. Then it is easy to see that
⊥ω = ⊥(ω̂). Since ω̂ = X⊥, we only need to show that ⊥(X⊥) ⊆ X . For this,
let Z be in ⊥(X⊥) and choose a minimal right X -approximation X → Z.
Consider the triangle Y → X → Z →. By Wakamatsu’s Lemma, Y is in
X⊥, so that the map Z → Y [1] is the 0 map. But then Z is a summand
in X.

3. Examples. In this section we give examples showing that none of
the properties (a)–(e) in Theorem 2.4 can be left out.

Example 1. Let T be any exceptional complex. This means that T is
coperfect and Hom(T, T [i]) = 0 when i 6= 0. Assume that T is not a cotilting
complex. Then ⊥T satisfies the first four conditions in Theorem 2.4, but
not (e).

Example 2. Let Λ be the lower triangular 3 × 3 matrix algebra over a
field k. The algebra has 6 indecomposable modules; the three simples S1, S2

and S3, the projectives P1 and P2 of length 3 and 2 and an injective I2

of length 2. Since Λ is hereditary, the indecomposable complexes are just
stalk complexes of indecomposable modules. It is easy to see that any (full)
subcategory of Db(modΛ) is contravariantly finite.

Let

X =
( ⋃

i≤0, X∈ind Λ

X[i]
)
\ P1[−1].

Then X̂ = Db(modΛ). We also see that

X⊥ =
( ⋃

i≥1, Y ∈ind Λ

Y [i]
)
∪ {P1, I2, S1},

so X⊥ obviously generates the derived category, and we also have X ∩X⊥ =
{P1, I2, S1} which is selforthogonal. But X is not resolving, since P1[−1] is
not in X . We underline the objects in X , and overline the objects in X⊥ in
the Auslander–Reiten quiver of the derived category.

P3[−1]

��4
44

44
S2[−1]

��4
44

44
S1[−1]

��4
44

44
4

P1

��4
44

44
P3[1]

��4
44

44
S2[1]

��4
44

44
S1[1]

. . . P2[−1]

��4
44

44
4

DD





I2[−1]

��4
44

44
4

DD





P2

��4
44

44
4

DD






I2

��4
44

44

DD






P2[1]

��4
44

44

DD






I2[1]

DD






��4
44

44
. . .

S1[−2]

DD





P1[−1]

DD






P3

DD






S2

DD






S1

DD






P1[1]

DD






P3[2]
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Example 3. Let Λ be as in the above example, and use the same nota-
tion for the modules. Let

X =
(( ⋃

i≤−1, X∈ind Λ

X[i]
)
\ S1[−1]

)
∪ {P3[1], P3}.

Then X is resolving and by Lemma 1.4 we also see that X̂ = Db(modΛ).
We have

X⊥ =
( ⋃

i≥1, X∈ind Λ

X[i]
)
∪ {S2, I2, S1, S2[−1], I2[−1], S1[−1]}.

Therefore, X⊥ generates the derived category. But

X ∩ X⊥ = {S2[−1], I2[−1], P3[1]}

is not selforthogonal.

P3[−1]

��3
33

33
3

S2[−1]

��3
33

33
S1[−1]

��3
33

33
3

P1

��3
33

33
3

P3[1]

��3
33

33
S2[1]

��3
33

33
3

S1[1]

. . . P2[−1]

��4
44

44
4

EE�����
I2[−1]

��4
44

44
4

EE�����

P2

��4
44

44
4

EE�������
I2

��4
44

44
4

EE������
P2[1]

��4
44

44
4

EE������

I2[1]

EE������

��4
44

44
4

. . .

S1[−2]

EE






P1[−1]

EE





P3

EE






S2

EE






S1

EE






P1[1]

EE







P3[2]

Example 4. Let Λ be the Kronecker algebra. This is again a heredi-
tary algebra, such that the indecomposable complexes are just stalk com-
plexes with indecomposable modules. There are three types of indecompos-
able modules (for details, see [2]): the preprojectives P, the regular modules
R and the preinjectives I. Let

X =
( ⋃

i<0, X∈ind Λ

X[i]
)
∪

( ⋃

Y ∈P∪R

Y [0]
)
.

Then X is resolving and X̂ = Db(modΛ). In this case, we have

X⊥ =
( ⋃

i>0, X∈ind Λ

X[i]
)
∪

( ⋃

Y ∈I

Y [0]
)
.

Thus, X⊥ generates Db(modΛ), and X ∩X⊥ = 0. But X is not contravari-
antly finite, since for example the stalk complex with the simple injective in
degree zero, does not have any X -approximation.

Example 5. Let Λ be the Kronecker algebra. Let X =
⋃

i≤0 P [i], where
P is the simple projective module. Then X is resolving and contravariantly
finite. We have

X⊥ =
( ⋃

j∈Z

I[j]
)
∪

( ⋃

i≥0, X∈ind Λ

X[i]
)
,
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where I is the simple injective module. Then obviously X⊥ generates
Db(modΛ), and X ∩ X⊥ = {P [0]} is selforthogonal. Since X is resolving,

we can use Lemma 1.4 to see that X̂ 6= Db(modΛ).

4. Partial cotilting complexes. In this section we show that the cor-
respondence given in section 2 can be used to give an existence criterion for
complements of exceptional complexes. If C is an exceptional complex, then
a complex X is called a complement if C ⊕ X is a cotilting complex. There
is a similar result for module categories in [4].

Proposition 4.1. Let C be an exceptional complex , and let Y = ⊥C.

Then C has a complement if and only if there is a category X ⊆ Y such that

X satisfies (a)–(e) in Theorem 2.4 and C is in X .

Proof. If C has a complement X, then choose X = ⊥(C ⊕ X). Con-
versely, let X be such that X ⊆ Y and C is in X and such that X satisfies
(a)–(e) in Theorem 2.4. Then X = ⊥T for a cotilting complex T . Since
⊥T ⊆ ⊥C, we have (⊥C)⊥ ⊆ (⊥T )⊥. But then C is in (⊥T )⊥ ∩⊥T = add T .
This means that C has a complement.
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