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ON THE UNIMODAL CHARACTER OF THE FREQUENCY
FUNCTION OF THE LARGEST PRIME FACTOR

BY

JEAN-MARIE DE KONINCK and JASON PIERRE SWEENEY (Québec, PQ)

Abstract. The main objective of this paper is to analyze the unimodal character of
the frequency function of the largest prime factor. To do that, let P (n) stand for the largest
prime factor of n. Then define f(x, p) := #{n ≤ x | P (n) = p}. If f(x, p) is considered as
a function of p, for 2 ≤ p ≤ x, the primes in the interval [2, x] belong to three intervals
I1(x) = [2, v(x)], I2(x) = ]v(x), w(x)[ and I3(x) = [w(x), x], with v(x) < w(x), such that
f(x, p) increases for p ∈ I1(x), reaches its maximum value in I2(x), in which interval it
oscillates, and finally decreases for p ∈ I3(x). In fact, we show that v(x) ≥

√
log x and

w(x) ≤ √x. We also provide several conditions on primes p ≤ q so that f(x, p) ≥ f(x, q).

1. Introduction. For each integer n ≥ 2, let P (n) stand for its largest
prime factor. Given a fixed large number x, for each prime number p ≤ x,
let f(x, p) stand for the number of integers n ∈ [2, x] such that P (n) = p,
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that is, f(x, p) := #{n ≤ x | P (n) = p}. The expression f(x, p) considered
as a function of p, for 2 ≤ p ≤ x, has a somewhat smooth behavior, as can
be seen in Figures 1 and 2 in the cases x = 107 and x = 108, respectively. In
fact, for small values of x, it is unimodal in p; such is the case for f(103, p),
which is increasing for 2 ≤ p ≤ 7, reaches its maximum value 55 at p = 7
and decreases thereafter, that is, for 7 < p ≤ 997. The function f(104, p) is
not unimodal because although it reaches its maximum value 224 at p = 19,
we note that f(104, 23) = 216, f(104, 29) = 196 and f(104, 31) = 197. Even
though, as x becomes larger, the function f(x, p) becomes more complicated,
it does maintain a unimodal character in the sense that the primes in the
interval [2, x] belong to three intervals I1(x) = [2, v(x)], I2(x) = ]v(x), w(x)[
and I3(x) = [w(x), x], with v(x) < w(x), such that f(x, p) increases for
p ∈ I1(x), reaches its maximum value in I2(x), in which interval it oscillates,
and finally decreases for p ∈ I3(x). For instance, one can establish that the
function f(107, p) is increasing for 2 ≤ p ≤ 89, attains its maximum at
p = 113 (with f(107, 113) = 19101) and decreases for 523 < p ≤ 9 999 991.
Note that, as was shown in De Koninck [2], the maximum value of f(x, p),

for x large and fixed, is attained at some prime p ∈ I2(x) satisfying

p = e(1+o(1))
√
(1/2) log x log log x.

Our main goal in this paper is to determine bounds on the functions
v(x) and w(x). However, we also prove other results pertaining to whether
f(x, p) is decreasing or not.

2. Notations. Throughout this paper, p and q stand for prime numbers,
while pν stands for the νth prime number.
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As we shall see in Section 4,

(2.1) pν+1 − pν < pξν+1 (ν ≥ 1)

holds for some real number ξ ≤ 0.535. Now set θ = 1/(3 − ξ), so that
0.333 ≤ θ ≤ 0.406.
Note that if x > 169, the interval ]xθ,

√
x[ contains at least two prime

numbers. One can check this using a computer for 169 < x ≤ 5 000 000,
while for x > 5 000 000 it follows by Bertrand’s postulate since then xθ ≤
x0.406 <

√
x/4.

Given a real number x > 169 and a positive integer ν such that

(2.2) xθ < pν < pν+1 <
√
x,

define the corresponding values D, R and α as follows:

D = D(x, ν) =

[

x

pν

]

−
[

x

pν+1

]

, R = R(x, ν) =

[

x

pνpν+1

]

,(2.3)

α = α(D,R) =
1

2
−
(

log

(

logD

log(D/R)

)

+
1

logD

)

.(2.4)

It is a simple matter of algebra to deduce that

(2.5)
x

pν
− x

pν+1
− 1 < D < x

pν
− x

pν+1
+ 1,

and from there that D ≥ 2. We will also use the quantity d := D/R, mainly
because, as R becomes large, d corresponds approximately to the difference
between pν and pν+1:

(2.6) (pν+1 − pν)−
1

R
< d <

(

1 +
1

R

)

(pν+1 − pν) +
1

R
.

From equation (2.6), we obtain D > 2R − 1, and since both numbers are
integers, D ≥ 2R, which is d ≥ 2.
Finally, given an integer n ≥ 2, let λ(n) stand for the maximum number

of prime numbers which can be included in an interval of the form ]z, z+n],
z ≥ 1, that is,

(2.7) λ(n) = max
z≥1
(π(z + n)− π(z)).

3. Main results. We first examine f(x, p) on the interval I1(x) =
[2, v(x)]. Given a fixed large number x, we determine a lower bound for
v(x). We shall use known estimates of the associated function Ψ(x, y) :=
#{n ≤ x | P (n) ≤ y} in our proof of the following result.
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Theorem 1. For large x and all positive integers ν such that pν+1 ≤√
log x,

f(x, pν) < f(x, pν+1).

So we have v(x) ≥
√
log x for large x.

We then examine f(x, p) on the interval I2(x) = [v(x), w(x)]. The be-
havior of the studied function on this intermediate interval is quite difficult
to characterize for two consecutive primes. However, we can establish the
following result, which provides conditions on primes p < q that ensure
f(x, p) ≥ f(x, q). This shows that the maximum of f(x, p) is asymptotically
smaller than any power of x, a fact which is confirmed by De Koninck’s
estimation mentioned in the introduction.

Theorem 2. Let a and d be fixed real numbers satisfying 0 < a < d <
1/2. Let ξ1(x) and ξ2(x) be two functions satisfying

xa < ξ1(x) < ξ2(x) < x
d and ξ1(x) = o(ξ2(x))

for all x > x′ for a certain real number x′. Then there exists a real number
x∗ such that for each pair of prime numbers (p, q) such that xa < p < ξ1(x)
and ξ2(x) < q < x

d,

f(x, p) ≥ f(x, q) (x ≥ x∗).

We now examine f(x, p) on the interval I3(x) = [w(x), x]. We will strive
to establish results for two consecutive primes, much more specific than the
preceding result. It seems trivial from the definition of f(x, p) that w(x) ≤√
x, but this is not the case. We must work a bit to obtain the following
result, mainly due to the pν <

√
x ≤ pν+1 case.

Theorem 3. Let x be a positive real number and let ν be a positive
integer such that

√
x ≤ pν+1. Then

f(x, pν) ≥ f(x, pν+1).
So we have w(x) ≤ √x for large x.

The next theorem, which is the main result of the paper, while not
establishing a bound on w(x), does provide a precise condition for identifying
consecutive primes for which f(x, p) is decreasing. This result also reveals
much about the general behavior of f(x, p), as we will see in Theorem 5.

Theorem 4. For a real number x > 169 and a positive integer ν such
that xθ < pν < pν+1 <

√
x (where θ is defined in “Notations”), if D, R

and α are the corresponding values defined by (2.3) and (2.4), the following
hold :
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(i) with λ(n) as in (2.7),

f(x, pν)− f(x, pν+1) ≥ D −R−
R
∑

i=1

λ

(

D

i
+ 1

)

;

(ii) if

(3.1) α ≥ R
D
,

then

f(x, pν) ≥ f(x, pν+1).
The final theorem is based directly on Theorem 4. It shows that, in a

given interval that depends on x, we can prove that f(x, p) is decreasing for
consecutive primes simply on the basis of the distance between them.

Theorem 5. Let x > 169 and let ν0 be a positive integer satisfying
xθ < pν0 < pν0+1 <

√
x and such that the associated values D0 = D(x, ν0),

R0 = R(x, ν0) and α0 = α(D0, R0) defined by (2.3) and (2.4) satisfy (3.1).
Assume that a positive integer ν1 satisfies

(3.2) pν0+1 ≤ pν1 < pν1+1 <
√
x and pν1+1 − pν1 ≥

D0
R0
+ 1.

Then f(x, pν1) ≥ f(x, pν1+1).

4. Preliminary results. We shall be making use of several well known
results, the first of which was obtained be Ennola in 1969, the second by
Hildebrand in 1985.

Theorem A (Tenenbaum [7], p. 367). For k ≥ 1, z ≥ 0, ai > 0,

zk

k!

k
∏

i=1

1

ai
< Nk(z) ≤

(z +
∑k
i=1 ai)

k

k!

k
∏

i=1

1

ai
,

where

Nk(z) := #
{

(v1, . . . , vk)
∣

∣

∣
v1 ≥ 0, . . . , vk ≥ 0,

k
∑

i=1

viai ≤ z
}

.

Theorem B (Hildebrand [4]). Let ε > 0 and u := log x/log y. Then

Ψ(x, y) = x̺(u)

(

1 +Oε

(

log(u+ 1)

log y

))

uniformly for

x ≥ 3, 1 ≤ u ≤ log x

(log log x)5/3+ε
.
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Here ̺(u) is the well known Dickman function defined by ̺(u) = 1 (0 ≤
u ≤ 1) and

̺(u) = ̺(k)−
u\
k

̺(ν − 1) dν
ν

(k < u ≤ k + 1).

Hence, Dickman’s function is a solution of u̺′(u) + ̺(u− 1) = 0 (u > 1).

Theorem C (Baker & Harman [1]). There exists a real number ξ ≤
0.535 such that for all integers ν ≥ 1,
(4.1) pν+1 − pν ≤ pξν < pξν+1.

Theorem D (Montgomery & Vaughan [6]). For all real numbers y ≥ 2,

λ(y) ≤ 2y
log y
.

5. Proof of main results

5.1. Proof of Theorem 1. We begin with the simple identity

f(x, pν) = Ψ(x, pν)− Ψ(x, pν−1),
which yields

f(x, pν+1)− f(x, pν) = Ψ(x, pν+1) + Ψ(x, pν−1)− 2Ψ(x, pν).
So, to establish the growth of f(x, p), it will be sufficient to prove that

(5.1) Ψ(x, pν+1) > 2Ψ(x, pν).

Theorem A provides us with the following bounds for Ψ(x, pν):

(log x)ν

ν!

ν
∏

i=1

1

log pi
< Ψ(x, pν) ≤

(log x+
∑ν
i=1 log pi)

ν

ν!

ν
∏

i=1

1

log pi
.

From this, to establish (5.1), we need only prove that

2
(logx+

∑ν
i=1 log pi)

ν

ν!

ν
∏

i=1

1

log pi
<
(log x)ν+1

(ν + 1)!

ν+1
∏

i=1

1

log pi

or, equivalently,

(5.2) 2(ν + 1)

(

1 +

∑ν
i=1 log pi
log x

)ν

<
log x

log pν+1
.

For x large, since pν+1 ≤
√
log x, we have log pν+1 ≤ (log log x)/2 and

ν < ν + 1 < pν <
√
log x. Hence, using the estimate

∏r
i=1 pi ≤ 3pr , r =

1, 2, . . . (see Hanson [3]), we deduce that
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2(ν + 1)

(

1 +

∑ν
i=1 log pi
log x

)ν

= 2(ν + 1)

(

1 +
log
∏ν
i=1 pi
log x

)ν

≤ 2(ν + 1)
(

1 +
pν log 3

log x

)ν

= 2(ν + 1) exp

(

ν log

(

1 +
pν log 3

log x

))

≤ 2(ν + 1) exp
(

νpν log 3

log x

)

< 2
√

log x exp(log 3) = 6
√

log x

<
2
√
log x

log log x
·
√

log x =
2 log x

log log x
≤ log x

log pν+1
,

which establishes (5.2) and the result is proven.

5.2. Proof of Theorem 2. The proof is based on the estimate of the
Ψ(x, y) function given by Theorem B. The admissibility region of this the-
orem is equivalent to

(log log x)5/3+ε ≤ log y ≤ log x.
We will examine, for large x, the region xδ ≤ y ≤ x with δ > 0. For a fixed
value of ε > 0, there exists x0 = x0(δ) such that

(log log x)5/3+ε < δ log x ≤ log y (x ≥ x0).
The estimate of Theorem B is then valid uniformly in the region xδ ≤ y ≤ x
with x ≥ x0.
We now notice that, in this last region,

log(u+ 1)

log y
=

log

(

log x

log y
+ 1

)

log y
≤
log

(

log x

log xδ
+ 1

)

log xδ

=
log(1/δ + 1)

δ log x
= Oδ

(

1

log x

)

.

We can now state a modified version of Hildebrand’s Theorem.

Theorem B′. For all δ > 0, there exists x0 = x0(δ) such that

Ψ(x, y) = x̺(u)

(

1 +Oδ

(

1

log x

))

uniformly for

x ≥ x0, xδ ≤ y ≤ x (or equivalently 1 ≤ u ≤ 1/δ).
Converting this approximation to the function f(x, p), we obtain

f(x, p) = Ψ

(

x

p
, p

)

=
x

p
̺

(

log x

log p
− 1
)(

1 +Oδ

(

1

log x

))

,
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provided xδ ≤ p ≤ xγ (0 < δ < γ < 1/2) and x ≥ x0. Here, with δ′ =
δ/(1 + δ) we have (x/p)δ

′ ≤ p, and since p2 ≤ x2γ < x, we have p ≤ x/p.
Let δ and γ be two fixed real numbers such that 0 < δ < γ < 1/2. There

then exists a fixed number x0 that renders the approximation of Theorem B
′

valid. Let a and d be fixed numbers such that δ < a < d < γ. Suppose that
p and q are two prime numbers such that

xa < p < ξ1(x) and ξ2(x) < q < x
d,

where

xa < ξ1(x) < ξ2(x) < x
d and ξ1(x) = o(ξ2(x))

for all x > x′ for a certain fixed real number x′. Then, provided that x ≥ x1,
where x1 = max{x0, x′}, we have

Ψ

(

x

p
, p

)

=
x

p
̺

(

log x

log p
− 1
)(

1 +Oδ

(

1

log x

))

≥ x

ξ1(x)
̺

(

1

a
− 1
)(

1− M
log x

)

and

Ψ

(

x

q
, q

)

=
x

q
̺

(

log x

log q
− 1
)(

1 +Oδ

(

1

log x

))

≤ x

ξ2(x)
̺

(

1

d
− 1
)(

1 +
M

log x

)

where M is a fixed constant depending only on δ and γ. Hence there exists
x1 > x0 such that

Ψ

(

x

p
, p

)

≥ x

ξ1(x)
̺

(

1

a
− 1
)

· 0.99

and

Ψ

(

x

q
, q

)

≤ x

ξ2(x)
̺

(

1

d
− 1
)

· 1.01

when x ≥ x1. Since ξ1(x) = o(ξ2(x)), there exists x2 > x1 such that
f(x, p) ≥ f(x, q) (x ≥ x2).

Choosing δ = a/2 and γ = (1/2+d)/2, we obtain the assertion of Theorem 2.

5.3. Proof of Theorem 3. We first determine a representation for f(x, p)
in the region x1/2 ≤ p ≤ x. By definition,

(5.3) f(x, p) = Ψ

(

x

p
, p

)

,

and

(5.4) Ψ(x, y) = [x] (y ≥ x).
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Combining (5.3) and (5.4), we easily obtain

(5.5) f(x, pν) =

[

x

pν

]

(pν ≥
√
x).

Therefore if x1/2 ≤ pν ≤ pν+1 ≤ x, then
f(x, pν) ≥ f(x, pν+1).

Hence in the region
√
x ≤ p ≤ x, f(x, p) is a decreasing function of p.

To complete the proof of the theorem, we must examine the particular
case where pν <

√
x ≤ pν+1. It is then necessary to extend the covered

interval to the left of
√
x. We will do that by using Buchstab’s identity

(5.6) Ψ(x, y) = Ψ(x, z)−
∑

y<p≤z

Ψ

(

x

p
, p

)

(x ≥ 1, z ≥ y ≥ 1).

Notice that this identity is a direct consequence of (5.3). We now consider
the region x1/3 < pν < x

1/2. Replacing x by x/pν , y by p and z by x/pν
in (5.6) we obtain

Ψ

(

x

pν
, pν

)

= Ψ

(

x

pν
,
x

pν

)

−
∑

pν<p≤x/pν

Ψ

(

x

pνp
, p

)

(5.7)

=

[

x

pν

]

−
∑

pν<p≤x/pν

[

x

pνp

]

,

where we used the fact that x/p2 < pν .
We now return to the non-trivial case of pν <

√
x ≤ pν+1. In this

situation, by (5.5) and (5.7),

f(x, pν+1) =

[

x

pν+1

]

and f(x, pν) =

[

x

pν

]

−
∑

pν<p≤x/pν

[

x

pνp

]

.

To justify the use of (5.7), we observe that

(5.8) pν ≥
pν+1
2
≥
√
x

2
=
x1/3x1/6

2
≥ x1/3 (x ≥ 64),

where the first inequality is true by Bertrand’s postulate.
We now consider the terms of the summation on the right side of (5.7).

Since pν+1 ≤ p ≤ x/pν , and pν+1 < 2pν , once again by Bertrand’s postulate,
we obtain

1 ≤ x
pνp
≤ x

pνpν+1
<
2x

p2ν+1
≤ 2,

from which it follows that
[

x

pνp

]

= 1.
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There are now three distinct cases to consider, namely pν+1 < [x/pν ],
pν+1 > [x/pν ] and pν+1 = [x/pν ].
In the first case,

∑

pν<p≤x/pν

[

x

pνp

]

=
∑

pν+1≤p≤[x/pν ]

1 ≤
[

x

pν

]

− pν+1,

the last inequality being valid since there are [x/pν ] − pν+1 + 1 admissible
numbers in the second summation, at least one of which is not prime. Hence

f(x, pν)−f(x, pν+1) ≥
[

x

pν

]

−
([

x

pν

]

−pν+1
)

−
[

x

pν+1

]

= pν+1−
[

x

pν+1

]

≥0

since pν+1 ≥
√
x.

In the second case,
∑

pν<p≤x/pν

[

x

pνp

]

= 0,

because the sum is empty. We then easily conclude that

f(x, pν)− f(x, pν+1) =
[

x

pν

]

−
[

x

pν+1

]

≥ 0.

In the last case,

∑

pν<p≤x/pν

[

x

pνp

]

=
∑

pν+1≤p≤[x/pν ]

1 = 1,

which implies that

f(x, pν)− f(x, pν+1) =
[

x

pν

]

− 1−
[

x

pν+1

]

=

(

pν+1 −
[

x

pν+1

])

− 1 ≥ 0,

the last inequality being valid if and only if pν+1 >
√
x, because we then

have [x/pν+1] < pν+1. So we must eliminate the possibility that, in this
third case, pν+1 =

√
x. To do that, let us consider the corresponding value

of pν . Supposing that pν+1 =
√
x, we have pν ≤

√
x− 2, which implies that

x

pν
≥ x√
x− 2 >

√
x+ 1 = pν+1 + 1.

As this is contrary to the initial hypothesis pν+1 = [x/pν ], we may conclude
that, in this third case, pν+1 must be larger than

√
x.

In view of (5.8), this completes the proof of Theorem 3 for x ≥ 64. The
property follows for all x ≥ 1 by inspection.
5.4. Proof of Theorem 4(i). In this section, we will build sufficient con-

ditions to ensure the decrease of the function f(x, p) in a subregion of

x1/3 < pν < pν+1 < x
1/2.



FREQUENCY FUNCTION OF LARGEST PRIME FACTOR 169

We will use the representation given by (5.7), which is valid in this interval,
to calculate the following difference:

f(x, pν)− f(x, pν+1)

=

([

x

pν

]

−
∑

pν<p≤x/pν

[

x

pνp

])

−
([

x

pν+1

]

−
∑

pν+1<p≤x/pν+1

[

x

pν+1p

])

=

([

x

pν

]

−
[

x

pνpν+1

]

−
∑

pν+1<p≤x/pν+1

[

x

pνp

]

−
∑

x/pν+1<p≤x/pν

[

x

pνp

])

−
([

x

pν+1

]

−
∑

pν+1<p≤x/pν+1

[

x

pν+1p

])

=

([

x

pν

]

−
[

x

pν+1

]

−
[

x

pνpν+1

])

−
∑

pν+1<p≤x/pν+1

([

x

pνp

]

−
[

x

pν+1p

])

−
∑

x/pν+1<p≤x/pν

[

x

pνp

]

= A−B − C,
say. Our main objective is to establish a lower bound for A − B − C. We
first have A = D −R, where D and R are defined in (2.3).
To estimate B, we split up the interval ]pν+1, x/pν+1] using the following

partition:
{

x

(N0 + 1)pν
,
x

N0pν+1
,
x

N0pν
,

x

(N0 − 1)pν+1
, . . . ,

x

3pν
,
x

2pν+1
,
x

2pν
,
x

pν+1

}

.

We can determine the exact value of N0 by noticing that since

R ≤ x

pνpν+1
< R+ 1,

we have
x

(R+ 1) pν
< pν+1 ≤

x

Rpν
,

so that N0 = R.
We must also determine a condition that will guarantee that all subin-

tervals will be distinct. It turns out that condition (2.2) is sufficient since,
as θ = 1/(3− ξ),

R ≤ x

pνpν+1
< x1−2θ < p

(1−2θ)/θ
ν+1 = p1−ξν+1 ≤

pν+1
pν+1 − pν

,

the last inequality being true because of Theorem C. Hence

R(pν+1 − pν) < pν+1 ⇔ (R− 1)pν+1 < Rpν ⇔
x

Rpν
<

x

(R− 1)pν+1
.
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Now that we have confirmed the validity of our partition, let us set

I =
R
⋃

i=1

]

x

(i+ 1)pν
,
x

ipν+1

]

and I ′ =
R
⋃

i=2

]

x

ipν+1
,
x

ipν

]

,

so that

(5.9)

]

pν+1,
x

pν+1

]

⊂ I ∪ I ′.

Let p ∈ I, say
p ∈
]

x

(k + 1)pν
,
x

kpν+1

]

for a certain k, 1 ≤ k ≤ R. We then have [x/(pνp)] = k and [x/(pν+1p)] = k,
and so

(5.10)

[

x

pνp

]

−
[

x

pν+1p

]

= 0.

Now, let p ∈ I ′, say
p ∈
]

x

lpν+1
,
x

lpν

]

for a certain l, 2 ≤ l ≤ R. In this case, [x/(pνp)] = l and [x/(pν+1p)] = l−1,
so that

(5.11)

[

x

pνp

]

−
[

x

pν+1p

]

= 1.

By (5.9)–(5.11), an upper estimate for B is obtained in the following
way:

B ≤
∑

p∈I

([

x

pνp

]

−
[

x

pν+1p

])

+
∑

p∈I′

([

x

pνp

]

−
[

x

pν+1p

])

(5.12)

=
∑

p∈I

0 +
∑

p∈I′

1 =
R
∑

i=2

∑

p∈]x/(ipν+1),x/(ipν)]

1 ≤
R
∑

i=2

λ

(

x

ipν
− x

ipν+1

)

,

where λ(n) is defined in (2.7).
To estimate C, observe that for any prime p ∈ ]x/pν+1, x/pν ], the in-

equalities
[

x

pνp

]

≥
[

x

pν
· pν
x

]

= 1 and

[

x

pνp

]

≤
[

x

pν
· pν+1
x

]

=

[

pν+1
pν

]

< 2

hold, the second one being true by Bertrand’s postulate. It follows that each
term in C is equal to 1, that is,

(5.13) C =
∑

x/pν+1<p≤x/pν

[

x

pνp

]

=
∑

p∈]x/pν+1,x/pν ]

1 ≤ λ
(

x

pν
− x

pν+1

)

.
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Gathering (2.3), (5.12) and (5.13), we obtain

f(x, pν)− f(x, pν+1) = A−B − C(5.14)

≥ D −R−
R
∑

i=1

λ

(

x

ipν
− x

ipν+1

)

.

To complete the proof of Theorem 4(i), we shall transform the terms of
the type x/(ipν)− x/(ipν+1) inherent in D. Using (2.5), we have

∣

∣

∣

∣

D

i
−
(

x

ipν
− x

ipν+1

)∣

∣

∣

∣

< 1 (1 ≤ i ≤ R).

for which we obtain the important inequality

(5.15) λ

(

x

ipν
− x

ipν+1

)

≤ λ
(

D

i
+ 1

)

(1 ≤ i ≤ R).

Thus, in view of (5.14), the proof of Theorem 4(i) is complete.

5.5. Proof of Theorem 4(ii). The main objective is to establish f(x, pν)
− f(x, pν+1) ≥ 0. By part (i) of the theorem, it is sufficient for this to have

(5.16) D − 2R−
R
∑

i=1

λ

(

D

i

)

≥ 0.

where we used the trivial inequality λ(n + 1) ≤ λ(n) + 1. The following
reasoning is true for all values of D and R. However, the end result is only
significant when D and R are large. When these quantities are small, say
D < 2e4, then inequality (5.16) is best handled computationally, since the
required values of λ(n) can easily be calculated individually.
To ensure that (5.16) holds, first observe that, by Theorem D,

D − 2R−
R
∑

i=1

λ

(

D

i

)

≥ D − 2R− 2D
R
∑

i=1

1

i log(D/i)
(5.17)

= D − 2R− 2DΣR,
say. Notice that ΣR exists because D ≥ 2 (see “Notations”). To simplify
ΣR, let

s(x) =
1

x log(D/x)
.

Since

s′(x) =
−1

{x log(D/x)}2
{

log

(

D

x

)

+ 1

}

< 0 (x ∈ [1, R]),

it follows that

ΣR =

R
∑

i=1

s(i) ≤
R\
1

s(t) dt+ s(1) = − log log
(

D

t

)∣

∣

∣

∣

R

1

+
1

logD

= log logD − log log
(

D

R

)

+
1

logD
= log

(

logD

log(D/R)

)

+
1

logD
.
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Combining this result with (5.17), we obtain

D − 2R−
R
∑

i=1

λ

(

D

i

)

≥ D − 2R− 2D
[

log

(

logD

log(D/R)

)

+
1

logD

]

.

We have thus established that (5.16) holds if

1

2
−
(

log

(

logD

log(D/R)

)

+
1

logD

)

≥ R
D
.

This completes the proof of Theorem 4(ii).

5.6. Proof of Theorem 5. We will make use of the following lemma.

Lemma. Let x > 169 and let ν0 be a positive integer satisfying x
θ <

pν0 < pν0+1 <
√
x and such that the associated values D0 = D(x, ν0),

R0 = R(x, ν0) and α0 = α(D0, R0) defined by (2.3) and (2.4) satisfy (3.1).
If ν1 is a positive integer satisfying x

θ < pν1 < pν1+1 <
√
x, then (3.1)

also holds for the corresponding values D1 = D(x, ν1), R1 = R(x, ν1) and
α1 = α(D1, R1) provided R1 ≤ R0 and d1 ≥ max(d0, 3), where d0 = D0/R0
and d1 = D1/R1.

Proof. By hypothesis,

α0 ≥
R0
D0
, α0(D0, R0) =

1

2
− log

(

logD0
log(D0/R0)

)

− 1

logD0
.

By definition, α = α(dR,R) = 1/2− g(d,R), where

(5.18) g(d,R) := log

(

logR

log d
+ 1

)

+
1

log d+ logR
.

It is a simple matter, using basic calculus, to deduce that:

• For a fixed value of d (d ≥ 3), gd(R) := g(d,R) is strictly increasing
for R ≥ 1.
• For a fixed value of R (R ≥ 1), gR(d) := g(d,R) is strictly decreasing

for d ≥ 2.
Since, by hypothesis, d1 ≥ max(d0, 3) and R1 ≤ R0, we have g(d1, R1) ≤

g(d1, R0) ≤ g(d0, R0), which implies that α1 ≥ α0. Condition (3.1) is then
met for the pair (D1, R1) because

D1
R1
= d1 ≥ d0 =

D0
R0
≥ 1
α0
≥ 1
α1
,

which completes the proof of the lemma.

We now establish Theorem 5. First, R1 ≤ R0 since pν0pν0+1 ≤ pν1pν1+1
≤ x/2. Then the hypothesis concerning pν1+1 − pν1 , combined with (2.6),
yields d0+1 ≤ pν1+1−pν1 < d1+1/R1. As R1 ≥ 1 by construction, we obtain
d0 < d1. Since d0 ≥ 2 (see “Notations”), we have pν1+1 − pν1 ≥ 4 and thus
d1 ≥ 3. All the requirements of Theorem 5 are now met. Hence, as (D1, R1)
respects (3.1), it follows from Theorem 4(ii) that f(x, pν1) ≥ f(x, pν1+1).
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6. Final remarks

6.1. Numerical remarks. We begin this section with a table of numeri-
cal examples. We show here the explicit values of v(x) and w(x) for small
powers of 10, along with the corresponding number of oscillations in the
intermediate interval I2(x) = [v(x), w(x)].

x v(x) # osc. in I2(x) w(x)

10 000 19 0 19
100 000 23 0 23
1 000 000 47 7 73
10 000 000 89 17 199
100 000 000 113 29 463

It would seem reasonable to assume that, for x > 108, we always have
v(x) < w(x), meaning that f(x, p) does oscillate. However, this is certainly
very difficult to prove.

6.2. Illustration of Theorems 4 and 5. We will illustrate an application
of Theorems 4 and 5 in the case of x = 1000 000. For this value of x,
the interval in which Theorem 4 applies is [xθ,

√
x ] = [273, 1000]. In this

interval, setting ν = 128, we obtain pν = 719, pν+1 = 727, D = 15, R = 1,
R/D = 0.07, α = 0.13 and so condition (3.1) is respected and we must have
f(1 000 000, 719) ≥ f(1 000 000, 727). An explicit calculation of these values
yields f(1 000 000, 719) = 1297 and f(1 000 000, 727) = 1284.

We now have determined a pair of primes for which condition (3.1) holds.
According to Theorem 5, it is now sufficient to find consecutive primes larger
than 727 with a difference larger thanD/R+1 = 15/1+1 = 16 to ensure that
f(x, p) is decreasing. The pair (887, 907) satisfies these conditions; and we
do indeed have f(1 000 000, 887) ≥ f(1 000 000, 907), that is, 1093 > 1073.
We note that it is possible to establish a relationship between the quan-

tities D and R when applying Theorem 4(ii). Clearly, α must be positive to
respect (3.1), which implies that

log

(

logD

log(D/R)

)

<
1

2
.

We then obtain the following inequality connecting D and R:

D > R2.54,

which is more revealing when written as d > R1.54. This shows again, as
in Theorem 5, that the difference between two consecutive primes is closely
tied with the behavior of f(x, p). As the difference between two consecutive
primes grows, so does the probability that condition (3.1) will hold. In fact,
a conjecture that holds numerically for all values of x shown in the above
table is the following:
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Conjecture. If v(x) ≤ pν , pν+1 ≤ w(x) and pν+1 − pν = 2, then
f(x, pν) ≤ f(x, pν+1).
Another way of stating this conjecture is that in the interval I2(x), the

function f(x, p) will increase for twin primes.

6.3. Further remarks assuming other strong conjectures. Notice that our
main results are limited in scope by the first inequality given in Theorem C.
For example, if the Riemann Hypothesis is true, then (4.1) holds with ξ =
1/2 + ε0 for each ε0 > 0 (see Ivić [5], p. 321), in which case Theorems 4
and 5 hold with θ = 4/10 + ε, ε > 0. Moreover, if Cramer’s conjecture is
true, namely if pν+1 − pν ≪ log2 pν (see Ivić [5], p. 299), then one can take
ξ = ε0, say, in which case

θ =
1

3− ξ =
1

3− ε0
=
1

3
+ ε, ε > 0.

This last conjecture provides us with the optimal interval for the setting of
Theorem 4, namely [x1/3+ε, x], with ε > 0.
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