VOL. 88

2001

NO. 1

ACTIONS OF HOPF ALGEBRAS ON PRO-SEMISIMPLE NOETHERIAN ALGEBRAS AND THEIR INVARIANTS

BҮ

ANDRZEJ TYC (Toruń)

Abstract. Let H be a Hopf algebra over a field k such that every finite-dimensional (left) H-module is semisimple. We give a counterpart of the first fundamental theorem of the classical invariant theory for locally finite, finitely generated (commutative) H-module algebras, and for local, complete H-module algebras. Also, we prove that if H acts on the k-algebra $A = k[[X_1, \ldots, X_n]]$ in such a way that the unique maximal ideal in A is invariant, then the algebra of invariants A^H is a noetherian Cohen–Macaulay ring.

Introduction and the main results. Let k be a field and let H be a Hopf algebra over k. By analogy with the invariant theory of algebraic groups, the following is of importance.

QUESTION. Let A be a commutative, finitely generated (resp., noetherian) H-module algebra. When is the algebra of invariants A^H also finitely generated (resp., noetherian)?

It is known that for rational actions of an algebraic group G the answer is "yes" whenever the group G is linearly reductive, i.e. whenever each finite-dimensional, rational G-module is semisimple. An important property used in the proof of this result is that every rational G-module is a sum of its finite-dimensional submodules. We say that the Hopf algebra H is *finitely semisimple* if every finite-dimensional (left) H-module is semisimple; this is an analogue of a linearly reductive algebraic group. An H-module algebra A is said to be *locally finite* if A, as an H-module, is a sum of its finite-dimensional submodules; this is a good analogue of the rational actions of algebraic groups on algebras. So, a precise counterpart of the above mentioned classical result is the following.

THEOREM 1. Suppose that the Hopf algebra H is finitely semisimple, and that A is a commutative, finitely generated (resp., noetherian), locally finite H-module algebra. Then A^H is a finitely generated (resp., noetherian) algebra.

²⁰⁰⁰ Mathematics Subject Classification: Primary 16W30.

Supported by the Polish Scientific Grant KBN No. PO3A 017 16.

A. TYC

This theorem is a consequence of our Corollary 2.9 and Theorem 3.2, and, as we mentioned in [2, p. 220], for cocommutative H it can be proved exactly in the same manner as for the rational actions of linearly reductive algebraic groups, using a Reynolds operator.

However, there are interesting noetherian H-module algebras which are not locally finite. For example, if A is a noetherian H-module algebra and I is an invariant ideal in A, then the induced action of H on the completion $\widehat{A} = \lim_{i \to \infty} A/I^n$ is not, in general, locally finite even if H is finitely semisimple and \overline{A} is locally finite.

EXAMPLE 2. Let $k = \mathbb{C}$ and let $L = \operatorname{sl}(2, k)$. Then the universal enveloping algebra U(L) is a finitely semisimple Hopf algebra and we have the well known (locally finite) action of H on A = k[X, Y] determined by

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} X \\ Y \end{pmatrix} = \begin{pmatrix} aX + bY \\ cX + dY \end{pmatrix}.$$

Obviously, the induced action of H on the completion $\widehat{A} = k[[X, Y]]$ of A in the maximal (invariant) ideal (X, Y) is given by the same formula. In particular, the matrix $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \in L \subset H$ acts on \widehat{A} via the derivation $D: \widehat{A} \to \widehat{A}$ such that D(X) = X and D(Y) = -Y. It turns out that the induced action is not locally finite. In order to see this, it clearly suffices to show that there is an $f \in \widehat{A}$ such that the set $\{D^j(f): j \ge 0\}$ is linearly independent over k. Put $f = \sum_{i=1}^{\infty} X^i$ and suppose that $\sum_{r=0}^{s} t_r D^r(f) = 0$ for some s and $t_0, \ldots, t_s \in k$. Then

$$0 = \sum_{r=0}^{s} t_r \left(\sum_{i=1}^{\infty} i^r X^i \right) = \sum_{i=1}^{\infty} \left(\sum_{r=0}^{s} t_r i^r \right) X^i,$$

whence in particular, $\sum_{r=0}^{s} t_r i^r = 0$, i = 1, ..., s + 1. But the determinant of this system of linear equations (with respect to t_r 's) is the Vandermonde determinant V(1, ..., s + 1), which is clearly different from 0. Therefore, $t_0 = t_1 = ... = t_s = 0$. This means that the set $\{D^j(f) : j \ge 0\}$ is linearly independent.

Another type of interesting noetherian H-module algebras which need not be locally finite arises in the following situation. Suppose that the Hopf algebra H is pointed [7, 9] (for instance, in characteristic 0 every cocommutative Hopf algebra is pointed) and that A is a commutative H-module algebra. Furthermore, let S be a multiplicative system in A such that $gs \in S$ for any group-like element $g \in H$ and any $s \in S$. Then, as shown in [11], there exists a unique action of H on the localization A_S such that the natural homomorphism of algebras $A \to A_S$ is a morphism of H-module algebras. So, if A is noetherian, then we obtain a noetherian H-module algebra A_S . Again it turns out that A_S , in general, is not locally finite. EXAMPLE 3. Let H, A and f be as in Example 2, and let $S = \{(1-X)^n : n \ge 0\}$. Since 1 is the unique group-like element in H, we have the action of H on A_S . It is easy to see that if we look at A_S as a subalgebra of k[[X, Y]], then the action of H on the localization A_S is the restriction of the action of H on k[[X, Y]] considered in Example 2. Moreover, $f = \sum_{i\ge 1} X^i = (1-X)^{-1} \in A_S$. This implies that f does not belong to any finite-dimensional H-submodule of A_S , that is, the action of H on A_S is not locally finite.

The main goal of this paper is to find a counterpart of Theorem 1 for H-module algebras arising from locally finite H-module algebras by means of the operation of completion. The case of localizations will be investigated elsewhere.

Observe that the *H*-module algebra \widehat{A} from Example 2 is, as an *H*-module, the inductive limit of the system $\{k[X,Y]/(X,Y)^n : n \ge 1\}$ of semisimple *H*-modules. The same is obviously true for the induced actions of a finitely semisimple Hopf algebra *H* on the completion $\widehat{A} = \varprojlim A/I^n$, where *A* is a locally finite *H*-module algebra and *I* is an invariant ideal in *A*. This suggests the following.

DEFINITION. A pro-semisimple H-module algebra is an H-module algebra A (not necessarily commutative) provided with a linear topology defined by a family $\{I_i\}$ of (two-sided) invariant ideals in A satisfying the conditions:

(1) A/I_i is a semisimple *H*-module for all *i*,

(2) the natural homomorphism of *H*-module algebras $p: A \to \varprojlim A/I_i$ is an isomorphism.

If the Hopf algebra H is finitely semisimple and A is a locally finite H-module algebra with an invariant ideal I, then the completion of A in the I-adic topology is a pro-semisimple H-module algebra. In particular, A itself with the discrete topology is a pro-semisimple H-module algebra. More generally, if $\{I_n : n \ge 0\}$ is any admissible sequence of invariant ideals in A (see Section 1), then the completion $\hat{A} = \lim_{n \to \infty} A/I_n$ endowed with the natural action of H is also a pro-semisimple H-module algebra. The main objective of this paper is to prove the following.

THEOREM 4. If A is a pro-semisimple, right noetherian H-module algebra, then so is the algebra of invariants A^{H} .

THEOREM 5. If I is an invariant ideal in a commutative, noetherian, pro-semisimple H-module algebra A such that all its powers I^n , $n \ge 1$, are closed (as subsets of A), then the induced topology in A^H given by the set of ideals $\{(I^n)^H : n \ge 0\}$ is equivalent to the I^H -adic topology in A^H .

As corollaries from these theorems we get

THEOREM 6. Suppose that A is a noetherian H-module algebra which is semisimple as an H-module. Then, for each invariant ideal I in A and the induced action of H on the completion $\widehat{A} = \lim_{H \to A} A^{In}$, the algebra $(\widehat{A})^{H}$ is noetherian and the natural inclusion $i : A^{H} \to A$ induces an isomorphism of algebras $\widehat{A^{H}} \simeq (\widehat{A})^{H}$, where $\widehat{A^{H}}$ is the completion of A^{H} in the I^{H} -adic topology.

THEOREM 7. Suppose that the Hopf algebra H is finitely semisimple and (A, m) is a local, complete, noetherian H-module algebra satisfying the conditions:

- (1) the unique maximal ideal m in A is invariant,
- (2) the quotient field A/m is a finite field extension of k.

Then A^H is a local, complete, noetherian algebra with the unique maximal ideal m^H . In particular, if A is of the form $k[[X_1, \ldots, X_n]]/J$ for some $n \ge 1$ and some ideal J, then A^H is of the same form.

The last statement in the above theorem can be viewed as a counterpart of Theorem 1 for complete, local *H*-module algebras. Under the assumptions of Theorem 7, we also prove that the ring A^H is Cohen–Macaulay, whenever $A = k[[X_1, \ldots, X_n]].$

In the proof of Theorems 1 and 3, an essential role is played by a Reynolds operator.

The content of the paper can be summarized as follows. Preliminaries are presented in Section 1. In Section 2 we prove the above mentioned Theorem 3 (in a more general setting and not only for commutative *H*-module algebras). In Section 3, given a commutative noetherian ring *A*, we present a description of all admissible sequences $\mathbf{I} = \{I_j : j \ge 0\}$ of ideals in *A* satisfying the second Artin–Rees property, i.e., $I_0 = A, I_j \supset I_{j+1}, I_i I_j \subset I_{i+j}$ for $i, j \ge 0$, and the graded algebra $G(\mathbf{I}) = \bigoplus_{j\ge 0} I_j$ is noetherian. From this description it follows that the topology in *A* defined by any such sequence \mathbf{I} is equivalent to the I_1 -adic topology. Hence one gets Theorem 5.

The definition of an admissible sequence satisfying the second Artin–Rees property and its application in the proof of Theorem 5 come from [3, Section 1]. Also, if H is the group algebra kG of some group G, then Theorems 4 and 6 were proved in [3] for H-module algebras that are semisimple as H-modules. Section 2 of the paper was patterned upon [10, Section 2].

1. Preliminaries. Throughout the paper k denotes a field which will serve as the ground field for all vector spaces and algebras under consideration. All tensor products (unless otherwise stated) are defined over k. By H we denote a fixed Hopf algebra with comultiplication $\Delta : H \to H \otimes H$ and

counity $\varepsilon : H \to k$. As in [9], we write $\Delta(h) = \sum h_{(1)} \otimes h_{(2)}$ for $h \in H$. An H-module is meant to be a left H-module. Given an H-module V, V^H will stand for the submodule of invariants $V^H = \{v \in V : hv = \varepsilon(h)v, h \in H\}$. We say that V is trivial when $V = V^H$. If $f : V \to U$ is a homomorphism of H-modules, then $f^H : V^H \to U^H$ denotes the restriction of f to V^H . An H-module V is called *locally finite* if it is a sum of its finite-dimensional submodules.

DEFINITION 1.1. The Hopf algebra H is called (left) *finitely semisimple* if each finite-dimensional H-module is semisimple.

Examples of finitely semisimple Hopf algebras are:

(a) Any H which is semisimple (e.g., H = kG, where G is a finite group with $(|G|, \operatorname{char} k) = 1$).

(b) $H = kG_p$, where p is a prime different from the characteristic of k and G_p is the group $\{x \in \mathbb{C} : \exists_n x^{p^n} = 1\}$ (an easy exercise).

(c) H = U(L), the universal enveloping algebra of a finite-dimensional, semisimple Lie algebra L (k is supposed to have characteristic 0).

(d) $H = U_q(sl(2, k))$, the quantum enveloping algebra of the Lie algebra sl(2, k), where $k = \mathbb{C}$ and q is not a root of unity (see [5, Theorem VII.2.2]).

Notice that if the Hopf algebra H is finitely semisimple and V is a locally finite H-module, then every submodule and every quotient module of V is semisimple.

Recall that a (left) action of H on a k-algebra A is an H-module structure $\gamma : H \otimes A \to A$ on A as a vector space (we write $\gamma(h \otimes a) = h.a$) such that $h.1_A = \varepsilon(h)1_A$ and $h.(xy) = \sum(h_{(1)}.x)(h_{(2)}.y)$ for all $h \in H, x, y \in A$, and $\sum h_{(1)} \otimes h_{(2)} = \Delta(h)$. In other words, A together with γ is an H-module algebra (see [7, 9]). The action γ (or the corresponding H-module algebra A) is called *locally finite* if A is locally finite as an H-module. If H is a finite-dimensional vector space, then clearly every action of H on a k-algebra A is locally finite.

Given *H*-module algebras *A* and *B*, a homomorphism of algebras $f : A \to B$ is called a homomorphism of *H*-module algebras if f(h.a) = h.f(a) for all $h \in H$ and $a \in A$. An *H*-module algebra *A* is said to be semisimple when *A* is semisimple as an *H*-module. If *A* is an *H*-module algebra, then A^H is a subalgebra in *A* called the algebra of invariants of *A*. We say that an ideal *I* in *A* is invariant if $h.x \in I$ for all $h \in H$ and $x \in I$, i.e., if *I* is a submodule of *A*, as an *H*-module. One readily checks that if an ideal *I* in *A* is invariant, then all its powers I^j are also invariant, and so we have the quotient *H*-modules A/I^j , $j \geq 1$.

By a topological *H*-module we mean an *H*-module *V* provided with the topology given by a family $\{V_t\}$ of submodules of *V* (as a fundamental

system of neighborhoods of 0). When we want to indicate the topology of V we write $(V, \{V_t\})$. The trivial H-module k will be treated as a topological H-module with the discrete topology. A morphism of topological H-modules is a continuous homomorphism of H-modules. All submodules and quotient modules of a topological H-module will be viewed as topological H-modules with the induced topology and quotient topology, respectively.

If $(V, \{V_t\})$ and $(W, \{W_j\})$ are topological *H*-modules, then the tensor product $V \otimes W$ will be considered as a topological *H*-module with the topology defined by the family $\{V_t \otimes W + V \otimes W_j\}$ (precisely, their images in $V \otimes W$). If $(V, \{V_t\})$ is a topological *H*-module, then its completion \hat{V} is defined to be the inductive limit $\lim_{i \to V} V_t$ provided with the topology inherited from the product topology in $\prod_{i \to V} V_t$ (notice that V/V_t 's have the discrete topology). A topological *H*-module *V* is said to be complete if the canonical homomorphism $p: V \to \hat{V}$ is an isomorphism of *H*-modules. It is easy to see that the topology in \hat{V} is given by the family of submodules $\{\hat{V}_t\}, p$ induces an isomorphism $V/V_t \simeq \hat{V}/\hat{V}_t$ for all *t*, and \hat{V} is complete. The category of all complete *H*-modules will be denoted by cMod. Since for every *H*-module *U* the topological *H*-module $(U, \{0\})$ is complete, the category of *H*-modules will be identified with the full subcategory of *cMod* consisting of all discrete *H*-modules. Observe that for any complete *H*-module *V* the trivial submodule V^H is also complete.

A topological H-module algebra is an H-module algebra A (not necessarily commutative) provided with a topology given by a family of invariant (two-sided) ideals. In the obvious manner, any topological H-module algebra is a topological H-module. It is not difficult to see that a topological algebra is nothing else (up to equivalence of topologies) than a triple (A, m, η) , where $m : A \otimes A \to A$ and $\eta : A \to k$ are morphisms of topological H-modules satisfying the appropriate associativity and unity axioms. Such an algebra A is said to be *complete* if A is complete as a topological H-module. If A is a topological H-module algebra, then its completion \widehat{A} is a complete H-module algebra in the obvious manner.

In order to give examples of topological H-module algebras let us recall that a sequence $I = \{I_0, I_1, \ldots\}$ of ideals in a ring A is called *admissible* if $I_0 = A$, $I_1 \supset I_2 \supset \ldots$, and $I_i I_j \subset I_{i+j}$ for all $i, j \ge 0$. Now if A is an H-module algebra and I is an admissible sequence of invariant ideals in A, then (A, I) and its completion are topological H-module algebras of special interest for us. An important special case is when $I = \{I^m : m \ge 0\}$, where I is an invariant ideal in A. Then the corresponding topology is the I-adic topology.

If $I = \{I_i : i \ge 0\}$ is an arbitrary admissible sequence of ideals in a ring A, then we denote by G(I) the graded ring $\bigoplus_{i=0}^{\infty} I_i$ with the multiplication

"." defined as follows: if $a \in I_i$, $b \in I_j$, then $a.b = ab \in I_{i+j}$ (see [3]). In the case where $I = \{I^i : i \ge 0\}$ for some ideal I in A we write G(I) instead of G(I). If A is an H-module algebra and I is an admissible sequence of invariant ideals in A, then the algebra G(I) is an H-module algebra in a natural way.

DEFINITION 1.2(see [3]). An admissible sequence I of ideals in a ring A has right AR 2 (the second right Artin-Rees property) if the ring G(I) is right noetherian. If A is commutative, then clearly G(I) is commutative and we say that A has AR 2 whenever G(I) is noetherian. An ideal I in the ring A has right AR 2 if the sequence $\{I^i\}$ has right AR 2.

It is obvious that if I is an admissible sequence with right AR 2, then the ring A is right noetherian. The significance of AR 2 is expressed by the following.

THEOREM 1.3 ([3, Corollary 1.4]). If A is a ring and I is an admissible sequence of ideals which has right AR 2, then the completion of A in the topology given by I is a right noetherian ring.

If A is a commutative, noetherian ring, then any ideal in A has AR 2 [1, Chap. 10]. In Section 3 we give other examples of admissible sequences of ideals with AR 2 (see Examples 3.7 and 3.10). If L is a finite-dimensional, nilpotent Lie algebra and A = U(L) is the universal enveloping algebra of L, then the augmentation ideal I = LA has right AR 2 (see [8]).

2. The category of pro-semisimple *H*-modules

DEFINITION 2.1. A pro-semisimple H-module is a complete topological H-module $(V, \{V_t\})$ such that V/V_t is a semisimple H-module for all t.

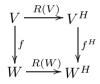
It is not difficult to show that any closed submodule of a pro-semisimple H-module is also pro-semisimple. If the Hopf algebra H is finitely semisimple, then the completion of any locally finite, topological H-module is a pro-semisimple H-module. Let p(H) denote the full subcategory of the category of topological H-modules whose objects are pro-semisimple H-modules. Notice that the category s(H) of all semisimple H-modules equipped with the discrete topology is a subcategory of the category p(H). Observe also that if V is a pro-semisimple H-module, then the trivial submodule V^H is also a pro-semisimple H-module. Moreover, if $f: V \to W$ is a morphism in p(H), then so is $f^H: V^H \to W^H$.

Now we define the category of pro-semisimply graded *H*-modules which plays an important role in what follows. A pro-semisimply graded *H*-module is a pair $(W, \{W_q\})$, where *W* is an *H*-module and $\{W_q\}$ is a family of prosemisimple *H*-modules (indexed by an arbitrary set) such that the *H*-module *W* is the direct sum of the *H*-modules $\{W_q\}$. The family $\{W_q\}$ is called a pro-semisimple grading of W. As usual, we write $W = \bigoplus W_q$ instead of the pair $(W, \{W_q\})$. If $W = \bigoplus W_q$ and $U = \bigoplus U_j$ are pro-semisimply graded *H*-modules and $i_q : W_q \to W$ $(p_j : U \to U_j)$ denote the natural injections (natural projections), then a morphism from $W = \bigoplus W_q$ to $U = \bigoplus U_j$ is a morphism of *H*-modules $f : W \to U$ such that all the compositions $p_j f i_q : W_q \to U_j$ are morphisms of pro-semisimple *H*-modules. The category of pro-semisimply graded *H*-modules will be denoted by pg(H). Providing each pro-semisimple *H*-module *V* with the trivial grading $\{V_1 = V\}$ one can consider the category p(H) as a subcategory of the category pg(H). If $W = \bigoplus W_q$ is an object of pg(H), then $W^H = \bigoplus W_q^H$ is also an object of pg(H), because, as we mentioned above, V^H is a pro-semisimple *H*-module if *V* is. Moreover, if $f : W \to U$ is a morphism in pg(H), then $f^H : W \to U$ is.

DEFINITION 2.2. Let \mathcal{C} be a subcategory of the category pg(H)-modules having the property: if $f: V \to W$ is a morphism in \mathcal{C} , then $f^H: V^H \to W^H$ is. We say that on the category \mathcal{C} there exists a *Reynolds operator* R if for each $V \in ob \mathcal{C}$ a morphism $R(V): V \to V^H$ in \mathcal{C} is given such that the following conditions hold:

(1) if $V \in \text{ob} \mathcal{C}$ and $v \in V^H$, then R(V)(v) = v,

(2) if $f: V \to W$ is a morphism in \mathcal{C} , then the diagram



is commutative.

REMARK. It is easy to see that on every C there exists at most one Reynolds operator.

THEOREM 2.3. On the category pg(H) there exists a Reynolds operator R.

Proof. We shall construct R in three steps using the inclusions $s(H) \subset p(H) \subset pg(H)$. The construction is a simple modification of what has been done in [10, proof of Theorem 3.11].

First we show that there exists a Reynolds operator R on s(H). Let $H^+ = \{h \in H : \varepsilon(h) = 0\}$. If U is a simple H-module, then clearly $H^+U = 0$ if U is trivial and $H^+U = U$ otherwise. Hence $U = U^H \oplus H^+U$ for each semisimple H-module U. This in turn implies that the natural projections $R(U) : U \to U^H, U \in s(H)$, define a Reynolds operator R on s(H). Now exactly in the same manner as in [10] one shows that the Reynolds operator R on s(H) can be extended first to p(H) and then to pg(H).

COROLLARY 2.4. If $f: W \to U$ is a surjective morphism in pg(H), then so is $f^H: W \to U$.

Proof. This follows easily from the definition of a Reynolds operator.

COROLLARY 2.5. Let $(V, \{V_t\})$ be a topological H-module which is semisimple as an H-module. Then the natural morphism of complete H-modules $f: \widehat{V^H} \to (\widehat{V})^H, f((v_t + V_t^H)) = (v_t + V_t), \text{ is an isomorphism (i.e., the operations of completion and taking invariants commute).}$

Proof. It is obvious that f is injective. Let $\hat{v} = (v_t + V_t) \in (\hat{V})^H$. This means that $v_t + V_t \in (V/V_t)^H$ for each t. Applying Corollary 2.4 to the natural projections $V \to V/V_t$, we can assume that $v_t \in V^H$ for all t. Hence $\hat{v} \in \text{Im } f$.

DEFINITION 2.6. A pro-semisimple *H*-module algebra is a topological *H*-module algebra which is pro-semisimple as a topological *H*-module. A pg(H)-algebra is an *H*-module algebra *A* together with a pro-semisimple grading of *A* as an *H*-module such that for each $y \in A^H$ the map $\tilde{y} : A \to A$, $\tilde{y}(a) = ya$, is a morphism in the category pg(H) (it is easy to see that \tilde{y} is always a homomorphism of *H*-modules).

If A is a pg(H)-algebra, then A^H is a pg(H)-algebra in a natural way. Also it is clear that each pro-semisimple H-module algebra A provided with the trivial grading $\{A_1 = A\}$ is a pg(H)-algebra.

Any semisimple H-module algebra equipped with the discrete topology is a pro-semisimple H-module algebra. In order to give other examples of pro-semisimple H-module algebras and pg(H)-algebras, assume that the Hopf algebra H is finitely semisimple. It is easy to verify that the following statements hold:

(1) Any locally finite H-module algebra (with the discrete topology) is a pro-semisimple H-module algebra.

(2) The completion \hat{A} of a locally finite, topological *H*-module algebra A is a pro-semisimple *H*-module algebra. Moreover, if the topology in A is given by an admissible sequence of ideals with right AR 2, then \hat{A} is right noetherian.

(3) Any linearly compact H-module algebra, i.e., a complete topological H-module algebra $(A, \{I_t\})$ such that A/I_t is a finite-dimensional vector space for all t, is a pro-semisimple H-module algebra. For instance, if H acts on the algebra of formal power series $A = k[[X_1, \ldots, X_n]]$ in such a way that its unique maximal ideal m is invariant, then A together with the m-adic topology is a linearly compact H-module algebra.

(4) If $I = \{I_n : n \ge 0\}$ is any admissible sequence of closed and invariant ideals in a pro-semisimple *H*-module algebra *A*, then the graded *H*-module

algebra $G(\mathbf{I}) = \bigoplus_{i=0}^{\infty} I_i$ is a pg(H)-algebra. Moreover, it is right noetherian whenever \mathbf{I} has right AR 2.

COROLLARY 2.7. Let R denote the Reynolds operator on the category pg(H) and let A be a pg(H)-algebra. Then for R = R(A) and all $y \in A^H$, $a \in A$ we have R(ya) = yR(a), that is, $R : A \to A^H$ is a homomorphism of (left) A^H -modules.

Proof. Apply condition (2) of Definition 2.2 to the morphism of prosemisimply graded *H*-modules $f = \tilde{y} : A \to A$.

THEOREM 2.8. If A is a right noetherian pg(H)-algebra, then A^H is also a right noetherian pg(H)-algebra.

Proof. Let R = R(A). Since, by Corollary 2.7, R(ya) = yR(a) and R(y) = y for $y \in A^H$ and $a \in A$, $IA \cap A^H = I$ for any right ideal I in A^H . Hence A^H is right noetherian, because so is A.

An immediate consequence of the above theorem is the following.

COROLLARY 2.9. If A is a right noetherian, semisimple H-module algebra, then A^H is right noetherian. In particular, if H is finitely semisimple and A is a locally finite, right noetherian H-module algebra, then A^H is right noetherian.

From Theorem 2.8 we also get generalizations of Donkin's results [3, Corollary 2.2, Theorem 2.3, and Corollary 2.4].

COROLLARY 2.10. Let A be a pro-semisimple H-module algebra and let $I = \{I_r : r \ge 0\}$ be an admissible sequence of closed invariant ideals with right AR 2. Then the admissible sequence $I^H = \{I_r^H : r \ge 0\}$ of ideals in A^H also has right AR 2.

Proof. In view of the assumptions, $G(\mathbf{I})$ is a right noetherian pg(H)-algebra. From Theorem 2.8 it follows that $G(\mathbf{I}^H) = G(\mathbf{I})^H$ is also right noetherian. This means that \mathbf{I}^H has right AR 2, as was to be proved.

THEOREM 2.11. Let A be a semisimple H-module algebra, and let $I = \{I_j : j \ge 0\}$ be an admissible sequence of invariant ideals with right AR 2. Furthermore, let \widehat{A} denote the completion of A in the topology determined by I.

(1) The natural homomorphism of (complete) topological algebras $f : \widehat{A^H} \to (\widehat{A})^H$, $f((a_j + I_j^H)) = (a_j + I_j)$, is an isomorphism.

(2) The ring $(\widehat{A})^H$ is right noetherian.

In particular, if H is finitely semisimple and A is locally finite, then $(\widehat{A})^{H}$ is right noetherian.

Proof. From Corollary 2.5 we know that f is an isomorphism. Part (2) follows from part (1), by Corollary 2.10 and Theorem 1.3.

3. Commutative *H***-module algebras.** Let *V* be an *H*-module. Then the tensor algebra T(V) is an *H*-module algebra via

$$h.(v_1 \otimes \ldots \otimes v_n) = \sum h_{(1)}v_1 \otimes \ldots \otimes h_{(n)}v_n.$$

It is obvious that the action of H on T(V) preserves the natural grading of T(V). Let I = I(V) denote the ideal in T(V) generated by the set

$$\{h.(v \otimes v' - v' \otimes v) : h \in H, v, v' \in V\}.$$

Then I is an invariant homogeneous ideal in T(V). Set $S_H(V) = T(V)/I$ (the definition of $S_H(V)$ comes from [12]). Recall that a graded algebra $A = \bigoplus_{i\geq 0} A_i$ is called *connected* if $A_0 = k$. With the above notation, one has the following.

LEMMA 3.1. (1) $S_H(V)$ is a graded, connected, commutative H-module algebra such that all its homogeneous components $S_H(V)_i$, $i \ge 0$, are Hsubmodules of A and $S_H(V)_1 = V$. Furthermore, if H is cocommutative, then $S_H(V)$ is the ordinary symmetric H-module algebra S(V).

(2) If V is finite-dimensional, then the algebra $S_H(V)$ is finitely generated and all its homogeneous components are finite-dimensional H-submodules of $S_H(V)$. In particular, $S_H(V)$ is a locally finite H-module algebra.

(3) Let A be any commutative H-module algebra and let $g: V \to A$ be a homomorphism of H-modules. Then there exists a unique homomorphism of H-module algebras $\tilde{g}: S_H(V) \to A$ (called the induced homomorphism) such that its restriction to $V = S_H(V)_1$ equals g. Moreover, if the set g(V)generates the algebra A, then the morphism \tilde{g} is surjective.

Proof. This is a straightforward computation.

From now on, we assume that all H-module algebras under consideration are commutative.

THEOREM 3.2. Suppose that the Hopf algebra H is finitely semisimple and A is a finitely generated, locally finite H-module algebra. Then the algebra A^H is finitely generated.

Proof. As A is locally finite and finitely generated, there exist linearly independent generators y_1, \ldots, y_n of the algebra A such that $V = ky_1 + \ldots + ky_n$ is an H-submodule of A. From Lemma 3.1(3) it follows that the inclusion $g: V \to A$ induces a surjective morphism of H-module algebras $\tilde{g}: S_H(V) \to A$. Moreover, $S_H(V)$ is locally finite, by Lemma 3.1(2). Hence both A and $S_H(V)$ are semisimple H-module algebras, because H is finitely semisimple. Applying Corollary 2.4 (to \tilde{g}) and Theorem 2.8, we see that the homomorphism of algebras $\tilde{g}^H : S_H(V)^H \to A^H$ is surjective and that $S_H(V)^H$ is a noetherian ring. Since $S_H(V)^H$ is a connected graded algebra, the latter implies that $S_H(V)^H$ is a finitely generated algebra. Since $A^H = \tilde{g}(S_H(V)^H)$, this shows that A^H is finitely generated.

Let A' be a subring of a commutative ring A and let $i : A' \to A$ be the natural inclusion. Recall that A is called *pure over* A' if the map $i \otimes_{A'} M : A' \otimes_{A'} A \to A \otimes_{A'} M$ is injective for any A'-module M. It is obvious that A is pure over A', whenever i splits over A', i.e., whenever $ti = id_{A'}$ for some homomorphism of A'-modules $t : A \to A'$. In particular, if A is a prosemisimple H-module algebra, then A is pure over A^H . In fact, by Corollary 2.7, the Reynolds operator $R = R(A) : A \to A^H$ is a homomorphism of A^H -module such that R(a) = a for $a \in A^H$.

THEOREM 3.3. Let A be a finitely generated H-module algebra which is a regular integral domain. Then A^H is a Cohen-Macaulay ring in each of the following cases:

(1) H is finitely semisimple and A is locally finite.

(2) $A = \bigoplus_{i \ge 0} A_i$ is a connected graded algebra such that all A_i 's are semisimple H-submodules of A.

Proof. In both cases A is a semisimple H-module algebra. If condition (1) holds, then, according to Theorem 3.2, A^H is a finitely generated algebra. Moreover, A is pure over A^H . Hence A^H is a Cohen–Macaulay ring, by [6, Theorem 0.2]. Now suppose that (2) holds. It follows from Theorem 2.8 that the ring A^H is noetherian. Furthermore, A^H is obviously a connected graded algebra. Therefore, A^H is finitely generated. As A is pure over A^H , we conclude that A^H is a Cohen–Macaulay ring, again by [6, Theorem 0.2].

We now describe all admissible sequences with AR 2 in any commutative, noetherian ring.

LEMMA 3.4. Let A be a commutative noetherian ring and let $I = \{I_i : i \ge 0\}$ be an admissible sequence of ideals in A. Then I has AR 2 if and only if I satisfies the following condition:

(*) There exists an
$$n \ge 1$$
 such that $I_{n+j} = \sum_{i=1}^{n} I_i I_{n+j-i}$ for all $j \ge 1$.

Proof. Let $J = \bigoplus_{i \ge 1} I_i \subset G(\mathbf{I}) = \bigoplus_{i \ge 0} I_i$ and let J_q denote the ideal in $G(\mathbf{I})$ generated by $\bigoplus_{i=1}^q I_i \subset G(\mathbf{I}), q = 1, 2, ...$ Then $J_q \subset J_{q+1}$ for all q and J is the union of all J_q 's. If the algebra $G(\mathbf{I})$ is noetherian, then there exists an n such that $J = J_n$. But J_n is a graded ideal in $G(\mathbf{I})$ whose (n+j)th component is equal to $\sum_{i=1}^n I_i I_{n+j-i}, j \ge 1$. This proves the implication

" \Rightarrow ". If I satisfies the condition (*), then clearly $J = J_n$. Hence the ideal J is finitely generated, because $I_1 \oplus \ldots \oplus I_n$ is a finitely generated A-module. Let a_1, \ldots, a_s be homogeneous generators of J. Then $G(I) = A[a_1, \ldots, a_s]$. Consequently, G(I) is noetherian, because so is A.

COROLLARY 3.5. Let $I = \{I_i\}$ be an admissible sequence of ideals in A which has AR 2.

(1) There exists an n such that $I_{nj} \subset I_1^j \subset I_j$ for all $j \ge 0$. In particular, the topology determined by the sequence I is equivalent to the I_1 -adic topology.

(2) The completion of A in the topology determined by the sequence I is isomorphic to the completion of A in the I_1 -adic topology.

Proof. By Lemma 3.4, the sequence I satisfies the condition (*). This implies that

$$I_{nj} \subset \sum_{i=1}^{n} I_{n(j-1)+n-i} I_i \subset \sum_{i=1}^{n} I_{n(j-1)} I_i$$
 for all $j \ge 1$,

whence, by induction on j,

$$I_{jn} \subset \sum_{j_1 + \dots + j_n = j} I_1^{j_1} \dots I_n^{j_n} \quad \text{ for all } j \ge 0.$$

Since all the ideals I_i are contained in I_1 , it follows that $I_{jn} \subset I_1^j$ for $j \ge 0$. Obviously, $I_1^j \subset I_j$, because the sequence I is admissible. This proves part (1). Part (2) is a consequence of (1).

The following theorem gives a description of all admissible sequences of ideals with AR 2.

THEOREM 3.6. Let (I_0, I_1, \ldots, I_n) be a sequence of ideals in a commutative ring A satisfying the condition:

(i)
$$I_0 = A$$
, $I_1 \supset I_2 \supset \ldots \supset I_n$ and $I_i I_s \subset I_{i+s}$ for $i+s \leq n$.

Moreover, let $I_{n+j} = \sum_{i=1}^{n} I_i I_{n+j-i}$ for $j \ge 1$ (inductive formula). Then the sequence $I(I_1, \ldots, I_n) = \{I_q : q \ge 0\}$ is admissible and has AR 2. Conversely, if $I = \{I_j\}$ is an admissible sequence of ideals with AR 2, then there exists an n such that the sequence of ideals (I_0, I_1, \ldots, I_n) satisfies the condition (i) and $I = I(I_0, \ldots, I_n)$.

Proof. Two simple inductions show that $I(I_0, \ldots, I_n)$ is an admissible sequence. The rest of the theorem follows from Lemma 3.4.

EXAMPLE 3.7. Let A be a commutative ring. If I is an ideal in A, then clearly the sequence $(I_0 = A, I_1 = I)$ satisfies condition (i) in the above theorem and $I(I_0, I_1) = \{I^j : j \ge 0\}$. If I_1, I_2 are ideals in A such that $I_1 \supset I_2$ and $I_1^2 \subset I_2$, then the sequence $(I_0 = A, I_1, I_2)$ also satisfies condition

A. TYC

(i), and one easily checks that $I(I_0, I_1, I_2) = \{I_j\}$, where $I_j = I_1^i I_2^r$ for $j = 2i + r, 0 \le r \le 1$.

The next example shows that if I is an admissible sequence of ideals and the topology defined by I is equivalent to the I_1 -adic topology, then I need not have AR 2.

EXAMPLE 3.8. Let A = k[X, Y] and let $J_1 = (X, Y)$, $J_2 = (X, Y^2)$. Further, let $I_0 = A$ and let $I_i = J_2^i J_1$ for $i \ge 1$. Then $\mathbf{I} = \{I_i : i \ge 0\}$ is obviously an admissible sequence of ideals in A and the topology defined by \mathbf{I} and the I_1 -adic topology are equivalent, because $I_{2j} \subset I_1^j \subset I_j$ for all $j \ge 0$. Suppose that \mathbf{I} satisfies the condition (*) from Lemma 3.4, i.e., there exists an $n \ge 1$ such that $I_{n+j} = I_1 I_{n+j-1} + \ldots + I_n I_j$ for $j \ge 1$. This means that $I_2^{n+j} I_1 = I_2^{n+j} I_1^2$, which is impossible. By Lemma 3.4, \mathbf{I} does not have AR 2.

REMARK 3.9. Let $I = \{I_i\}$ be an admissible sequence of ideals in a commutative ring A which has AR 2. Since $I_1I_i \subset I_{i+1}$ for all i, I is an I_1 -filtration of the ring A in the sense of [1, Chap. 10]. However, in general, it is not a stable I_1 -filtration, i.e., there does not exist an s such that $I_1I_i = I_{i+1}$ for $i \geq s$. This is illustrated by the following

EXAMPLE 3.10. Let A, I_1 , and I_2 be as in Example 3.8. Set $I_{2i+r} = I_2^i I_1^r$ for $i \ge 1$ and r = 0, 1. It is easy to verify that $\mathbf{I} = \{I_i : i \ge 0\}$ $(I_0 = A)$ is an admissible sequence satisfying the condition (*) from Lemma 3.4 for n = 2, and so \mathbf{I} has AR 2. But $I_1 I_{2i+1} \ne I_{2(i+1)}$ for all i, because the first ideal equals $(X, Y)^2 (X, Y^2)^i$ and the second one $(X, Y^2)^{i+1}$.

Now we show some applications of the above results. By a *local ring* we mean a commutative, noetherian ring with the unique maximal ideal.

THEOREM 3.11. Let A be a noetherian, pro-semisimple H-module algebra and let I be an invariant ideal in A such that all the ideals $I^i, i \ge 0$, are closed. Then the I^H -adic topology in A^H is equivalent to the topology defined by the admissible sequence of ideals $\{(I^r)^H : r \ge 0\}$.

Proof. Let $I = \{I^r : r \ge 0\}$. By Corollary 2.10, the admissible sequence $I^H = \{(I^r)^H\}$ has AR 2. Now the theorem follows from Corollary 3.5.

THEOREM 3.12. Suppose that A is a noetherian H-module algebra and I is an invariant ideal in A such that A is complete in the I-adic topology and the H-modules A/I^i are semisimple for all $i \ge 0$. Then A^H is a noetherian ring, complete in the I^H -adic topology.

Proof. The algebra A together with the *I*-adic topology is a pro-semisimple *H*-module algebra. Therefore, according to Theorem 2.8, A^H is a noetherian ring, complete in the topology given by the admissible sequence $\{(I_i)^H\}$. Furthermore, all the ideals I^i are closed (in the *I*-adic topology), by [1, Proposition 10.15,(II)]. Hence we get the assertion, by Theorem 3.11.

THEOREM 3.13. Suppose that the Hopf algebra H is finitely semisimple and that A is a noetherian H-module algebra.

(1) If A is locally finite, I is an invariant ideal in A, and \widehat{A} is the completion of A in the I-adic topology, then the algebra $(\widehat{A})^H$ is noetherian and the natural inclusion $i: A^H \to A$ induces an isomorphism of the completion of A^H in the I^H -adic topology with $(\widehat{A})^H$.

(2) If A is a complete local ring with the invariant maximal ideal m and A/m is a finite field extension of k, then A^H is a complete local ring with the unique maximal ideal m^H . In particular, if $A = k[[X_1, \ldots, X_n]]/J$ (for some n and an ideal J) and the ideal $m = (X_1 + J, \ldots, X_n + J)$ is invariant, then A^H is of the same form.

Proof. In the situation of (1), we know from Corollary 2.5 that the inclusion $i : A^H \to A$ induces an isomorphism of the completion of A^H in the topology given by the ideals $\{(I^i)^H : i \ge 0\}$ with the algebra $(\widehat{A})^H$. The conclusion now follows from Theorem 3.11 applied to A with the discrete topology. As for part (2), a simple induction shows that the H-modules A/m^j , $j \ge 1$, are finite-dimensional vector spaces. Hence A is a pro-semisimple H-module algebra, because H is finitely semisimple. By Theorem 3.12, this implies that A^H is a noetherian ring, complete in the m^H -adic topology. Furthermore, one easily verifies that m^H is the unique maximal ideal in A^H . Thus we obtain the first statement in (2). The second one is a consequence of the Cohen classification of complete local rings.

THEOREM 3.14. Fix $n \ge 0$ and suppose that H acts on the algebra $A = k[[X_1, \ldots, X_n]]$ in such a way that the (unique) maximal ideal m in A is invariant and the H-modules m/m^j , $j \ge 1$, are semisimple. Then A^H is a complete, local Cohen-Macaulay ring.

Proof. In view of Theorem 3.13, A^H is a complete local ring. So, it remains to prove that A^H is Cohen-Macaulay. By [2, Thm. 4(2)], we can assume (possibly changing variables) that $h.X_i \in kX_1 + \ldots + kX_n$ for all $h \in H$ and $i = 1, \ldots, n$. It follows that the action of H on the algebra Apreserves the subalgebra $B = k[X_1, \ldots, X_n]$, so that we have the induced action of H on B. Moreover, if $B = \bigoplus_{j\geq 0} B_j$ is the natural grading in B(given by degree), then all B_j 's are H-submodules of B. We show that B is semisimple as an H-module. First observe that for each $j \geq 0$ the H-module m^j/m^{j+1} is semisimple, because it is a submodule of the semisimple Hmodule m/m^{j+1} . On the other hand, the natural inclusion $B_j \subset m^j$ induces an isomorphism of H-modules $B_j \simeq m^j/m^{j+1}$. Hence $B = \bigoplus_{j\geq 0} B_j$ is a semisimple H-module. Now making use of Theorem 3.3(2), we see that B^H is a Cohen–Macaulay ring. It is clear that A^H is the completion of B^H in the topology defined by the admissible sequence of ideals $\{(m'^j)^H\}$, where m' is the (maximal) ideal in B generated by the variables X_1, \ldots, X_n . From Theorem 3.11 (applied to B with the discrete topology and I = m') it follows that the topology in B^H given by the sequence $\{(m'^i)^H\}$ is equivalent to the m'^H -adic topology. Hence A^H is isomorphic to the completion of B^H in the m'^H -adic topology. The conclusion now follows from [4, Theorem 18.8], because m'^H is the maximal ideal in the Cohen–Macaulay ring B^H .

COROLLARY 3.15. If the Hopf algebra H is finitely semisimple and H acts on the algebra $A = k[[X_1, \ldots, X_n]]$ in such a way that the maximal ideal m in A is invariant, then A^H is a complete local Cohen-Macaulay ring.

Proof. The corollary is a consequence of the theorem, because the *H*-modules m/m^j , $j \ge 1$, are finite-dimensional.

REMARK 3.16. Part (2) of Theorem 3.11 together with Theorem 3.14 can be viewed as an analogue of Theorem 3.2 for complete local H-module algebras.

The following example is an application of Corollary 3.15.

EXAMPLE 3.17. Assume that the field k is algebraically closed and fix a prime $p \neq \operatorname{char} k$. Moreover, let $a^{(1)}, \ldots, a^{(n)}$ be arbitrary p-adic numbers, and let $\Omega = \{\alpha = (\alpha_1, \ldots, \alpha_n) \in \mathbb{N}^n : \alpha_1 a^{(1)} + \ldots \alpha_n a^{(n)} = 0\}$. It turns out that $A' = \{\sum_{\alpha \in \Omega} t_\alpha X^\alpha \in k[[X_1, \ldots, X_n]]\}, X^\alpha = X_1^{\alpha_1} \ldots X_n^{\alpha_n}$, is a complete, local Cohen–Macaulay subring of $k[[X_1, \ldots, X_n]]$. To see this, let $H = kG_p$ be the finitely semisimple Hopf algebra from example (b) of Section 1, and let ζ_j be the primitive root of unity of degree $p^{j+1}, j \geq 0$. Then the formulas

$$\zeta_j X_i = \zeta_j^{a_j^{(i)}} X_j, \quad i = 1, \dots, n, \ j \ge 0,$$

where $a^{(i)} = (a_0^{(i)}, a_1^{(i)}, \ldots), a_j^{(i)} \in \mathbb{Z}/p^{j+1}$, determine an action of H on the algebra $A = k[[X_1, \ldots, X_n]]$ such that the maximal ideal in A is invariant. One simply checks that $A^H = A'$. So, we are done, by Corollary 3.15.

REFERENCES

- M. F. Atiyah and I. G. MacDonald, *Introduction to Commutative Algebra*, Addison-Wesley, Reading, MA, 1969.
- [2] M. Boratyński and A. Tyc, A note on linearization of actions of finitely semisimple Hopf algebras on local algebras, J. Pure Appl. Algebra 130 (1998), 217–222.
- [3] S. Donkin, On the Noetherian property in endomorphism rings of certain comodules, J. Algebra 2 (1981), 394–419.

- [4] D. Eisenbud, Commutative Algebra with a View Toward Algebraic Geometry, Springer, 1994.
- [5] C. Kassel, Quantum Groups, Grad. Texts in Math. 155, Springer, 1995.
- [6] G. Kempf, The Hochster-Roberts theorem of invariant theory, Michigan Math. J. 26 (1979), 19–32.
- [7] S. Montgomery, Hopf Algebras and Their Actions on Rings, CBMS Regional Conf. Ser. in Math., 82, Amer. Math. Soc., 1992.
- [8] P. F. Pickel, *Rational cohomology of nilpotent groups and Lie algebras*, Comm. Algebra 6 (1978), 409–419.
- [9] M. Sweedler, *Hopf Algebras*, Benjamin, New York, 1969.
- [10] A. Tyc, Invariants of linearly reductive formal group actions, J. Algebra 101 (1986), 166–187.
- [11] A. Tyc and P. Wiśniewski, Primary decomposition and associated primes for invariant ideals in commutative noetherian algebras with an action of a pointed Hopf algebra, in preparation.
- [12] S. Zhu, Integrality of module algebras over its invariants, J. Algebra 180 (1996), 187–205.

Faculty of Mathematics and Informatics N. Copernicus University Chopina 12/18 87-100 Toruń, Poland E-mail: atyc@mat.uni.torun.pl

> Received 4 May 2000; revised 11 July 2000

(3924)