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ON FREE SUBGROUPS OF UNITS

IN QUATERNION ALGEBRAS

BY

JAN KREMPA (Warszawa)

Abstract. It is well known that for the ring H(Z) of integral quaternions the unit
group U(H(Z)) is finite. On the other hand, for the rational quaternion algebra H(Q),
its unit group is infinite and even contains a nontrivial free subgroup. In this note (see
Theorem 1.5 and Corollary 2.6) we find all intermediate rings Z ⊂ A ⊆ Q such that the
group of units U(H(A)) of quaternions over A contains a nontrivial free subgroup. In each
case we indicate such a subgroup explicitly. We do our best to keep the arguments as
simple as possible.

1. Motivation and main result. In this paper N ⊂ Z ⊂ Q ⊂ R

have standard meaning as subsets of the field C of complex numbers, U(R)
denotes the group of units of any associative ring R with 1 6= 0, F stands
for a free nonabelian group with two generators, and SOn(R) ⊂ GLn(R) for
the well known linear groups over a given ring R. We also apply some other
standard notation and terminology (see for example [10, 13, 17]).
In [4, 8, 9, 11], and some other papers, for various rings R explicit copies

of F ⊂ U(R) were found. We consider the same problem for orders, but
not only Z-orders, in finite-dimensional, semisimple Q-algebras. An old and
simple, but very useful and effective result in this direction, due to Sanov
and Brenner (see [17]), is:

Lemma 1.1. For any c ∈ C put

uc =

[

1 c
0 1

]

and u∗c =

[

1 0
c 1

]

.

If either |c| ≥ 2 or c is transcendental over Q then the subgroup 〈uc, u
∗

c〉 ⊂
GL2(C) is free.

As a consequence of this result we have

Theorem 1.2. Let R be any order in a finite-dimensional semisimple
Q-algebra. If R has a nonzero nilpotent element then there exists an effective
way to construct a copy of F ⊆ U(R).
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Sketch of proof. By the assumption there exists a semisimple, finite-
dimensional Q-algebra A with nontrivial nilpotent element such that R ⊆ A
and A = QR. In particular, for any a ∈ A there exists n ∈ N such that
na ∈ R. Hence, if B ⊆ A is any finitely generated subring, then mB ⊆ R for
somem ∈ N. Combining these observations with the existence of a nontrivial
nilpotent in A, and with the arguments from [6, 7, 8], one can reduce the
consideration to matrices of degree greater than one, and complete the proof
with the help of Lemma 1.1.

The situation is more complicated when considering rings with no non-
zero nilpotent elements, in particular integral domains. For this case (see
[3, 6]) the standard argument for the existence of a copy of F in groups of
units is via a result from [16], known as Tits’ Alternative. This result is very
strong and fairly nontrivial, but not effective.

Tits’ Alternative seems to be indispensable in the proof of the following
(again noneffective) result from [3]:

Theorem 1.3 (Gonçalves). Let D be a division algebra which is finite-
dimensional over its center. If D is not a field then F ⊂ U(D).

We have been unable to find in the literature an example of F ⊂ U(D),
even ifD is the algebra of rational quaternions. So we decided to fill this gap.
Our first example was based on [12] but now, using a result from [14, 15], we
are able to exhibit infinitely many different copies of F in the group of units
of rational quaternions. Our approach is restricted to rational quaternions,
but it is based only on elementary number theory and on the result of
S. Świerczkowski, mentioned above. This result is also elementary.

Lately, in [4], a more general, but more complicated approach to effective
construction of free subgroups of units in quaternion algebras was found.
This approach is different from that presented here and, for example, has
the result of Świerczkowski from [15] only as a consequence of the main
theorems.

Now let us fix the necessary notation. H will denote the algebra of real
quaternions with standard base 1, i, j, k. For any α = a0+a1i+a2j+a3k ∈ H

let, as usual,

(1) α = a0 − a1i− a2j − a3k and ‖α‖ = αα = a
2
0 + a

2
1 + a

2
2 + a

2
3

be the conjugate and the norm of α. Then for any α, β ∈ H we have

(2) α+ β = α+ β, αβ = βα, and ‖αβ‖ = ‖α‖ · ‖β‖.

If A ⊆ R is any subring then we denote by H(A) the algebra of quater-
nions over A. Clearly H(A) is freely generated as an A-module by the ele-
ments 1, i, j, k and is a subring of H invariant under conjugation. For n ∈ N,
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we also set An = Z[1/n] and Hn = H(An). Instead of H1 = H(Z) we write
simply H.

It is well known that the group U(H) is of order 8 and is characterized
as the set of elements α ∈ H with ‖α‖ = 1. More generally, by (1) and (2),
if α 6= 0 then ‖α‖ 6= 0 and α−1 = (1/‖α‖)α. Hence, for any subring A ⊆ R

we have

(3) U(H(A)) = {α ∈ H(A) : ‖α‖ ∈ U(A)}.

From Theorem 1.3 we know that F ⊂ U(H(Q)). In particular we have
the following, again noneffective result:

Proposition 1.4. There exists n ∈ N such that F ⊂ U(Hn).

In this paper we determine which numbers n ∈ N can be taken in the
above proposition. More precisely, our main result is:

Theorem 1.5. Let n ∈ N. Then F ⊆ U(Hn) if and only if n is not a
power of two. For any such n we can indicate a concrete copy of F ⊆ U(Hn).

2. The proof. For the proof of Theorem 1.5 we apply the following
result of S. Świerczkowski [15] about subgroups of orthogonal matrices:

Lemma 2.1. Let

A =





cos θ sin θ 0
− sin θ cos θ 0
0 0 1



 and B =





1 0 0
0 cos θ sin θ
0 − sin θ cos θ





be matrices of two linear rotations of 3-dimensional Euclidean space over R.

If cos θ 6∈ {0,±1/2,±1} but is a rational number , then the group 〈A,B〉 is
a free subgroup of SO3(R).

The proof of the lemma is straightforward and not very complicated. We
use this lemma only in the easiest case, when the denominator of cos θ is an
odd rational integer. Hence, in fact, we only apply a result from [14].

To make use of the above lemma let us recall some elementary connec-
tions of quaternions with geometry (see [10]). As a vector space, H = R⊕ P

where P, the subspace of pure quaternions, is spanned over R by its standard
base i, j, k. From (1) we also have

(4) π ∈ P if and only if π = −π.

We will consider P as a 3-dimensional Euclidean space in which the base i,
j, k is orthonormal.

With any ξ ∈ U(H) we can associate a map ϕξ : P → P given by the
formula

ϕξ(π) = ξπξ
−1 for any π ∈ P.
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From this definition and formulas (2) and (4) it is clear that ϕξ is an R-linear
map, preserves the norm of quaternions, and the space P is ϕξ-invariant.
Hence ϕξ, being always a linear isometry, is either a rotation of P with axis
parallel to the pure part of ξ if ξ 6∈ R, or is the identity if ξ ∈ R. More
precisely, if ξ = x0 + x1i + x2j + x3k then in the standard base of P the
matrix of ϕξ, denoted by Mξ, is

(5) Mξ=
1

‖ξ‖





x20 + x
2
1 − x

2
2 − x

2
3 2(x1x2 − x0x3) 2(x0x2 + x1x3)

2(x0x3 + x1x2) x
2
0 − x

2
1 + x

2
2 − x

2
3 2(x2x3 − x0x1)

2(x1x3 − x0x2) 2(x0x1 + x2x3) x
2
0 − x

2
1 − x

2
2 + x

2
3



 .

Counting the trace of Mξ in the standard base of P and in an orthonormal
base containing a vector parallel to the axis of the rotation ϕξ we obtain

tr(Mξ) =
1

‖ξ‖
(3x20 − x

2
1 − x

2
2 − x

2
3)

= 1 + 2
x20 − x

2
1 − x

2
2 − x

2
3

x20 + x
2
1 + x

2
2 + x

2
3

= 1 + 2 cos θ,

where θ is the angle of the rotation ϕξ. Hence

(6) cos θ =
x20 − x

2
1 − x

2
2 − x

2
3

x20 + x
2
1 + x

2
2 + x

2
3

.

It is well known that the map f given by f(ξ) = ϕξ is a homomorphism
of the group U(H) into the group of proper linear rotations of the Euclidean
space P. In fact f maps onto this group of isometries, which is isomorphic
to SO3(R) (see [10]), but we will not use the surjectivity of f here.

Example 2.2. Let a, b, c ∈ N form a Pythagorean triple (a2 + b2 = c2),
where c is odd. Then the elements u = a+ bi and v = a+ bk generate a copy
of F ⊂ U(Hc).

Indeed, from the choice of u and v we have ‖u‖ = ‖v‖ = c2. Hence, by
(3), u, v ∈ U(Hc). From (5), ϕu = f(u) and ϕv = f(v) have the following
matrices in the standard base of P:

Mu =
1

c2





c2 0 0
0 a2 − b2 −2ab
0 2ab a2 − b2



 ,

Mv =
1

c2





a2 − b2 −2ab 0
2ab a2 − b2 0
0 0 c2



 .

In both cases, by (6) we have

cos θ =
a2 − b2

a2 + b2
=
a2 − b2

c2
.
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Because the numbers a, b, c form a nontrivial Pythagorean triple, it follows
that cos θ 6∈ {0,±1}. If cos θ = ε/2, where ε = ±1, then we would obtain
εc2 = 2a2 − 2b2, which is impossible, because c is odd.

Now, Lemma 2.1 shows that the group 〈f(u), f(v)〉 is free, hence the
group 〈u, v〉 is free as well.

Example 2.3. Let a, b, c ∈ N be such that a2 + b2 + c2 = d2 for some
odd d ∈ N. Then the elements u = a+ bi+ cj and v = a+ ci− bj generate
a copy of F ⊂ U(Hd).

Indeed, from (1) we have ‖u‖ = ‖v‖ = d2. Hence u, v ∈ U(Hd). Further,
by the definition, it is clear that the axis of the rotation ϕu is parallel to the
vector (b, c, 0) while the axis of ϕv is parallel to (c,−b, 0). Hence, these axes
are orthogonal. From (6) one can easily calculate that for both rotations the
number cos θ is the same, equal to

a2 − b2 − c2

a2 + b2 + c2
=
a2 − b2 − c2

d2
,

and does not belong to the set {0,±1/2,±1}, because d is odd. Hence, by
Lemma 2.1 applied to the matrices of ϕu and ϕv in the base

{

1
d
(c,−b, 0), β,

1
d
(b, c, 0)

}

, where β∈P is a vector orthogonal to both the others and ‖β‖=1,
we conclude that the subgroup 〈f(u), f(v)〉 ⊂ SO3(R) is free, and so is
〈u, v〉 ⊂ U(Hd).

Example 2.4. The group U(H2) is abelian-by-finite, hence does not con-
tain any copy of F .

Indeed, by (3), α ∈ U(H2) if and only if ‖α‖ = 2
n for some n ∈ Z. On

the other hand,

α = 2mβ, where m ∈ Z and β = b0 + b1i+ b2j + b3k ∈ H.

Without loss of generality we can assume that at least one bi is odd. We
use the elementary fact that if a sum of four squares of rational integers is
divisible by 8, then all these numbers are even.

Consider the subgroup 〈2〉 ⊂ U(H2). This subgroup is central and, ac-
cording to the observations mentioned above, it is of finite index. As rep-
resentatives of cosets it is enough to use, for example, some β ∈ H with
‖β‖ ∈ {1, 2, 4}.

Lemma 2.5. Let p be an odd natural prime.

• If p ≡ 1 (mod 4) then p2 is a nontrivial sum of two squares.

• If p ≡ 3 (mod 4) then p2 is a nontrivial sum of three squares.

Proof. If p = 4m+ 1 then it is well known, for example from [13], that
p = a2 + b2 for some a, b ∈ N. Then p2 = (a2 − b2)2 + (2ab)2.
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Now let p = 4m+ 3. By the theorem of Legendre p = a2 + b2 + c2 + d2

where at least three summands are nonzero (see [13]). As in [2] we can apply
the Lebesgue identity. In this way we obtain

p2 = (a2+ b2+ c2+ d2)2 = (a2+ b2− c2− d2)2+(2ac+2bd)2+(2ad− 2bc)2

and we can verify that the summands are nontrivial.

Proof of Theorem 1.5. Let An ⊆ Q for some n ∈ N. If n is not a power
of 2 then let p be an odd prime divisor of n. Then certainly Ap ⊆ An. By
Lemma 2.5, p can be either the c of Example 2.2 or the d of Example 2.3.
Hence, in any case F ⊆ U(Hp) ⊆ U(Hn) and its explicit copy is indicated.
If An ⊆ A2 then either An = Z or An = A2 and, by Example 2.4,

F 6⊆ U(Hn).

Corollary 2.6. Let A ⊆ Q be any subring. Then F ⊆ U(H(A)) if and
only if A 6⊆ A2.

Proof. Let A ⊆ Q be a subring such that A 6⊆ A2. Then there exists an
irreducible fraction a/b ∈ A such that a, b ∈ N and b is not a power of 2. We
also know that 1 = b/b ∈ A, hence 1/b ∈ A because a and b are coprime.
This means that Hb ⊆ A and, by Theorem 1.5, F ⊆ U(Hb) ⊆ U(H(A)).
The converse implication is evident by Example 2.4.

In several papers (see [1] and references there) groups of units containing
a free noncommutative semigroup with two generators (denote it by S) are
investigated. From our earlier results we obtain:

Proposition 2.7. Let A ⊆ Q be any subring. Then S ⊆ U(H(A)) if and
only if A 6⊆ A2.

Proof. From Example 2.4 we deduce that the group U(H2) satisfies a
semigroup identity of the form xmym ≡ ymxm for some m > 1. Hence
S 6⊆ U(H2).
On the other hand, if A 6⊆ A2 then, by Corollary 2.6, U(H(A)) contains

even F . From these facts the result follows immediately.

Let us finish with a question inspired by Theorem 1.5. To formulate it,
for any n ∈ N denote by Cn the algebra of Cayley numbers over the ring An.
This nonassociative ring with unity can be represented as an Hn-module as
follows:

Cn = Hn ⊕Hne,

where

(α+ βe)(γ + δe) = αγ − βδ + (αδ + βγ)e for all α, β, γ, δ ∈ Hn.

For any n ∈ N it is well known (see [5]) that the set U(Cn) of units of Cn
is a Moufang loop. Hence any subloop of U(Cn) generated by two elements
is a group. Moreover, Hn ⊂ Cn as a subring. By Theorem 1.5, this gives
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F ⊆ U(Cn) for n not being a power of two. On the other hand the loop
U(C1) is finite. Thus the following question is well posed and interesting:

Does the loop U(C2) contain a copy of F (or at least S)? If the answer
is yes, then exhibit such a subgroup (subsemigroup).
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