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Abstract.We show that Lasota–Mackey–Tyrcha stochastic operators, which are used
in mathematical modeling of cell cycles, have weak∗ convergent iterates.

1. Introduction. Let (X, d) be a separable metric space such that all
finite closed balls K(x0, r) = {x ∈ X : d(x, x0) ≤ r} are compact. Given a
σ-finite measure µ on the Borel σ-algebra B of subsets of (X, d) we denote
by (L1(µ), ‖·‖) the Banach lattice of µ-integrable functions on X. Functions
from L1(µ) which are equal µ-almost everywhere are identified. Then instead

of B we will rather think of its µ-completion B̃. If not stated otherwise also
all inequalities are in the µ-a.e. sense. The convex set {f ∈ L1(µ) : f ≥ 0,T
X
f dµ = 1} of all densities is denoted by Dµ.
A linear operator P : L1(µ)→ L1(µ) which preserves Dµ (i.e. P (Dµ) ⊆

Dµ) is called markovian (or a Markov operator). If there exists a Borel mea-
surable function k : X ×X → R+ such that Pf(x) =

T
X
k(x, y)f(y) dµ(y),

then the Markov operator P is called a kernel operator. Clearly, in this case,
for every y ∈ X we have

T
k(x, y) dµ(x) = 1. Here we require k( · , y) ∈ Dµ

for all y, instead of almost all, to extend P to all finite measures on X. Oth-
erwise, this extension would be defined only on a set of full µ-measure. Now
P is extended to a positive contraction (also denoted by P ), acting on the
Banach lattice (M(X), ‖ · ‖) of all bounded signed measures ν on (X,B), by

Pν(A) =
\
X

\
X

k(x, y)1A(x) dµ(x) dν(y).

Obviously Pν ∈ L1(µ).
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The paper is devoted to Markov operators on L1([0,∞)), the Banach
lattice of Lebesgue integrable functions on [0,∞), with kernels

(1) k(x, y) =

{
− ∂
∂x
H(Q(λ(x))−Q(y)) if 0 ≤ y ≤ λ(x),

0 otherwise.

The functions H,Q, λ : [0,∞) → [0,∞) are absolutely continuous and sat-
isfy:

(H) H(0) = 1, limx→∞H(x) = 0, H is nonincreasing,
(Qλ) Q(0) = λ(0) = 0, limx→∞Q(x) = limx→∞ λ(x) =∞, and Q, λ are

nondecreasing.

The class of Markov operators with kernels (1) such that H, Q, λ satisfy
conditions (H), (Qλ) is denoted by LMT (after Lasota, Mackey and Tyrcha
whose contribution to mathematical modeling of cell cycles is crucial; see
[GL], [LM1], [LM2], [LM3], [LMT], [KT], [R2] and [T] for more details).
A kernel stochastic operator on L1(µ) is called strong Feller in the strict

sense if the mapping

(SFS) (X, d) ∋ y 7→ k( · , y) ∈ (Dµ, ‖ · ‖)

is continuous. We note that for the adjoint operator P ∗ the condition (SFS)
implies that, whenever h ∈ L∞(µ), then the image P ∗h is continuous. This
easily follows from P ∗h(y) =

T
X
k(x, y)h(x) dµ(x).

In this paper Markov operators P are (SFS) with P ∗ preserving C0(X),
the Banach lattice of continuous functions h vanishing at infinity (i.e. h is
continuous and for every ε > 0 there exists a compact set Eε ⊆ X satisfying
|h(x)| ≤ ε for all x 6∈ Eε). As usual C0(X) is endowed with the sup-norm
‖ · ‖sup. If there exists x0 such that for every ε > 0 there is a function
rε : [0,∞)→ [0,∞) such that limt→∞(t− rε(t)) =∞ and

inf
y∈X

\
K(y,rε(d(x0,y)))

k(x, y) dµ(x) > 1− ε,

and the kernel k(x, y) has property (SFS), then P ∗C0(X) ⊆ C0(X). It has
been noticed in [B] that LMT operators satisfy (SFS) and P ∗ preserves
C0([0,∞)).
We recall that the set of all subprobabilistic positive measures on X

is compact for the vague topology. We say that a variation norm bounded
sequence of measures νn is vaguely convergent to ν if limn→∞

T
X
h dνn =T

X
h dν for all h ∈ C0(X). SinceM(X) may be identified with the adjoint

space C0(X)
∗, this is simply weak∗ convergence.

A Markov operator P on L1(µ) is said to be asymptotically stable if
there exists a (unique) f∗ ∈ Dµ such that limn→∞ ‖P

nf − (
T
f dµ)f∗‖ = 0

for all f ∈ L1(µ). Obviously f∗ is P -invariant, i.e. Pf∗ = f∗. The Banach
sublattice of all P -invariant functions is denoted by L1∗(µ).
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The opposite concept to stability is sweeping. Given a family A∗ of
subsets of B we say that P is A∗-sweeping if limn→∞

T
A
Pnf dµ = 0 for

all A ∈ A∗ and f ∈ Dµ. Here A∗ satisfies the natural conditions that
0 < µ(A) < ∞ for all A ∈ A∗, A∗ is closed under finite unions, and⋃∞
j=1Aj = X for some sequence Aj ∈ A∗. In our case A∗ is the family

of all compact subsets (balls) of (X, d). It has recently been proved in [M]
(see also [KM], [KT], [ŁR], [R1] and [LM2]) that an LMT operator either
has an invariant density f∗ or it is sweeping with respect to compact sets
(thus the Foguel alternative holds).

In this paper we obtain a stronger result. Namely, we show that the it-
erates Pnf of an LMT operator P are weak∗ convergent to Qf , where Q is
a submarkovian projection onto L1∗(µ) (i.e. Q

2 = Q ≥ 0 and
T
X
Qf dµ ≤ 1

for every f ∈ Dµ). Moreover, if F ∈ B denotes the minimal (modulo
sets of measure zero) set which carries supports of all P -invariant den-
sities, then QF = Q↾L1(F,µ) is a markovian projection onto P -invariant

functions, and ‖Pnf − QF f‖ → 0 for all f ∈ L
1(F, µ). We note that

L1(F, µ) is P -invariant and that F is well defined, because L1(µ) is sep-
arable. If Fj = supp(f∗j), where f∗j is an ergodic invariant density, then
Pj = P ↾L1(Fj ,µ) is simply asymptotically stable on its domain. We note that

for each f ∈ Dµ we have
T
Fj
Qf dµ = limn→∞

T
Fj
Pnf dµ = Λj(f), where

the last sequence does converge as it is bounded and nondecreasing (Fj is
invariant). This implies Qf = Λj(f)f∗j on Fj . If there are no invariant den-
sities at all, then obviously Q ≡ 0, and limn→∞

T∞
0
Pnfh dµ = 0 for every

h ∈ C0[0,∞). In particular, P is sweeping with respect to the family of
compact sets.

The rest of our notation is consistent with [F1]. We also use some of
its results. Let us briefly recall them. Given a stochastic operator P on
L1(µ), the space X may be divided into two disjoint parts C ∪̇D = X.
The conservative part C is characterized by C = {x ∈ X : f ≥ 0 ⇒∑∞
n=0 P

nf(x) is either 0 or ∞}. Because P ∗1C ≥ 1C , the markovian op-
erator PCf = P (1Cf) is well defined. D is called the dissipative part.
Obviously P ∗1D ≤ 1D and

∑∞
n=0 P

nf(x) < ∞ for all f ∈ L1(µ) and

x ∈ D. In particular, limn→∞ P
nf(x) = 0 for x ∈ D. If C = X then

we say that the operator P is conservative. We denote by Σi(P ) the σ-
algebra of all invariant sets A, i.e. such that P ∗1A = 1A. If Σi(P ) = {∅, X}
then P is called ergodic. The deterministic σ-algebra Σd(P ) is defined as
{B ∈ B : P ∗n1B = 1Bn for every natural n}. We say that B0, B1, . . . , Bd−1
(from Σd(P )) form a cycle if P

∗d1B0 = 1B0 and P
∗1Bj = 1Bj+1 for all

0 ≤ j ≤ d− 2. Clearly Σi(P ) ⊆ Σd(P ), but in general these two σ-algebras
may differ. If it happens that Σi(P ) = Σd(P ) then we say that the Markov
operator P does not allow cycles.
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2. Main result. In this section we describe the asymptotic properties
of the iterates of (SFS) Markov operators acting on abstract L1(µ) spaces.
We start with

Lemma 1. Let P be a (SFS ) kernel Markov operator on L1(X,B, µ) such
that P ∗ preserves C0(X). If PC does not allow cycles then

(2) lim
n→∞

\
K∩(C\F )

Pnf dµ = 0

for every compact set K ⊆ X and arbitrary f ∈ L1(X,B, µ).

Proof. Obviously F ⊆C. Since P ∗C1F ≥ 1F , we have P
∗
C1C\F ≤ 1C\F . It

is well known that PC , considered as a Markov operator on L
1(C,B∩C, µ↾C),

is conservative. In particular, P ∗C1C\F = 1C\F and P
∗
C1F = 1F . Clearly PC

is a kernel operator. Hence PC is Harris. This implies that Σd(PC) is atomic
(see [F1] for all details). Let B ⊆ C be an atom of Σd(PC). Consider the
sequence P ∗nC 1B = 1Bn . Clearly Bn ∈ Σd(PC) are atoms as well. Since PC
is conservative, it follows that

∑∞
n=0 P

∗n
C 1B = ∞ on B. In particular, for

some n > 0 we have µ(Bn ∩ B) > 0. Hence Bn ∩ B = B. This implies
that P ∗nC 1B ≥ 1B. By conservativity P

∗n
C 1B = 1B. Since PC does not allow

cycles, we have PC1B = 1B. Now let PB denote the restriction of P to
L1(B,BB, µ|B). Again PB is conservative.
We show that PB is totally ergodic (i.e. for each natural n the operator

PnB is ergodic). In fact, if P
∗n
B 1A = 1A for some 0 < µ(A) < µ(B) then

P ∗jB 1A = 1Aj , as PB is nondisappearing (see Lemma 0 of [KL]). Hence A ∈
Σd(PC), contradicting the assumption that B is an atom. A conservative
and totally ergodic Markov operator PB satisfies the assumptions of the
0-2 law, which says that either |||PnB − P

n+1
B ||| → 0 in the operator norm

as n → ∞, or for a fixed y ∈ B the densities kn( · , y), corresponding to
Pnδy, are pairwise orthogonal (see [OS] and [F2] for all details). The latter
is excluded as PB is conservative, and P

nδy ∈ Dµ for all n ≥ 1. In particular
∞∑

n=1

PnBδy(·) =∞ on B.

Hence, for all atoms B ∈ Σd(PC),

(3) lim
n→∞

sup
f∈Dµ

‖PnBf − P
n+1
B f‖ = 0.

Now assume B ⊆ C \ F , and let K be an arbitrary compact subset of B.
Suppose that

lim
n→∞

\
K

Pnf dµ > 0 for some f ∈ Dµ.

Since B is invariant we may assume that f is concentrated on B. Let
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Pnjf→ν as j → ∞ for the vague topology, where ν is a nonzero positive
measure. By (3) we have ‖Pν − ν‖ = 0. In particular, dν/dµ = fν ∈ L

1(µ)
and

T
B
fν dµ ≥

T
K
dν > 0, contradicting the inclusion B ⊆ C \ F . We

conclude that

(4) lim
n→∞

\
K

Pnf dµ = 0

for every compact set K included in an atom B ⊆ C \ F . This convergence
may be extended to (2) in the following way. Suppose that for some K,
f ∈ Dµ and ε > 0 we have

lim
n→∞

\
K∩C\F

Pnf dµ ≥ ε.

Let B1, B2, . . . ∈ Σi(PC) be atoms included in C \ F . Because they are
P -invariant and disjoint, it follows that there exists a natural m such that

lim
n→∞

∞∑

j=m+1

\
Bj

Pnf dµ <
ε

2
.

Without loss of generality we may assume that

lim
n→∞

\
K∩B1

Pnf dµ >
ε

2m
.

Using again the fact that B1 is invariant, we may assume that the density
f is concentrated on B1. Now we choose a subsequence nj ր ∞ such thatT
K∩B1

Pnjf dµ > ε/(2m), and Pnjf → ν vaguely. We have already noticed
that ν is absolutely continuous and its density fν is P -invariant. Hence
ν(B1) = 0. Now let supptop(ν) be the topological support of ν, and let
y0 ∈ supptop(ν). Using the (SFS) condition we may find δ > 0 small enough
that

k( · , y′) ∧ k( · , y′′) 6= 0

for all y′, y′′ ∈ K(y0, δ). Choosing j large enough we get\
K(y0,δ)∩K∩B1

Pnjf dµ > 0.

Hence

(Pnj+1f) ∧ k( · , y′′) ≥
\

K(y0,δ)∩K∩B1

k( · , y′)Pnjf(y′) dµ(y′) ∧ k( · , y′′) 6= 0

for all y′′ ∈ K(y0, δ). Now, if f1 is an arbitrary density concentrated on
K(y0, δ) ∩ supp fν ⊆ F , then

Pnj+1f ∧ Pf1 = (P
nj+1f) ∧

\
k( · , y′′)f1(y

′′) dµ(y′′) 6= 0,

contradicting the fact that B1 and F are both invariant.
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The following lemma is an easy consequence of a result from [BB].

Lemma 2. Let P be a kernel Markov operator. If Σd(P )∩F = Σi(P )∩F
then PF has strong operator convergent iterates.

Proof. It is enough to show that each PB is asymptotically stable on
L1(B,B∩B,µ), where B ∈ Σd(P )∩F is an atom. For this we notice that PB
satisfies the “0” alternative of the “0-2” law, and clearly it is mean ergodic
(as PB has an invariant density). Now by Corollary on page 22 of [BB] we
conclude that for every density f concentrated on B, we have PnBf → fB∗ in
the L1 norm, where fB∗ is a unique P -invariant density concentrated on B.
Finally we get PnF f →

∑
j(
T
Bj
f dµ)fBj∗ in the L

1 norm.

The next lemma describes the dynamics of the process Pnf on the dis-
sipative part.

Lemma 3. Let P be a (SFS )Markov operator acting on L1(X,B, µ) such
that P ∗ preserves C0(X). Then for every compact set K ⊆ X and f ∈ Dµ
we have

lim
n→∞

\
K∩D

Pnf dµ = 0.

Proof. By [F1] there exists an increasing sequence of measurable sets
Bm ⊆ D such that

⋃∞
m=1Bm = D and P

∗n1Bm → 0 pointwise as n → ∞.
In particular, 1Bm∩K(x)ր 1D∩K(x) for µ-almost all x. Since P is a kernel
operator, it follows that

P ∗1Bm∩K(y) =
\
k(x, y)1Bm∩K(x) dµ(x)

ր
\
X

k(x, y)1B∩K(y) dµ(x) = P
∗1D∩K(y)

as m → ∞, for all y ∈ X. We notice that P ∗1Bm∩K ≤ P
∗1D∩K and both

functions belong to C0(X), as K is compact and the kernel k satisfies the
(SFS) condition. By the Dini theorem and the assumption that all closed
balls in (X, d) are compact we get the uniform convergence P ∗1Bm∩K ⇉

P ∗1D∩K . Suppose that
T
D∩K
Pnjf dµ ≥ ε for some f ∈ Dµ, where nj ր∞

and ε > 0. Choosingm large enough we obtain ‖P ∗1Bm∩K−P
∗1D∩K‖sup ≤

ε/2. Hence\
Bm∩K

Pnjf dµ =
( \
Bm∩K

−
\

D∩K

+
\

D∩K

)
Pnjf dµ

≥ ε−
∣∣∣
\
Pnj−1f · (P ∗1Bm∩K − P

∗1D∩K) dµ
∣∣∣

≥ ε−
\
Pnj−1f · ‖P ∗1Bm∩K − P

∗1D∩K‖sup dµ

≥ ε/2 for all j = 1, 2, . . .



LASOTA–MACKEY–TYRCHA OPERATORS 35

On the other hand, f · P ∗nj1Bm∩K → 0 as j → ∞ for µ almost all x. By
the Lebesgue dominated convergence theorem we get

lim
j→∞

\
Bm∩K

Pnjf dµ = 0,

a contradiction.

Theorem 1. Let (X, d) be a metric space such that all closed balls are
compact. If a kernel Markov operator P on L1(X,B, µ) satisfies (SFS ), P ∗

preserves C0(X), and Σi(PC) = Σd(PC), then for every compact set K ⊆ X
and every f ∈ L1(X,B, µ) we have

lim
n→∞

\
K

Pnf dµ =
\
K

Sf dµ,

where S is a substochastic projection onto the sublattice of P -invariant func-
tions. Moreover , on L1(F,BF , µ|F ) the above convergence holds for the L

1

norm.

Proof. Given a density f ∈ Dµ and an atom B in Σd(PF ) = Σi(PF ), we
define

SBf =
(
lim
n→∞

\
B

Pnf dµ
)
· fB∗,

where fB∗ is a (unique) P -invariant density concentrated on B. The limit
limn→∞

T
B
Pnf dµ is well defined, as the sequence

T
B
Pnf dµ is nondecreas-

ing and bounded by 1. Finally we set

Sf =
∑

B∈Σi(PF )

SBf.

On each atom B ∈ Σi(PF ) the operator PB is asymptotically stable. We
obtain limn→∞ ‖(P

nf − SBf) · 1B‖ = 0. This convergence can be extended
to the whole of F in an obvious way. Finally by Lemmas 1 and 3 we get

lim
n→∞

\
K

Pnf dµ = lim
n→∞

( \
K∩F

+
\

K∩(C\F )

+
\

K∩D

)
Pnf dµ

= lim
n→∞

\
K∩F

Pnf dµ =
\
K∩F

Sf dµ =
\
K

Sf dµ.

Since each f ∈ L1(µ) is a linear combination of densities the theorem is
proved.

The following corollary is an immediate consequence of (SFS) and
P ∗C0(X) ⊆ C0(X). Such operators are actually defined onM(X). We have

Corollary 1. Let P be a (SFS ) kernel Markov operator defined on
L1(µ) such that P ∗C0(X) ⊆ C0(X). If PC does not allow cycles, then there
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exists a substochastic projection S∗∗ = S :M(X)→ L1∗(µ) onto the sublat-
tice of P -invariant functions such that Pnµ ∼= P ∗∗nµ → Sµ as n→∞ for
the vague (weak∗) topology.

3. LMT operators. The last section of the paper is devoted to LMT op-
erators. The result we present has been proved in [B] with some restrictions
on P . This also generalizes [KM], [M] as it is obvious that in the absence
of invariant densities, the projection S is zero. In particular, for every com-
pact K we have the convergence limn→∞

T
K
Pnf dµ = 0 whenever L1∗(µ) is

trivial. In other words, an LMT operator P satisfies the Foguel alternative,
i.e. either P has an invariant density, or it is sweeping with respect to the
family of compact sets. We have

Theorem 2. Let P be an LMT operator on L1([0,∞)), where H, Q, λ
satisfy conditions (H) and (Qλ). Then for every compact set K ⊆ [0,∞) we
have

lim
n→∞

\
K

Pnf dµ =
\
K

Sf dµ,

where S is a substochastic projection onto the Banach sublattice of P -in-
variant functions. Moreover ‖(Pnf − Sf)1F ‖ → 0 as n→∞.

Proof. By Theorem 1 it is sufficient to show that PC does not allow
cycles. Since PC is conservative it follows that given an atom B ∈ Σd(PC),
there exists n such that P ∗nC 1B = 1B. Set 1Bj = P

∗j
C 1B for j = 0, 1, . . . , n−1

(Bn = B0 = B). To show that the cycle Bj is trivial we use essentially the
same arguments as in the proof of Theorem 2 of [B]. Namely, it follows
directly from the formula (1) of LMT kernels that

P ∗1[c,d)(y)

=





H(Q(λ(c))−Q(y))−H(Q(λ(d))−Q(y)) if 0 ≤ y < λ(c),
1−H(Q(λ(d))−Q(y)) if λ(c) ≤ y < λ(d),
0 if λ(d) ≤ y.

Substituting d =∞ we get

P ∗1[c,∞)(y) =
{
H(Q(λ(c))−Q(y)) if 0 ≤ y < λ(c),
1 otherwise.

Let cj = ess inf Bj , j = 0, 1, . . . , n − 1. Then we have (by continuity of
P ∗1Bj )

P ∗1Bj (y) =

{
1 if y ∈ Bj+1,

0 if y ∈ Bs for all 0 ≤ s ≤ n− 1 and s 6= j + 1.

In particular, all cj must be different. Without loss of generality we assume
that c0 = max{c0, c1, . . . , cn−1}. Note that c0 < λ(c0). Otherwise we would
have P ∗1[c0,∞) ≥ 1[c0,∞). On the conservative part we get P

∗
C1[c0,∞)∩C =
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1[c0,∞)∩C . This implies 0 ≤ P
∗
C1B0 = P

∗
C1[c0,∞)∩B0 ≤ 1[c0,∞)∩C . Hence

P ∗C1B0(y) ≡ 0 for all 0 ≤ y < c0, contradicting P
∗
C1B0 = 1B1 and c1 < c0.

We also have 1 ≥ H(Q(λ(c0)) − Q(c1)) = P
∗1[c0,∞)(c1) ≥ P

∗1B0(c1) = 1,

as P ∗1B0 is continuous, P
∗
C1B0 = 1B1 and c1 ∈ B1. Combining these facts

we conclude that H(Q(λ(c0)) − Q(y)) = 1 if c1 ≤ y ≤ λ(c0), as H is
nonincreasing, and Q and λ are nondecreasing. In particular,

P ∗1[c0,∞) ≥ 1[c1,∞) ≥ 1[c0,∞),

which means that P ∗C1[c0,∞)∩C = 1[c0,∞)∩C on the conservative part. There-
fore, P ∗C1B0 ≤ 1[c0,∞), contradicting P

∗
C1B0 = 1B1 if n > 1 and c1 < c0.

The resulting contradiction forces n = 1 and the triviality of the cycle
B0, . . . , Bn−1.

We instantly get

Corollary 2. Given an LMT Markov operator P on L1([0,∞)), there
exists a substochastic projection S : M([0,∞)) → L1([0,∞)) onto L1∗(µ),
the sublattice of all P -invariant functions, such that

lim
n→∞
Pnµ(K) = Sµ(K)

for every compact set K ⊆ [0,∞). In particular , if P has no invariant
density (i.e. L1∗(µ) is trivial), then

lim
n→∞
Pnµ(K) = 0

for every compact set K ⊆ [0,∞); in particular , P is sweeping.

Remark. If there exists a compact set K(⊆ F ) such that for every
density f ∈ Dµ we have

(5) lim
n→∞

\
K

Pnf dµ > 0

(compare [B] and [BL]) then S is finite-dimensional, being a compact pro-
jection. For this we note that S = S ◦ P = P ◦ S. Now the operator
S∗K : L

∞(µ) → C(K) defined by S∗Kf = (S
∗f)|K is compact. Therefore

Σi(P )∩K must be finite. Clearly dim(S
∗) = dim(S∗K) by the assumption (5).
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