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NONCOERCIVE DIFFERENTIAL OPERATORS

ON HOMOGENEOUS MANIFOLDS OF NEGATIVE CURVATURE

AND THEIR GREEN FUNCTIONS

BY

ROMAN URBAN (Wrocław)

Abstract. We obtain upper and lower estimates for the Green function for a second
order noncoercive differential operator on a homogeneous manifold of negative curvature.

1. Introduction and the main result. In this paper we study the
Green function for a second order noncoercive differential operator L on a
connected, simply connected homogeneous manifold of negative curvature.
Such a manifold is a solvable Lie group S = NA, a semidirect product of a
nilpotent Lie group N and an abelian group A = R

+.Moreover, for anH be-
longing to the Lie algebraA of A, the eigenvalues of AdexpH |N are all greater
than 0. Conversely, every such group equipped with a suitable left-invariant
metric becomes a homogeneous Riemannian manifold with negative curva-
ture (see [H]).

On S we consider a second order left-invariant operator

L =
m∑

j=0

Y 2j + Y.

We assume that Y0, Y1, . . . , Ym generate the Lie algebra S of S.Moreover, we
can choose Y0, Y1, . . . , Ym so that Y1(e), . . . , Ym(e) belong to the Lie algebra
N of N. Let π : S → A = S/N be the canonical homomorphism. Then the
image of L under π is a second order left-invariant operator on R

+,

(a∂a)
2 − γa∂a,

where γ ∈ R. The operator L = Lγ is noncoercive (there is no ε > 0 such
that L+ εI admits the Green function) if and only if γ = 0.
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Finally, the operator we are interested in can be written in the form

(1.1) L =
∑

j

Φa(Xj)
2 + Φa(X) + a

2∂2a + a∂a,

where X,X1, . . . , Xm are left-invariant vector fields on N and X1, . . . , Xm
generate N , Φa = Adexp(log a)Y0 = e

(log a) adY0 = e(log a)D and D = adY0 is a
derivation of the Lie algebra N of the Lie group N such that the real parts
dj of the eigenvalues λj of D are positive. By multiplying L by a constant
we can make dj arbitrarily large (see [DHU]).
Let G(xa, yb) be the Green function for L. It is (uniquely) defined by two

conditions:

(i) LG(·, yb) = −δyb as distributions (functions are identified with dis-
tributions via the right Haar measure),
(ii) for every yb ∈ S, G(·, yb) is a potential for L.

Let

(1.2) G(x, a) = G(xa, e),

where e is the identity element of the group S. In this paper we call G(x, a)
the Green function for L.
For a positive δ less than 1/2 define

(1.3) Tδ = {(x, a) ∈ N × R
+ : 1− δ < a < 1 + δ, |x| < δ},

where | · | denotes the “homogeneous norm” (see Preliminaries).
Our aim is to prove the following result:

Theorem 1.4. For a given 0 < δ < 1/2 there exists a positive constant
C such that for (x, a) 6∈ Tδ we have the following estimate for the Green
function G defined in (1.2):

(1.5) C−1w(x, a) ≤ G(x, a) ≤ Cw(x, a),

where the function w is defined by

(1.6) w(x, a) =





1 if |x| ≤ 1, a ≤ 1,
|x|−Q if |x| ≥ 1, |x| ≥ a,
a−Q if a ≥ 1, a ≥ |x|,

and Q =
∑
dj =

∑
Reλj .

The above result looks like the limit case (as γ tends to 0) of the estimate
of the Green function for the operator Lγ with positive γ (i.e. for a coercive
operator). This has been proved by E. Damek [D] by means of Ancona’s
theory. However, (1.5) cannot be obtained from Damek’s estimate by taking
the limit and so requires essentially new methods. In this paper we make
use of a probabilistic method introduced in [DH] and then developed e.g. in
[DHZ], [DHU].
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The structure of this paper is as follows. In Section 2 we state precisely
notation and all necessary definitions.

In Section 3 we recall the basic properties of the Bessel process which
appears as the “vertical” component of the diffusion generated by a−2L on
N × R

+ (cf. [DHU]).

In Section 4 we state the estimate of the transition probabilities of the
evolution on N generated by an appropriate operator which appears as the
“horizontal” component of the diffusion on N × R

+ mentioned above.

In Section 5 we prove the main lemmas, which are a crucial point in the
proof of Theorem 1.4 given in Section 6.

Acknowledgements. The author is grateful to Ewa Damek for sug-
gesting the problem and her helpful remarks. The work on this paper was
done during the academic year 1999/2000 when the author was visiting Pur-
due University in West Lafayette. He would like to express his deep gratitude
for hospitality and stimulating environment to his host, Professor Richard
Penney.

2. Preliminaries. Some of the notions which appear in this section have
been introduced in the previous one. However, for the sake of completeness
we state them precisely once again.

Let N be a connected and simply connected nilpotent Lie group. Let D
be a derivation of the Lie algebra N of N. For every a ∈ R

+ we define an
automorphism Φa of N by

Φa = e
(log a)D.

Writing x = expX we have

Φa(x) := expΦa(X).

We assume that the real parts dj of the eigenvalues λj of the matrix D are
strictly greater than 0 and we define the number

Q =
∑

j

Reλj =
∑

j

dj .

In this paper D = adY0 (see Introduction). We consider a group S which is a
semidirect product of N and the multiplicative group A = R

+ = {exp tY0 :
t ∈ R}:

S = NA = {xa : x ∈ N, a ∈ A}

with multiplication given by

(xa)(yb) = (xΦa(y)ab).
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In N we define the homogeneous norm | · | ([DHZ], [DHU]). Let (·, ·) be a
fixed inner product in N . We define a new inner product

〈X,Y 〉 =
1\
0

(Φa(X), Φa(Y ))
da

a

and the corresponding norm

‖X‖ = 〈X,X〉1/2.

We put

|X| = (inf{a > 0 : ‖Φa(X)‖ ≥ 1})
−1.

One can easily show that for every Y 6= 0 there exists precisely one a > 0
such that Y = Φa(X) with |X| = 1. Then we have |Y | = a.
Finally, we define a homogeneous norm on N. For x = expX we put

|x| = |X|.

Notice that if the action of A = R
+ on N (given by Φa) is diagonal, the

norm we have just defined is the usual homogeneous norm on N (see [FS]).

And a final remark about notation: The letter C occurs in inequalities
as a positive constant and may vary from statement to statement, even in
the same calculation.

3. Bessel process. Let bt denote the Bessel process with a parameter
α ≥ 0 (cf. [RY]), i.e. a continuous Markov process with state space [0,∞)
generated by

∆ = ∂2a +
2α+ 1

a
∂a.

The transition function with respect to the measure y2α+1 dy is given by
(cf. [RY] again)

(3.1) pt(x, y) =





cα
1

2t
exp

(
−x2 − y2

4t

)
Iα

(
xy

2t

)
1

(xy)α
for x, y > 0,

cα
1

(2t)α+1
exp

(
−y2

4t

)
for x = 0, y > 0,

where

Iα(x) =

∞∑

k=0

(x/2)2k+α

k!Γ (k + α+ 1)

is the Bessel function (see [L]). Therefore for x ≥ 0 and a measurable set
B ⊂ (0,∞),

Px(bt ∈ B) =
\
B

pt(x, y)y
2α+1 dy.
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The following lemmas concerning some properties of the Bessel process are
very well known and their proofs are rather standard. Sketches of those
proofs can be found in [DHU] or [U].

Lemma 3.2. Let D, γ, a ≥ 0. There exists a positive constant C such
that for every t > 0,

sup
a>0
Ea

( 1\
0

bγs ds
)−D/2

<∞.

Moreover ,

Ea

( t\
0

bγs ds
)−D
≤ Ct−D(1+γ/2).

Lemma 3.3. There exist constants c1, c2 such that for every x ≥ 0, for
every λ > 0 and for every t > 0,

Px( sup
s∈[0,t]

bs > x+ λ) ≤ c1e
−c2λ

2/t.

Lemma 3.4. Let 0 < η < 1. There exist constants c1, c2 such that for
every t > 0,

P1( inf
s∈[0,t]

bs ≤ 1− η) ≤ c1e
−c2/t.

Proof. It is enough to rewrite the proof of Lemma 2.4 in [DHU].

By a straightforward computation, using the definition of the transition
function pt(x, y) of the Bessel process (3.1) and the asymptotic behaviour
of the Bessel function (see [L]):

Iα(x) ≍





xα

2αΓ (1 + α)
, x→ 0,

exp(x)

(2πx)1/2
, x→∞,

we get

Lemma 3.5. There exists a constant C independent of x such that

Px(a− η ≤ bt ≤ a+ η) ≤ Ct
−(α+1)m([a− η, a+ η]),

where m(B) =
T
B
y2α+1 dy.

4. Evolutions. For a multiindex I = (i1, . . . , in), ij ∈ Z
+ and a basis

X1, . . . , Xn of the Lie algebra N of N we write XI = X
i1
1 . . . X

in
n and

|I| = i1 + . . .+ in. For k = 0, 1, . . . ,∞ we define

Ck = {f : XIf ∈ C(N) for |I| < k + 1}
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and
Ck∞ = {f ∈ C

k : lim
x→∞
XIf(x) exists for |I| < k + 1}.

For k <∞ the space Ck∞ is a Banach space with the norm

‖f‖Ck
∞
=
∑

|I|≤k

‖XIf‖C(N).

Let
Lσ(t) = σ(t)

−2
(∑

Φσ(t)(Xj)
2 + Φσ(t)(X)

)
.

For a continuous function σ : [0,∞) → [0,∞) let {Uσ(s, t) : 0 ≤ s ≤ t} be
the unique family of bounded operators on C∞ = C

0
∞ which satisfy

(i) Uσ(s, s) = I,
(ii) Uσ(s, r)Uσ(r, t) = Uσ(s, t), s < r < t,
(iii) ∂sU

σ(s, t)f = −Lσ(s)U
σ(s, t)f for every f ∈ C∞,

(iv) ∂tU
σ(s, t)f = Uσ(s, t)Lσ(t)f for every f ∈ C∞,

(v) Uσ(s, t) : C2∞ → C
2
∞.

Uσ(s, t) is a convolution operator. Namely, Uσ(s, t)f = f ∗ pσ(t, s), where
pσ(t, s) is a smooth density of a probability measure. By (ii) we have pσ(t, r)∗
pσ(r, s) = pσ(t, s) for t > r > s. Existence of the family Uσ(s, t) follows
from [T].
In [DHU], using the Nash inequality, the following estimate of the evo-

lution kernels pσ(t, 0) has been proved.

Theorem 4.1. For every compact set K ⊂ N which does not contain
the identity e of N, there exist positive constants C, ξ, β1, β2 and D ≤ Q
such that for every x ∈ K and for every t > 0,

pσ(t, 0)(x) ≤ C
( t\
0

σ−2(1−Q/D)(u) du
)−D/2

exp

(
−
ξ

A(0, t)

)
,

where A(s, t) =
Tt
s
(σβ1(u) + σβ2(u)) du.

In the proof of the above theorem the following estimate of the norm
‖pσ(t, s)‖L∞(N) has been obtained:

Theorem 4.2. There exist positive constants C and D ≤ Q such that
for every s < t,

‖pσ(t, s)‖L∞(N) ≤ C
( t\
s

σ−2(1−Q/D)(u) du
)−D/2

.

5. Main lemmas. From now on we consider the Bessel process bt with
a parameter α = 0. In this case bt = ‖wt‖, where wt is a Brownian motion
on R

2.



NONCOERCIVE DIFFERENTIAL OPERATORS 127

In this section we prove some lemmas, which are our main tools in writing
estimates for the Green function.

Lemma 5.2. Let D, γ > 0 and dm(a) = ada. For every δ > 0 there
exists a constant C such that for every a ≤ 1− δ,

sup
0<η<δ/2

∞\
0

E1

( t\
0

bγs ds
)−D/2

m([a− η, a+ η])−11[a−η,a+η](bt) dt ≤ C.

Proof. In order to simplify notation let Ia,η = [a− η, a+ η].
First we consider large time (t ≥ 1):

∞\
1

E1

( t\
0

bγs ds
)−D/2

m(Ia,η)
−11Ia,η (bt) dt

≤
∞\
1

E1

( t/2\
0

bγs ds
)−D/2

m(Ia,η)
−11Ia,η (θt/2bt/2) dt,

where θs is the shift operator. Using the Markov property and Lemma 3.2
we get

(5.3)

∞\
1

E1

( t/2\
0

bγs ds
)−D/2

Ebt/2m(Ia,η)
−11Ia,η (σt/2) dt

=

∞\
1

E1

( t/2\
0

bγs ds
)−D/2

m(Ia,η)
−1Pbt/2(σt/2 ∈ Ia,η) dt

≤ C
∞\
1

t−(D/2)(1+γ/2)m(Ia,η)
−1Pbt/2(σt/2 ∈ Ia,η) dt.

By Lemma 3.5,

(5.4) Px(σt ∈ Ia,η) ≤ Ct
−1m(Ia,η)

with C independent of the starting point x. Hence by (5.3) we get

(5.5) sup
η>0

∞\
1

E1

( t\
0

bγs ds
)−D/2

m(Ia,η)
−11Ia,η (bt) dt

≤ C
∞\
1

t−(D/2)(1+γ/2)−1 dt ≤ C1.

Now we consider t ≤ 1.We divide the set of all trajectories of the Bessel
process bt (with parameter 0) starting from 1 into two subsets:

A = {b : sup
s∈[0,t]

bs > 2}, B = {b : sup
s∈[0,t]

bs ≤ 2}.
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Consider the set A. Let T = inf{s : bs = 2}. For n ≥ 1, let

An = {b : t/2
n < T ≤ t/2n−1}.

Then the Markov property gives

(5.6)

1\
0

E1

( t\
0

bγs ds
)−D/2

m(Ia,η)
−11Ia,η (bt)1A(b) dt

=

1\
0

∞∑

n=1

E1

( t\
0

bγs ds
)−D/2

m(Ia,η)
−11Ia,η (bt)1An(b) dt

≤
1\
0

∞∑

n=1

E1

( T\
0

bγs ds
)−D/2

m(Ia,η)
−11Ia,η (bt)1{T≤t/2n−1}(b) dt

≤
1\
0

∞∑

n=1

E1

( t/2n\
0

bγs ds
)−D/2

m(Ia,η)
−11Ia,η (bt)1{T≤t/2n−1}(b) dt

=

1\
0

∞∑

n=1

E1

( t/2n\
0

bγs ds
)−D/2

m(Ia,η)
−11{T≤t/2n−1}(b)

×Ebt/2n−1 1{σ:σt−t/2n−1∈Ia,η}(σ) dt

≤
1\
0

∞∑

n=1

E1

( t/2n\
0

bγs ds
)−D/2

m(Ia,η)
−11{b:sups∈[0,t/2n−1] bs≥2}(b)

×Ebt/2n−1 1{σ:σt−t/2n−1∈Ia,η}(σ) dt.

By (5.4) it follows that for n ≥ 2,

Ebt/2n−1 1{σ:σt−t/2n−1∈Ia,η}(σ) ≤ C(t− t/2
n−1)−1m(Ia,η)(5.7)

≤ C(t/2)−1m(Ia,η).

For n = 1 the expectation in (5.7) is equal to

Pbt(σ0 ∈ Ia,η) = P1(bt ∈ Ia,η)

and by (5.4) we get (5.7) for n = 1.
Therefore using (5.7), Lemma 3.2, Lemma 3.3 and the Schwarz inequality

we get

1\
0

∞∑

n=1

E1

( t\
0

bγs ds
)−D/2

m(Ia,η)
−11Ia,η (bt)1An(b) dt(5.8)

≤ C
1\
0

∞∑

n=1

t−1E1

( t/2n\
0

bγs ds
)−D/2

1{b:sups∈[0,t/2n−1] bs≥2}(b) dt
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≤ C
1\
0

t−1
∞∑

n=1

[
E1

( t/2n\
0

bγs ds
)−D]1/2

× [E11{b:sups∈[0,t/2n−1] bs≥2}(b)]
1/2 dt

≤ C
1\
0

∞∑

n=1

t−1(t/2n)−(D/2)(1+γ/2)e−c2
n−1/t dt ≤ C2.

Now we consider the set B. Let T = inf{s : bs = 1− δ/2}. For n ≥ 1, let

An = {b : t/2
n < T ≤ t/2n−1}.

Notice that

T ≤ t/2n−1 implies inf
s∈[0,t/2n−1]

bs ≤ 1− δ/2.

Moreover, by Lemma 3.4,

(5.9) P1( inf
s∈[0,t]

bs ≤ 1− δ/2) ≤ c1e
−c2/t.

Then
1\
0

E1

( t\
0

bγs ds
)−D/2

m(Ia,η)
−11Ia,η (bt)1B(b) dt

=

1\
0

∞∑

n=1

E1

( t\
0

bγs ds
)−D/2

m(Ia,η)
−11Ia,η (bt)1An(b) dt

≤
1\
0

∞∑

n=1

E1

( T\
0

bγs ds
)−D/2

m(Ia,η)
−11Ia,η (bt)1{T≤t/2n−1}(b) dt

≤
1\
0

∞∑

n=1

E1

( t/2n\
0

bγs ds
)−D/2

m(Ia,η)
−11Ia,η (bt)1{T≤t/2n−1}(b) dt

=

1\
0

∞∑

n=1

E1

( t/2n\
0

bγs ds
)−D/2

m(Ia,η)
−11{T≤t/2n−1}(b)

×Ebt/2n−1 1{σ:σt−t/2n−1∈Ia,η}(σ) dt

≤
1\
0

∞∑

n=1

E1

( t/2n\
0

bγs ds
)−D/2

m(Ia,η)
−11{b:infs∈[0,t/2n−1] bs≤1−δ/2}(b)

×Ebt/2n−1 1{σ:σt−t/2n−1∈Ia,η}(σ) dt

≤
1\
0

∞∑

n=1

E1

( t/2n\
0

bγs ds
)−D/2

1{b:infs∈[0,t/2n−1] bs≤1−δ/2}(b)t
−1 dt,
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where in the last inequality we have used (5.7) for n ≥ 1 (see the remark
after (5.7)). Now, as before, in order to estimate the expectation we use the
Schwarz inequality. By Lemma 3.2 and (5.9) we have

(5.10)

1\
0

E1

( t\
0

bγs ds
)−D/2

m(Ia,η)
−11Ia,η (bt)1B(b) dt

≤ C
1\
0

t−1
∞∑

n=1

[
E1

( t/2n\
0

bγs ds
)−D]1/2

× [E11{b:infs∈[0,t/2n−1] bs≤1−δ/2}(b)]
1/2 dt

≤ C
1\
0

t−1
∞∑

n=1

(t/2n)−(D/2)(1+γ/2)[E11{b:infs∈[0,t/2n−1] bs≤1−δ/2}(b)]
1/2 dt

≤ C
1\
0

t−1
∞∑

n=1

(t/2n)−(D/2)(1+γ/2)[P1( inf
s∈[0,t/2n−1]

bs ≤ 1− δ/2)]
1/2 dt

≤ C
1\
0

∞∑

n=1

t−1(t/2n)−(D/2)(1+γ/2)e−c2
n−1/t dt ≤ C3.

Now (5.5), (5.8) and (5.10) complete the proof.

Lemma 5.11. Let D, γ > 0 and dm(a) = ada. For every 0 < δ < 1/2
there exists a constant C such that for every x ≤ 1/2−δ and every (1−δ)/2 ≤
a ≤ 1/2,

sup
0<η<δ/4

∞\
0

Ex

( t\
0

bγs ds
)−D/2

m([a− η, a+ η])−11[a−η,a+η](bt) dt ≤ C.

Proof. For large time (t ≥ 1) it is enough to rewrite the proof of the
previous lemma.

Let t ≤ 1. We define T = inf{s : bs = 1/2− 3δ/4}. For n ≥ 1, let

An = {b : t/2
n < T ≤ t/2n−1}.

Notice that

T ≤ t/2n−1 implies sup
s∈[0,t/2n−1]

bs ≥ 1/2− 3δ/4.

Then, since x ≤ 1/2− δ, by Lemma 3.3,

(5.12) Px( sup
s∈[0,t/2n−1]

bs ≥ 1/2− 3δ/4)
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= Px( sup
s∈[0,t/2n−1]

bs ≥ (1/2− 3δ/4− x) + x)

≤ c1e
−c2(1/2−3δ/4−x)

22n−1/t ≤ c1e
−c2(δ/4)

22n−1/t.

Now, because of (5.12) it is enough to rewrite the end of the proof of
Lemma 5.2 starting after (5.9). Namely, we have to change the starting point
to x and instead of {b : inf [0,t/2n−1] bs ≤ 1−δ/2} put {b : sups∈[0,t/2n−1] bs ≥
1/2− 3δ/4}.

The next lemma is taken from [DHU] (Lemma 5.18):

Lemma 5.13. Let D, ξ, γ > 0, dm(a) = ada. For every a1 > 0 there is
a constant C such that for every x ≤ a1, 0 < a < 1,

sup
0<η<1

∞\
0

Ex

( t\
0

bγs ds
)−D/2

e−ξ/A(0,t)m([a− η, a+ η])−11[a−η,a+η](bt) dt ≤ C,

where A(0, t) is defined in Theorem 4.1.

6. Proof of Theorem 1.4. It turns out that it is very convenient
to consider along with the operator L defined in (1.1) the corresponding
operator L,

(6.1) L = a−2L = a−2
∑

j

Φa(Xj)
2 + Φa(X) + ∂

2
a +
1

a
∂a.

The Green function G for L is given by

(6.2) G(x, a; y, b) =

∞\
0

pt(x, a; y, b) dt,

where Ttf(x, a) =
T
f(y, b)pt(x, a; y, b) dy b db is the heat semigroup on

L2(N × R
+, dybdb) with infinitesimal generator L.

In (6.2) we allow (x, a) to be (e, 0) since lim(x,a)→(e,0)G(x, a; y, b) exists
(see [DHU]).

On N × R
+ we define dilations

Dt(x, a) = (Φt(x), ta), t > 0.

It is not difficult to check that although the operator L is not left-invariant
it has some homogeneity with respect to the family of dilations introduced
above:

L(f ◦Dt) = t
2Lf ◦Dt.

This implies that

(6.3) G(x, a; y, b) = t−QG(Dt−1(x, a);Dt−1(y, b)).
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It turns out (see (1.17) in [DHU]) that

G(x, a) = G(x, a; e, 1) = G∗(e, 1;x, a),

where G∗ is the Green function for the operator

L∗ = a−2
∑
Φa(Xj)

2 − a−2Φa(X) + ∂
2
a + a

−1∂a,

conjugate to L with respect to the measure adxda. Moreover,

(6.4) G∗(e, 1;x, a) = lim
η→0

∞\
0

E1p
σ(t, 0)(x)

1

m([a− η, a+ η])
1[a−η,a+η](σt) dt,

where the expectation is taken with respect to the distribution of the Bessel
process starting from 1 on the space C([0,∞), (0,∞)). All the above facts
are proved in [DHU].
Now we are ready to give

Proof of Theorem 1.4. For r ≥ 0, define

Vr = {(x, a) ∈ N × R
+ : |(x, a)| = r},

where |(x, a)| = |x|+ a. Let 0 < δ < 1/2 be fixed.

Case 1. We consider the set

S1 = {(x, a) 6∈ Tδ : |x| ≤ 1, a ≤ 1}.

We have to show that there exists a positive constant C such that

(6.5) C−1 ≤ G(x, a) = G∗(e, 1;x, a) ≤ C

for every (x, a) ∈ S1.
It follows immediately from (6.4), Theorem 4.2, and Lemma 5.2 that we

have the upper bound in (6.5) on S̃1 = S1 ∩ {(x, a) ∈ N × R
+ : a ≤ 1− δ}.

Therefore we are left with (x, a) ∈ S1\S̃1. But

S1\ Int S̃1 = {(x, a) : N × R
+ : δ ≤ |x| ≤ 1, 1− δ ≤ a ≤ 1}

is a compact set. Since G∗ is a continuous function we get the upper bound
on S1. The lower bound in (6.5) is a consequence of Lemma 5.21 of [DHU].

Case 2. We consider the set

S2 = {(x, a) ∈ N × R
+ : |x| ≥ 1, |x| ≥ a}.

(Of course, S2 ∩ Tδ = ∅.)
Every element (x, a) ∈ N × R

+ can be written as

(x, a) = Dt(y, b), where (y, b) ∈ V1 and t = |(x, a)| = |x|+ a.

(Recall that Dt(x, a) = (Φt(x), ta).) By homogeneity of G (see (6.3)), we get

G∗(e, 1;x, a) = G∗(Dt(e, t
−1);Dt(y, b)) = t

−QG∗(e, t−1; y, b)(6.6)

= |(x, a)|−QG∗(e, |(x, a)|−1; y, b)
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= (|x|+ a)−QG∗(e, (|x|+ a)−1; y, b).

If (x, a) ∈ S2 then the corresponding (y, b) ∈ V1 has the property |y| ≥ b.
Indeed, x = Φt(y) and a = tb, thus t|y| = |x| ≥ a = tb. The above property
and |y|+ b = 1 imply that b ≤ 1/2. Therefore

(y, b) ∈ V1 ∩ {(x, a) ∈ N × R
+ : a ≤ 1/2} ⊂ V1.

Let β = |(x, a)|−1. For (x, a) ∈ S2 we have β ≤ 1. Thus by (6.4), Theorem 4.1
and Lemma 5.13 we get

G∗(e, β;x, a) ≤ C for (x, a) ∈ S2.

Once again, Lemma 5.21 in [DHU] gives the lower bound

G∗(e, β;x, a) ≥ C−1.

Thus by (6.6) we get

C−1(|x|+ a)−Q ≤ G(x, a) ≤ C(|x|+ a)−Q.

Since |x| ≤ |x| + a ≤ 2|x| for (x, a) ∈ S2, the proof of the second case is
complete.

Case 3. Finally we consider the set

S3 = {(x, a) 6∈ Tδ : a ≥ |x|, a ≥ 1}.

Because V1 ∩ Tδ 6= ∅ we write every element (x, a) ∈ N × R
+ as a dilation

of some element from V1/2:

(x, a) = Dt(y, b), where (y, b) ∈ V1/2 and t = 2|(x, a)| = 2|x|+ 2a.

By homogeneity, we can write, analogously to (6.6),

(6.7) G∗(e, 1;x, a) = 2−Q(|x|+ a)−QG(e, β̃; y, b),

where β̃ = 2−1(|x|+a)−1. If (x, a) ∈ S3 then the corresponding (y, b) ∈ V1/2
has the property |y| ≤ b. Indeed, |x| = t|y| ≤ a = tb. This, together with
|y|+ b = 1/2, implies that b ∈ [1/4, 1/2].

For (x, a) ∈ S3 we have β̃ ≤ (2 + 2δ)−1 := 1/2− δ̃. Indeed, this is clear
if a ≥ 1+ δ. But if a < 1+ δ then |x| ≥ δ. Thus by (6.4), using Theorem 4.2

and Lemma 5.11 if b ≥ (1 − δ̃)/2, or Theorem 4.1 and Lemma 5.13 if b ≤

(1− δ̃)/2 (then |y| ≥ δ̃/2), we find that there exists a constant C such that

G∗(e, β̃;x, a) in (6.7) is less than or equal to C. By Lemma 5.21 of [DHU],

G∗(e, β̃;x, a) is also greater than or equal to C−1. Thus by (6.7),

C−12−Q(|x|+ a)−Q ≤ G(x, a) ≤ C2−Q(|x|+ a)−Q, (x, a) ∈ S3.

Since a ≤ |x|+ a ≤ 2a for (x, a) ∈ S3, the proof is complete.
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