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ACTIONS OF HOPF ALGEBRAS ON PRO-SEMISIMPLE

NOETHERIAN ALGEBRAS AND THEIR INVARIANTS

BY

ANDRZEJ TYC (Toruń)

Abstract. Let H be a Hopf algebra over a field k such that every finite-dimensional
(left) H-module is semisimple. We give a counterpart of the first fundamental theorem of
the classical invariant theory for locally finite, finitely generated (commutative) H-module
algebras, and for local, complete H-module algebras. Also, we prove that if H acts on the
k-algebra A = k[[X1, . . . ,Xn]] in such a way that the unique maximal ideal in A is
invariant, then the algebra of invariants AH is a noetherian Cohen–Macaulay ring.

Introduction and the main results. Let k be a field and let H be
a Hopf algebra over k. By analogy with the invariant theory of algebraic
groups, the following is of importance.

Question. Let A be a commutative, finitely generated (resp., noethe-
rian) H-module algebra. When is the algebra of invariants AH also finitely
generated (resp., noetherian)?

It is known that for rational actions of an algebraic group G the an-
swer is “yes” whenever the group G is linearly reductive, i.e. whenever each
finite-dimensional, rational G-module is semisimple. An important property
used in the proof of this result is that every rational G-module is a sum of its
finite-dimensional submodules. We say that the Hopf algebra H is finitely
semisimple if every finite-dimensional (left) H-module is semisimple; this
is an analogue of a linearly reductive algebraic group. An H-module al-
gebra A is said to be locally finite if A, as an H-module, is a sum of its
finite-dimensional submodules; this is a good analogue of the rational ac-
tions of algebraic groups on algebras. So, a precise counterpart of the above
mentioned classical result is the following.

Theorem 1. Suppose that the Hopf algebra H is finitely semisimple,
and that A is a commutative, finitely generated (resp., noetherian), locally
finite H-module algebra. Then AH is a finitely generated (resp., noetherian)
algebra.
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This theorem is a consequence of our Corollary 2.9 and Theorem 3.2,
and, as we mentioned in [2, p. 220], for cocommutative H it can be proved
exactly in the same manner as for the rational actions of linearly reductive
algebraic groups, using a Reynolds operator.
However, there are interesting noetherian H-module algebras which are

not locally finite. For example, if A is a noetherian H-module algebra and
I is an invariant ideal in A, then the induced action of H on the completion
Â = lim←−A/I

n is not, in general, locally finite even if H is finitely semisimple
and A is locally finite.

Example 2. Let k = C and let L = sl(2, k). Then the universal envelop-
ing algebra U(L) is a finitely semisimple Hopf algebra and we have the well
known (locally finite) action of H on A = k[X,Y ] determined by(

a b
c d

)(
X
Y

)
=

(
aX + bY
cX + dY

)
.

Obviously, the induced action of H on the completion Â = k[[X,Y ]] of
A in the maximal (invariant) ideal (X,Y ) is given by the same formula.

In particular, the matrix
(
1 0

0 −1

)
∈ L ⊂ H acts on Â via the derivation

D : Â → Â such that D(X) = X and D(Y ) = −Y . It turns out that the
induced action is not locally finite. In order to see this, it clearly suffices to
show that there is an f ∈ Â such that the set {Dj(f) : j ≥ 0} is linearly
independent over k. Put f =

∑∞
i=1X

i and suppose that
∑s
r=0 trD

r(f) = 0
for some s and t0, . . . , ts ∈ k. Then

0 =
s∑

r=0

tr

( ∞∑

i=1

irXi
)
=
∞∑

i=1

( s∑

r=0

tri
r
)
Xi,

whence in particular,
∑s
r=0 tri

r = 0, i = 1, . . . , s + 1. But the determinant
of this system of linear equations (with respect to tr’s) is the Vandermonde
determinant V (1, . . . , s + 1), which is clearly different from 0. Therefore,
t0 = t1 = . . . = ts = 0. This means that the set {D

j(f) : j ≥ 0} is linearly
independent.

Another type of interesting noetherian H-module algebras which need
not be locally finite arises in the following situation. Suppose that the Hopf
algebra H is pointed [7, 9] (for instance, in characteristic 0 every cocom-
mutative Hopf algebra is pointed) and that A is a commutative H-module
algebra. Furthermore, let S be a multiplicative system in A such that gs ∈ S
for any group-like element g ∈ H and any s ∈ S. Then, as shown in [11],
there exists a unique action ofH on the localizationAS such that the natural
homomorphism of algebras A → AS is a morphism of H-module algebras.
So, if A is noetherian, then we obtain a noetherian H-module algebra AS .
Again it turns out that AS , in general, is not locally finite.
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Example 3. LetH, A and f be as in Example 2, and let S = {(1−X)n :
n ≥ 0}. Since 1 is the unique group-like element in H, we have the action
of H on AS . It is easy to see that if we look at AS as a subalgebra of
k[[X,Y ]], then the action of H on the localization AS is the restriction
of the action of H on k[[X,Y ]] considered in Example 2. Moreover, f =∑
i≥1X

i = (1 − X)−1 ∈ AS . This implies that f does not belong to any
finite-dimensional H-submodule of AS , that is, the action of H on AS is not
locally finite.

The main goal of this paper is to find a counterpart of Theorem 1 for
H-module algebras arising from locally finite H-module algebras by means
of the operation of completion. The case of localizations will be investigated
elsewhere.
Observe that the H-module algebra Â from Example 2 is, as an H-

module, the inductive limit of the system {k[X,Y ]/(X,Y )n : n ≥ 1} of
semisimple H-modules. The same is obviously true for the induced actions
of a finitely semisimple Hopf algeba H on the completion Â = lim←−A/I

n,
where A is a locally finite H-module algebra and I is an invariant ideal in
A. This suggests the following.

Definition. A pro-semisimple H-module algebra is an H-module alge-
bra A (not necessarily commutative) provided with a linear topology defined
by a family {Ii} of (two-sided) invariant ideals in A satisfying the conditions:

(1) A/Ii is a semisimple H-module for all i,
(2) the natural homomorphism of H-module algebras p : A → lim←−A/Ii

is an isomorphism.

If the Hopf algebra H is finitely semisimple and A is a locally finite
H-module algebra with an invariant ideal I, then the completion of A in
the I-adic topology is a pro-semisimple H-module algebra. In particular,
A itself with the discrete topology is a pro-semisimple H-module algebra.
More generally, if {In : n ≥ 0} is any admissible sequence of invariant ideals

in A (see Section 1), then the completion Â = lim←−A/In endowed with the
natural action of H is also a pro-semisimple H-module algebra. The main
objective of this paper is to prove the following.

Theorem 4. If A is a pro-semisimple, right noetherian H-module al-
gebra, then so is the algebra of invariants AH .

Theorem 5. If I is an invariant ideal in a commutative, noetherian,
pro-semisimple H-module algebra A such that all its powers In, n ≥ 1, are
closed (as subsets of A), then the induced topology in AH given by the set
of ideals {(In)H : n ≥ 0} is equivalent to the IH-adic topology in AH .

As corollaries from these theorems we get
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Theorem 6. Suppose that A is a noetherian H-module algebra which is
semisimple as an H-module. Then, for each invariant ideal I in A and the
induced action of H on the completion Â = lim←−A/I

n, the algebra (Â)H is
noetherian and the natural inclusion i : AH → A induces an isomorphism

of algebras ÂH ≃ (Â)H , where ÂH is the completion of AH in the IH-adic
topology.

Theorem 7. Suppose that the Hopf algebra H is finitely semisimple and
(A,m) is a local , complete, noetherian H-module algebra satisfying the con-
ditions:

(1) the unique maximal ideal m in A is invariant ,

(2) the quotient field A/m is a finite field extension of k.

Then AH is a local , complete, noetherian algebra with the unique maximal
ideal mH . In particular , if A is of the form k[[X1, . . . , Xn]]/J for some n ≥ 1
and some ideal J , then AH is of the same form.

The last statement in the above theorem can be vieved as a counterpart
of Theorem 1 for complete, local H-module algebras. Under the assumptions
of Theorem 7, we also prove that the ring AH is Cohen–Macaulay, whenever
A = k[[X1, . . . , Xn]].

In the proof of Theorems 1 and 3, an essential role is played by a Reynolds
operator.

The content of the paper can be summarized as follows. Preliminaries
are presented in Section 1. In Section 2 we prove the above mentioned The-
orem 3 (in a more general setting and not only for commutative H-module
algebras). In Section 3, given a commutative noetherian ring A, we present
a description of all admissible sequences I = {Ij : j ≥ 0} of ideals in A satis-
fying the second Artin–Rees property, i.e., I0 = A, Ij ⊃ Ij+1, IiIj ⊂ Ii+j for
i, j ≥ 0, and the graded algebra G(I) =

⊕
j≥0 Ij is noetherian. From this

description it follows that the topology in A defined by any such sequence
I is equivalent to the I1-adic topology. Hence one gets Theorem 5.

The definition of an admissible sequence satisfying the second Artin–Rees
property and its application in the proof of Theorem 5 come from [3, Sec-
tion 1]. Also, if H is the group algebra kG of some group G, then Theorems
4 and 6 were proved in [3] for H-module algebras that are semisimple as
H-modules. Section 2 of the paper was patterned upon [10, Section 2].

1. Preliminaries. Throughout the paper k denotes a field which will
serve as the ground field for all vector spaces and algebras under considera-
tion. All tensor products (unless otherwise stated) are defined over k. By H
we denote a fixed Hopf algebra with comultiplication ∆ : H → H ⊗H and
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counity ε : H → k. As in [9], we write ∆(h) =
∑
h(1) ⊗ h(2) for h ∈ H. An

H-module is meant to be a left H-module. Given an H-module V , V H will
stand for the submodule of invariants V H = {v ∈ V : hv = ε(h)v, h ∈ H}.
We say that V is trivial when V = V H . If f : V → U is a homomorphism
of H-modules, then fH : V H → UH denotes the restriction of f to V H .
An H-module V is called locally finite if it is a sum of its finite-dimensional
submodules.

Definition 1.1. The Hopf algebra H is called (left) finitely semisimple
if each finite-dimensional H-module is semisimple.

Examples of finitely semisimple Hopf algebras are:

(a) Any H which is semisimple (e.g., H = kG, where G is a finite group
with (|G|, char k)= 1).

(b) H = kGp, where p is a prime different from the characteristic of k
and Gp is the group {x ∈ C : ∃nx

pn = 1} (an easy exercise).

(c) H = U(L), the universal enveloping algebra of a finite-dimensional,
semisimple Lie algebra L (k is supposed to have characteristic 0).

(d) H = Uq(sl(2, k)), the quantum enveloping algebra of the Lie algebra
sl(2, k), where k = C and q is not a root of unity (see [5, Theorem VII.2.2]).

Notice that if the Hopf algebra H is finitely semisimple and V is a locally
finite H-module, then every submodule and every quotient module of V is
semisimple.

Recall that a (left) action ofH on a k-algebraA is anH-module structure
γ : H ⊗A→ A on A as a vector space (we write γ(h⊗ a) = h.a) such that
h.1A = ε(h)1A and h.(xy) =

∑
(h(1).x)(h(2).y) for all h ∈ H, x, y ∈ A, and∑

h(1) ⊗ h(2) = ∆(h). In other words, A together with γ is an H-module
algebra (see [7, 9]). The action γ (or the correspondingH-module algebra A)
is called locally finite if A is locally finite as an H-module. If H is a finite-
dimensional vector space, then clearly every action of H on a k-algebra A
is locally finite.

Given H-module algebras A and B, a homomorphism of algebras f :
A → B is called a homomorphism of H-module algebras if f(h.a) = h.f(a)
for all h ∈ H and a ∈ A. An H-module algebra A is said to be semisimple
when A is semisimple as an H-module. If A is an H-module algebra, then
AH is a subalgebra in A called the algebra of invariants of A. We say that
an ideal I in A is invariant if h.x ∈ I for all h ∈ H and x ∈ I, i.e., if I is a
submodule of A, as an H-module. One readily checks that if an ideal I in
A is invariant, then all its powers Ij are also invariant, and so we have the
quotient H-modules A/Ij , j ≥ 1.

By a topological H-module we mean an H-module V provided with the
topology given by a family {Vt} of submodules of V (as a fundamental
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system of neighborhoods of 0). When we want to indicate the topology of V
we write (V, {Vt}). The trivial H-module k will be treated as a topological
H-module with the discrete topology. A morphism of topological H-modules
is a continuous homomorphism of H-modules. All submodules and quotient
modules of a topological H-module will be viewed as topological H-modules
with the induced topology and quotient topology, respectively.

If (V, {Vt}) and (W, {Wj}) are topological H-modules, then the tensor
product V ⊗W will be considered as a topological H-module with the topol-
ogy defined by the family {Vt ⊗W + V ⊗Wj} (precisely, their images in

V ⊗W ). If (V, {Vt}) is a topological H-module, then its completion V̂ is de-
fined to be the inductive limit lim←−V/Vt provided with the topology inherited

from the product topology in
∏
V/Vt (notice that V/Vt’s have the discrete

topology). A topological H-module V is said to be complete if the canonical

homomorphism p : V → V̂ is an isomorphism of H-modules. It is easy to
see that the topology in V̂ is given by the family of submodules {V̂t}, p

induces an isomorphism V/Vt ≃ V̂ /V̂t for all t, and V̂ is complete. The cat-
egory of all complete H-modules will be denoted by cMod. Since for every
H-module U the topological H-module (U, {0}) is complete, the category of
H-modules will be identified with the full subcategory of cMod consisting
of all discrete H-modules. Observe that for any complete H-module V the
trivial submodule V H is also complete.

A topological H-module algebra is an H-module algebra A (not necessar-
ily commutative) provided with a topology given by a family of invariant
(two-sided) ideals. In the obvious manner, any topologicalH-module algebra
is a topological H-module. It is not difficult to see that a topological algebra
is nothing else (up to equivalence of topologies) than a triple (A,m, η), where
m : A ⊗ A → A and η : A → k are morphisms of topological H-modules
satisfying the appropriate associativity and unity axioms. Such an algebra
A is said to be complete if A is complete as a topological H-module. If
A is a topological H-module algebra, then its completion Â is a complete
H-module algebra in the obvious manner.

In order to give examples of topological H-module algebras let us recall
that a sequence I = {I0, I1, . . .} of ideals in a ring A is called admissible
if I0 = A, I1 ⊃ I2 ⊃ . . . , and IiIj ⊂ Ii+j for all i, j ≥ 0. Now if A is an
H-module algebra and I is an admissible sequence of invariant ideals in A,
then (A, I) and its completion are topological H-module algebras of special
interest for us. An important special case is when I = {Im : m ≥ 0}, where
I is an invariant ideal in A. Then the corresponding topology is the I-adic
topology.

If I = {Ii : i ≥ 0} is an arbitrary admissible sequence of ideals in a ring
A, then we denote by G(I) the graded ring

⊕∞
i=0 Ii with the multiplication
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“.” defined as follows: if a ∈ Ii, b ∈ Ij , then a.b = ab ∈ Ii+j (see [3]). In
the case where I = {Ii : i ≥ 0} for some ideal I in A we write G(I) instead
of G(I). If A is an H-module algebra and I is an admissible sequence of
invariant ideals in A, then the algebra G(I) is an H-module algebra in a
natural way.

Definition 1.2(see [3]). An admissible sequence I of ideals in a ring A
has right AR 2 (the second right Artin–Rees property) if the ring G(I) is
right noetherian. If A is commutative, then clearly G(I) is commutative and
we say that A has AR 2 whenever G(I) is noetherian. An ideal I in the ring
A has right AR 2 if the sequence {Ii} has right AR 2.

It is obvious that if I is an admissible sequence with right AR 2, then
the ring A is right noetherian. The significance of AR 2 is expressed by the
following.

Theorem 1.3 ([3, Corollary 1.4]). If A is a ring and I is an admissible
sequence of ideals which has right AR 2 , then the completion of A in the
topology given by I is a right noetherian ring.

If A is a commutative, noetherian ring, then any ideal in A has AR 2
[1, Chap. 10]. In Section 3 we give other examples of admissible sequences
of ideals with AR 2 (see Examples 3.7 and 3.10). If L is a finite-dimensional,
nilpotent Lie algebra and A = U(L) is the universal enveloping algebra of
L, then the augmentation ideal I = LA has right AR 2 (see [8]).

2. The category of pro-semisimple H-modules

Definition 2.1. A pro-semisimple H-module is a complete topological
H-module (V, {Vt}) such that V/Vt is a semisimple H-module for all t.

It is not difficult to show that any closed submodule of a pro-semisimple
H-module is also pro-semisimple. If the Hopf algebra H is finitely semi-
simple, then the completion of any locally finite, topological H-module is a
pro-semisimple H-module. Let p(H) denote the full subcategory of the cate-
gory of topologicalH-modules whose objects are pro-semisimpleH-modules.
Notice that the category s(H) of all semisimple H-modules equipped with
the discrete topology is a subcategory of the category p(H). Observe also
that if V is a pro-semisimple H-module, then the trivial submodule V H is
also a pro-semisimple H-module. Moreover, if f : V →W is a morphism in
p(H), then so is fH : V H →WH .
Now we define the category of pro-semisimply graded H-modules which

plays an important role in what follows. A pro-semisimply graded H-module
is a pair (W, {Wq}), where W is an H-module and {Wq} is a family of pro-
semisimpleH-modules (indexed by an arbitrary set) such that theH-module
W is the direct sum of the H-modules {Wq}. The family {Wq} is called a
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pro-semisimple grading of W . As usual, we write W =
⊕
Wq instead of the

pair (W, {Wq}). If W =
⊕
Wq and U =

⊕
Uj are pro-semisimply graded

H-modules and iq : Wq → W (pj : U → Uj) denote the natural injections
(natural projections), then a morphism from W =

⊕
Wq to U =

⊕
Uj

is a morphism of H-modules f : W → U such that all the compositions
pjfiq :Wq → Uj are morphisms of pro-semisimpleH-modules. The category
of pro-semisimply graded H-modules will be denoted by pg(H). Providing
each pro-semisimple H-module V with the trivial grading {V1 = V } one
can consider the category p(H) as a subcategory of the category pg(H). If
W =

⊕
Wq is an object of pg(H), then W

H =
⊕
WHq is also an object of

pg(H), because, as we mentioned above, V H is a pro-semisimpleH-module if
V is. Moreover, if f :W → U is a morphism in pg(H), then fH :W → U is.

Definition 2.2. Let C be a subcategory of the category pg(H)-modules
having the property: if f : V →W is a morphism in C, then fH : V H →WH

is. We say that on the category C there exists a Reynolds operator R if for
each V ∈ ob C a morphism R(V ) : V → V H in C is given such that the
following conditions hold:

(1) if V ∈ ob C and v ∈ V H , then R(V )(v) = v,

(2) if f : V →W is a morphism in C, then the diagram

V V H

W WH

R(V )
//

f

��

fH

��R(W )
//

is commutative.

Remark. It is easy to see that on every C there exists at most one
Reynolds operator.

Theorem 2.3. On the category pg(H) there exists a Reynolds opera-
tor R.

Proof. We shall construct R in three steps using the inclusions s(H) ⊂
p(H) ⊂ pg(H). The construction is a simple modification of what has been
done in [10, proof of Theorem 3.11].

First we show that there exists a Reynolds operator R on s(H). Let
H+ = {h ∈ H : ε(h) = 0}. If U is a simpleH-module, then clearlyH+U = 0
if U is trivial and H+U = U otherwise. Hence U = UH ⊕ H+U for each
semisimple H-module U . This in turn implies that the natural projections
R(U) : U → UH , U ∈ s(H), define a Reynolds operator R on s(H). Now
exactly in the same manner as in [10] one shows that the Reynolds operator
R on s(H) can be extended first to p(H) and then to pg(H).
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Corollary 2.4. If f :W → U is a surjective morphism in pg(H), then
so is fH :W → U .

Proof. This follows easily from the definition of a Reynolds operator.

Corollary 2.5. Let (V, {Vt}) be a topological H-module which is semi-
simple as an H-module. Then the natural morphism of complete H-modules

f : V̂ H → (V̂ )H , f((vt + V
H
t )) = (vt + Vt), is an isomorphism (i.e., the

operations of completion and taking invariants commute).

Proof. It is obvious that f is injective. Let v̂ = (vt + Vt) ∈ (V̂ )
H . This

means that vt + Vt ∈ (V/Vt)
H for each t. Applying Corollary 2.4 to the

natural projections V → V/Vt, we can assume that vt ∈ V
H for all t. Hence

v̂ ∈ Im f .

Definition 2.6. A pro-semisimple H-module algebra is a topological
H-module algebra which is pro-semisimple as a topological H-module. A
pg(H)-algebra is an H-module algebra A together with a pro-semisimple
grading of A as an H-module such that for each y ∈ AH the map ỹ : A→ A,
ỹ(a) = ya, is a morphism in the category pg(H) (it is easy to see that ỹ is
always a homomorphism of H-modules).

If A is a pg(H)-algebra, then AH is a pg(H)-algebra in a natural way.
Also it is clear that each pro-semisimple H-module algebra A provided with
the trivial grading {A1 = A} is a pg(H)-algebra.

Any semisimple H-module algebra equipped with the discrete topology
is a pro-semisimple H-module algebra. In order to give other examples of
pro-semisimple H-module algebras and pg(H)-algebras, assume that the
Hopf algebra H is finitely semisimple. It is easy to verify that the following
statements hold:

(1) Any locally finite H-module algebra (with the discrete topology) is
a pro-semisimple H-module algebra.
(2) The completion Â of a locally finite, topological H-module algebra

A is a pro-semisimple H-module algebra. Moreover, if the topology in A is

given by an admissible sequence of ideals with right AR 2, then Â is right
noetherian.
(3) Any linearly compact H-module algebra, i.e., a complete topological

H-module algebra (A, {It}) such that A/It is a finite-dimensional vector
space for all t, is a pro-semisimple H-module algebra. For instance, if H
acts on the algebra of formal power series A = k[[X1, . . . , Xn]] in such a
way that its unique maximal ideal m is invariant, then A together with the
m-adic topology is a linearly compact H-module algebra.

(4) If I = {In : n ≥ 0} is any admissible sequence of closed and invariant
ideals in a pro-semisimple H-module algebra A, then the graded H-module
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algebra G(I) =
⊕∞
i=0 Ii is a pg(H)-algebra. Moreover, it is right noetherian

whenever I has right AR 2.

Corollary 2.7. Let R denote the Reynolds operator on the category
pg(H) and let A be a pg(H)-algebra. Then for R = R(A) and all y ∈ AH ,
a ∈ A we have R(ya) = yR(a), that is, R : A→ AH is a homomorphism of
(left) AH-modules.

Proof. Apply condition (2) of Definition 2.2 to the morphism of pro-
semisimply graded H-modules f = ỹ : A→ A.

Theorem 2.8. If A is a right noetherian pg(H)-algebra, then AH is
also a right noetherian pg(H)-algebra.

Proof. Let R = R(A). Since, by Corollary 2.7, R(ya) = yR(a) and
R(y) = y for y ∈ AH and a ∈ A, IA ∩ AH = I for any right ideal I in
AH . Hence AH is right noetherian, because so is A.

An immediate consequence of the above theorem is the following.

Corollary 2.9. If A is a right noetherian, semisimple H-module alge-
bra, then AH is right noetherian. In particular , if H is finitely semisimple
and A is a locally finite, right noetherian H-module algebra, then AH is
right noetherian.

From Theorem 2.8 we also get generalizations of Donkin’s results [3,
Corollary 2.2, Theorem 2.3, and Corollary 2.4].

Corollary 2.10. Let A be a pro-semisimple H-module algebra and let
I = {Ir : r ≥ 0} be an admissible sequence of closed invariant ideals with
right AR 2. Then the admissible sequence IH = {IHr : r ≥ 0} of ideals in
AH also has right AR 2.

Proof. In view of the assumptions, G(I) is a right noetherian pg(H)-
algebra. From Theorem 2.8 it follows that G(IH) = G(I)H is also right
noetherian. This means that IH has right AR 2, as was to be proved.

Theorem 2.11. Let A be a semisimple H-module algebra, and let I =
{Ij : j ≥ 0} be an admissible sequence of invariant ideals with right AR 2.

Furthermore, let Â denote the completion of A in the topology determined
by I.

(1) The natural homomorphism of (complete) topological algebras f :

ÂH → (Â)H , f((aj + I
H
j )) = (aj + Ij), is an isomorphism.

(2) The ring (Â)H is right noetherian.

In particular , if H is finitely semisimple and A is locally finite, then
(Â)H is right noetherian.
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Proof. From Corollary 2.5 we know that f is an isomorphism. Part (2)
follows from part (1), by Corollary 2.10 and Theorem 1.3.

3. Commutative H-module algebras. Let V be an H-module. Then
the tensor algebra T (V ) is an H-module algebra via

h.(v1 ⊗ . . .⊗ vn) =
∑
h(1)v1 ⊗ . . .⊗ h(n)vn.

It is obvious that the action of H on T (V ) preserves the natural grading of
T (V ). Let I = I(V ) denote the ideal in T (V ) generated by the set

{h.(v ⊗ v′ − v′ ⊗ v) : h ∈ H, v, v′ ∈ V }.

Then I is an invariant homogeneous ideal in T (V ). Set SH(V ) = T (V )/I
(the definition of SH(V ) comes from [12]). Recall that a graded algebra
A =
⊕
i≥0Ai is called connected if A0 = k. With the above notation, one

has the following.

Lemma 3.1. (1) SH(V ) is a graded , connected , commutative H-module
algebra such that all its homogeneous components SH(V )i, i ≥ 0, are H-
submodules of A and SH(V )1 = V . Furthermore, if H is cocommutative,
then SH(V ) is the ordinary symmetric H-module algebra S(V ).
(2) If V is finite-dimensional , then the algebra SH(V ) is finitely gen-

erated and all its homogeneous components are finite-dimensional H-sub-
modules of SH(V ). In particular , SH(V ) is a locally finite H-module alge-
bra.

(3) Let A be any commutative H-module algebra and let g : V → A be
a homomorphism of H-modules. Then there exists a unique homomorphism
of H-module algebras g̃ : SH(V ) → A (called the induced homomorphism)
such that its restriction to V = SH(V )1 equals g. Moreover , if the set g(V )
generates the algebra A, then the morphism g̃ is surjective.

Proof. This is a straightforward computation.

From now on, we assume that allH-module algebras under consideration
are commutative.

Theorem 3.2. Suppose that the Hopf algebra H is finitely semisimple
and A is a finitely generated , locally finite H-module algebra. Then the al-
gebra AH is finitely generated.

Proof. As A is locally finite and finitely generated, there exist linearly
independent generators y1, . . . , yn of the algebra A such that V = ky1 +
. . . + kyn is an H-submodule of A. From Lemma 3.1(3) it follows that the
inclusion g : V → A induces a surjective morphism of H-module algebras
g̃ : SH(V )→ A. Moreover, SH(V ) is locally finite, by Lemma 3.1(2). Hence
both A and SH(V ) are semisimple H-module algebras, because H is finitely
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semisimple. Applying Corollary 2.4 (to g̃) and Theorem 2.8, we see that
the homomorphism of algebras g̃H : SH(V )

H → AH is surjective and that
SH(V )

H is a noetherian ring. Since SH(V )
H is a connected graded algebra,

the latter implies that SH(V )
H is a finitely generated algebra. Since AH =

g̃(SH(V )
H), this shows that AH is finitely generated.

Let A′ be a subring of a commutative ring A and let i : A′ → A be the
natural inclusion. Recall that A is called pure over A′ if the map i⊗A′ M :
A′ ⊗A′ A → A ⊗A′ M is injective for any A

′-module M . It is obvious that
A is pure over A′, whenever i splits over A′, i.e., whenever ti = idA′ for
some homomorphism of A′-modules t : A→ A′. In particular, if A is a pro-
semisimple H-module algebra, then A is pure over AH . In fact, by Corollary
2.7, the Reynolds operator R = R(A) : A → AH is a homomorphism of
AH -modules such that R(a) = a for a ∈ AH .

Theorem 3.3. Let A be a finitely generated H-module algebra which is
a regular integral domain. Then AH is a Cohen–Macaulay ring in each of
the following cases:

(1) H is finitely semisimple and A is locally finite.

(2) A =
⊕
i≥0Ai is a connected graded algebra such that all Ai’s are

semisimple H-submodules of A.

Proof. In both cases A is a semisimple H-module algebra. If condition
(1) holds, then, according to Theorem 3.2, AH is a finitely generated algebra.
Moreover, A is pure over AH . Hence AH is a Cohen–Macaulay ring, by [6,
Theorem 0.2]. Now suppose that (2) holds. It follows from Theorem 2.8
that the ring AH is noetherian. Furthermore, AH is obviously a connected
graded algebra. Therefore, AH is finitely generated. As A is pure over AH ,
we conclude that AH is a Cohen–Macaulay ring, again by [6, Theorem 0.2].

We now describe all admissible sequences with AR 2 in any commutative,
noetherian ring.

Lemma 3.4. Let A be a commutative noetherian ring and let I = {Ii :
i ≥ 0} be an admissible sequence of ideals in A. Then I has AR 2 if and
only if I satisfies the following condition:

(∗) There exists an n ≥ 1 such that In+j =
n∑

i=1

IiIn+j−i for all j ≥ 1.

Proof. Let J =
⊕
i≥1 Ii ⊂ G(I) =

⊕
i≥0 Ii and let Jq denote the ideal in

G(I) generated by
⊕q
i=1 Ii ⊂ G(I), q = 1, 2, . . . Then Jq ⊂ Jq+1 for all q and

J is the union of all Jq’s. If the algebra G(I) is noetherian, then there exists
an n such that J = Jn. But Jn is a graded ideal in G(I) whose (n + j)th
component is equal to

∑n
i=1 IiIn+j−i, j ≥ 1. This proves the implication
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“⇒”. If I satisfies the condition (∗), then clearly J = Jn. Hence the ideal J
is finitely generated, because I1 ⊕ . . .⊕ In is a finitely generated A-module.
Let a1, . . . , as be homogeneous generators of J . Then G(I) = A[a1, . . . , as].
Consequently, G(I) is noetherian, because so is A.

Corollary 3.5. Let I = {Ii} be an admissible sequence of ideals in A
which has AR 2.

(1) There exists an n such that Inj ⊂ I
j
1 ⊂ Ij for all j ≥ 0. In partic-

ular , the topology determined by the sequence I is equivalent to the I1-adic
topology.

(2) The completion of A in the topology determined by the sequence I is
isomorphic to the completion of A in the I1-adic topology.

Proof. By Lemma 3.4, the sequence I satisfies the condition (∗). This
implies that

Inj ⊂
n∑

i=1

In(j−1)+n−iIi ⊂
n∑

i=1

In(j−1)Ii for all j ≥ 1,

whence, by induction on j,

Ijn ⊂
∑

j1+...+jn=j

Ij11 . . . I
jn
n for all j ≥ 0.

Since all the ideals Ii are contained in I1, it follows that Ijn ⊂ I
j
1 for j ≥ 0.

Obviously, Ij1 ⊂ Ij , because the sequence I is admissible. This proves part
(1). Part (2) is a consequence of (1).

The following theorem gives a description of all admissible sequences of
ideals with AR 2.

Theorem 3.6. Let (I0, I1, . . . , In) be a sequence of ideals in a commu-
tative ring A satisfying the condition:

(i) I0 = A, I1 ⊃ I2 ⊃ . . . ⊃ In and IiIs ⊂ Ii+s for i+ s ≤ n.

Moreover , let In+j =
∑n
i=1 IiIn+j−i for j ≥ 1 (inductive formula). Then

the sequence I(I1, . . . , In) = {Iq : q ≥ 0} is admissible and has AR 2.
Conversely , if I = {Ij} is an admissible sequence of ideals with AR 2 , then
there exists an n such that the sequence of ideals (I0, I1, . . . , In) satisfies the
condition (i) and I = I(I0, . . . , In).

Proof. Two simple inductions show that I(I0, . . . , In) is an admissible
sequence. The rest of the theorem follows from Lemma 3.4.

Example 3.7. Let A be a commutative ring. If I is an ideal in A, then
clearly the sequence (I0 = A, I1 = I) satisfies condition (i) in the above
theorem and I(I0, I1) = {I

j : j ≥ 0}. If I1, I2 are ideals in A such that
I1 ⊃ I2 and I

2
1 ⊂ I2, then the sequence (I0 = A, I1, I2) also satisfies condition
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(i), and one easily checks that I(I0, I1, I2) = {Ij}, where Ij = I
i
1I
r
2 for

j = 2i+ r, 0 ≤ r ≤ 1.

The next example shows that if I is an admissible sequence of ideals and
the topology defined by I is equivalent to the I1-adic topology, then I need
not have AR 2.

Example 3.8. Let A = k[X,Y ] and let J1 = (X,Y ), J2 = (X,Y
2).

Further, let I0 = A and let Ii = J
i
2J1 for i ≥ 1. Then I = {Ii : i ≥ 0} is

obviously an admissible sequence of ideals in A and the topology defined
by I and the I1-adic topology are equivalent, because I2j ⊂ I

j
1 ⊂ Ij for all

j ≥ 0. Suppose that I satisfies the condition (∗) from Lemma 3.4, i.e., there
exists an n ≥ 1 such that In+j = I1In+j−1+ . . .+InIj for j ≥ 1. This means

that In+j2 I1 = I
n+j
2 I

2
1 , which is impossible. By Lemma 3.4, I does not have

AR 2.

Remark 3.9. Let I = {Ii} be an admissible sequence of ideals in a
commutative ring A which has AR 2. Since I1Ii ⊂ Ii+1 for all i, I is an I1-
filtration of the ring A in the sense of [1, Chap. 10]. However, in general, it is
not a stable I1-filtration, i.e., there does not exist an s such that I1Ii = Ii+1
for i ≥ s. This is illustrated by the following

Example 3.10. Let A, I1, and I2 be as in Example 3.8. Set I2i+r = I
i
2I
r
1

for i ≥ 1 and r = 0, 1. It is easy to verify that I = {Ii : i ≥ 0} (I0 = A)
is an admissible sequence satisfying the condition (∗) from Lemma 3.4 for
n = 2, and so I has AR 2. But I1I2i+1 6= I2(i+1) for all i, because the first
ideal equals (X,Y )2(X,Y 2)i and the second one (X,Y 2)i+1.

Now we show some applications of the above results. By a local ring we
mean a commutative, noetherian ring with the unique maximal ideal.

Theorem 3.11. Let A be a noetherian, pro-semisimple H-module alge-
bra and let I be an invariant ideal in A such that all the ideals Ii, i ≥ 0,
are closed. Then the IH-adic topology in AH is equivalent to the topology
defined by the admissible sequence of ideals {(Ir)H : r ≥ 0}.

Proof. Let I = {Ir : r ≥ 0}. By Corollary 2.10, the admissible sequence
I
H = {(Ir)H} has AR 2. Now the theorem follows from Corollary 3.5.

Theorem 3.12. Suppose that A is a noetherian H-module algebra and I
is an invariant ideal in A such that A is complete in the I-adic topology and
the H-modules A/Ii are semisimple for all i ≥ 0. Then AH is a noetherian
ring , complete in the IH-adic topology.

Proof. The algebra A together with the I-adic topology is a pro-semi-
simple H-module algebra. Therefore, according to Theorem 2.8, AH is a
noetherian ring, complete in the topology given by the admissible sequence
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{(Ii)
H}. Furthermore, all the ideals Ii are closed (in the I-adic topology),

by [1, Proposition 10.15,(II)]. Hence we get the assertion, by Theorem 3.11.

Theorem 3.13. Suppose that the Hopf algebra H is finitely semisimple
and that A is a noetherian H-module algebra.

(1) If A is locally finite, I is an invariant ideal in A, and Â is the com-

pletion of A in the I-adic topology , then the algebra (Â)H is noetherian and
the natural inclusion i : AH → A induces an isomorphism of the completion
of AH in the IH-adic topology with (Â)H .
(2) If A is a complete local ring with the invariant maximal ideal m and

A/m is a finite field extension of k, then AH is a complete local ring with
the unique maximal ideal mH . In particular , if A = k[[X1, . . . , Xn]]/J (for
some n and an ideal J) and the ideal m = (X1+J, . . . , Xn+J) is invariant ,
then AH is of the same form.

Proof. In the situation of (1), we know from Corollary 2.5 that the in-
clusion i : AH → A induces an isomorphism of the completion of AH

in the topology given by the ideals {(Ii)H : i ≥ 0} with the algebra

(Â)H . The conclusion now follows from Theorem 3.11 applied to A with
the discrete topology. As for part (2), a simple induction shows that the
H-modules A/mj , j ≥ 1, are finite-dimensional vector spaces. Hence A is
a pro-semisimple H-module algebra, because H is finitely semisimple. By
Theorem 3.12, this implies that AH is a noetherian ring, complete in the
mH -adic topology. Furthermore, one easily verifies that mH is the unique
maximal ideal in AH . Thus we obtain the first statement in (2). The second
one is a consequence of the Cohen classification of complete local rings.

Theorem 3.14. Fix n ≥ 0 and suppose that H acts on the algebra A =
k[[X1, . . . , Xn]] in such a way that the (unique) maximal ideal m in A is
invariant and the H-modules m/mj , j ≥ 1, are semisimple. Then AH is a
complete, local Cohen–Macaulay ring.

Proof. In view of Theorem 3.13, AH is a complete local ring. So, it
remains to prove that AH is Cohen–Macaulay. By [2, Thm. 4(2)], we can
assume (possibly changing variables) that h.Xi ∈ kX1 + . . . + kXn for all
h ∈ H and i = 1, . . . , n. It follows that the action of H on the algebra A
preserves the subalgebra B = k[X1, . . . , Xn], so that we have the induced
action of H on B. Moreover, if B =

⊕
j≥0Bj is the natural grading in B

(given by degree), then all Bj ’s are H-submodules of B. We show that B is
semisimple as an H-module. First observe that for each j ≥ 0 the H-module
mj/mj+1 is semisimple, because it is a submodule of the semisimple H-
module m/mj+1. On the other hand, the natural inclusion Bj ⊂ m

j induces
an isomorphism of H-modules Bj ≃ m

j/mj+1. Hence B =
⊕
j≥0Bj is a

semisimple H-module. Now making use of Theorem 3.3(2), we see that BH
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is a Cohen–Macaulay ring. It is clear that AH is the completion of BH in
the topology defined by the admissible sequence of ideals {(m′j)H}, where
m′ is the (maximal) ideal in B generated by the variables X1, . . . , Xn. From
Theorem 3.11 (applied to B with the discrete topology and I = m′) it follows
that the topology in BH given by the sequence {(m′i)H} is equivalent to
the m′H -adic topology. Hence AH is isomorphic to the completion of BH in
the m′H-adic topology. The conclusion now follows from [4, Theorem 18.8],
because m′H is the maximal ideal in the Cohen–Macaulay ring BH .

Corollary 3.15. If the Hopf algebra H is finitely semisimple and H
acts on the algebra A = k[[X1, . . . , Xn]] in such a way that the maximal
ideal m in A is invariant , then AH is a complete local Cohen–Macaulay
ring.

Proof. The corollary is a consequence of the theorem, because the H-
modules m/mj , j ≥ 1, are finite-dimensional.

Remark 3.16. Part (2) of Theorem 3.11 together with Theorem 3.14
can be viewed as an analogue of Theorem 3.2 for complete local H-module
algebras.

The following example is an application of Corollary 3.15.

Example 3.17. Assume that the field k is algebraically closed and fix a
prime p 6= char k. Moreover, let a(1), . . . , a(n) be arbitrary p-adic numbers,
and let Ω = {α = (α1, . . . , αn) ∈ N

n : α1a
(1) + . . . αna

(n) = 0}. It turns
out that A′ = {

∑
α∈Ω tαX

α ∈ k[[X1, . . . , Xn]]}, X
α = Xα11 . . . X

αn
n , is a

complete, local Cohen–Macaulay subring of k[[X1, . . . , Xn]]. To see this,
let H = kGp be the finitely semisimple Hopf algebra from example (b)
of Section 1, and let ζj be the primitive root of unity of degree p

j+1, j ≥ 0.
Then the formulas

ζj .Xi = ζ
a
(i)
j

j Xj , i = 1, . . . , n, j ≥ 0,

where a(i) = (a
(i)
0 , a

(i)
1 , . . .), a

(i)
j ∈ Z/pj+1, determine an action of H on the

algebra A = k[[X1, . . . , Xn]] such that the maximal ideal in A is invariant.
One simply checks that AH = A′. So, we are done, by Corollary 3.15.
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