COLLOQUIUM MATHEMATICUM

GENERALIZED FREE PRODUCTS

BY
J. D. MONK (Boulder, CO)

Abstract

A subalgebra B of the direct product $\prod_{i \in I} A_{i}$ of Boolean algebras is finitely closed if it contains along with any element f any other member of the product differing at most at finitely many places from f. Given such a B, let B^{\star} be the set of all members of B which are nonzero at each coordinate. The generalized free product corresponding to B is the subalgebra of the regular open algebra with the poset topology on B^{\star} generated by the natural basic open sets. Properties of this product are developed. The full regular open algebra is also treated.

A natural construction in the theory of partially ordered sets, particularly as considered in constructing generic extensions of models of set theory, is the product construction. If we apply this construction to Boolean algebras, it is natural to delete the zero elements in the factors; we then obtain a product which is no longer a Boolean algebra, but which can be embedded in one. When considering two Boolean algebras, this gives the well known and important construction of the free product. Applied to an infinite system of Boolean algebras the construction no longer coincides with the infinite free product. It gives a new construction of Boolean algebras, one that has evidently not been studied in general. The particular case of products of copies of $(\mathscr{P}(\omega) /$ fin $) \backslash\{0\}$ has been studied; see, e.g., Spinas [96].

The purpose of this article is to develop the elementary properties of this construction for general Boolean algebras, mainly for incomplete generalized free products. Beginning the study of cardinal invariants for such generalized free products, we give some results on cellularity. Complete generalized free products are also discussed, and a simple application to a Boolean algebraic formulation of the Easton theorem for sets is given.

1. Definition and simple properties. For any function f, any element i of its domain, and any object $a, \mathcal{S}(f, i, a)$ is the function c with the same domain as f such that, for any element x of that domain,

$$
c(x)= \begin{cases}f(x) & \text { if } x \neq i \\ a & \text { if } x=i\end{cases}
$$

2000 Mathematics Subject Classification: Primary 06E05.

Let $\left\langle A_{i}: i \in I\right\rangle$ be a system of BAs each with more than one element. A subalgebra B of $\prod_{i \in I} A_{i}$ is finitely closed provided that the following condition holds:
(*) For every $b \in B, i \in I$, and $a \in A_{i}$, the function $\mathcal{S}(b, i, a)$ is also in B. Examples of finitely closed subalgebras of $\prod_{i \in I} A_{i}$ are $\prod_{i \in I} A_{i}$ itself, the weak product $\prod_{i \in I}^{\mathrm{w}} A_{i}$ consisting of all functions which are either 0 except for finitely many places or 1 except for finitely many places, and, more generally, for each infinite cardinal κ, the subalgebra

$$
\left\{b \in \prod_{i \in I} A_{i}:\left|\left\{i \in I: b_{i} \neq 0\right\}\right|<\kappa \text { or }\left|\left\{i \in I: b_{i} \neq 1\right\}\right|<\kappa\right\}
$$

It is also clear that any finitely closed subalgebra of $\prod_{i \in I} A_{i}$ contains $\prod_{i \in I}^{\mathrm{w}} A_{i}$. And note that if B is a finitely closed subalgebra of $\prod_{i \in I} A_{i}$, then $\{f \upharpoonright J: f \in B\}$ is a finitely closed subalgebra of $\prod_{j \in J} A_{i}$ for any $J \subseteq I$.

Now let B be a finitely closed subalgebra of $\prod_{i \in I} A_{i}$. We define

$$
B^{\star}=\left\{b \in B: \forall i \in I\left(b_{i} \neq 0\right)\right\}
$$

B^{\star} is partially ordered by: $b \leq c$ iff $\forall i \in I\left(b_{i} \leq c_{i}\right)$. For each $b \in B^{\star}$ define

$$
\mathscr{O}_{b}=\left\{x \in B^{\star}: x \leq b\right\}
$$

These sets form a base for a topology on B^{\star}.
Lemma 1.1. \mathscr{O}_{b} is regular open for every $b \in B^{\star}$.
Proof. Note that $\mathrm{cl} \mathscr{O}_{b}=\left\{x \in B^{\star}: \mathscr{O}_{x} \cap \mathscr{O}_{b} \neq \emptyset\right\}=\left\{x \in B^{\star}: x\right.$ and b are compatible $\}$. Now suppose that $y \in \operatorname{int} \operatorname{cl} \mathscr{O}_{b}$. Then for every $w \leq y$, w and b are compatible. Suppose that $y \not z b$. Choose $i \in I$ such that $y_{i} \not \leq b_{i}$. Then $\mathcal{S}\left(y, i, y_{i} \cdot-b_{i}\right) \in B^{\star}, \mathcal{S}\left(y, i, y_{i} \cdot-b_{i}\right) \leq y$, but $\mathcal{S}\left(y, i, y_{i} \cdot-b_{i}\right)$ and b are not compatible, contradiction.

Now we define the B-generalized free product of the system $\left\langle A_{i}: i \in I\right\rangle$ to be the subalgebra of $\operatorname{RO}\left(B^{\star}\right)$ generated by all of the sets $\mathscr{O}_{b}, b \in B^{\star}$; this subalgebra is denoted by $\bigoplus_{i \in I}^{B} A_{i}$. Suppose that B is a finitely closed subalgebra of $\prod_{i \in I} A_{i}, i \in I$, and $a \in A_{i}$. Then we define

$$
(g(i, a))_{j}= \begin{cases}a & \text { if } j=i \\ 1 & \text { otherwise }\end{cases}
$$

Thus $g(i, a) \in B$. Now we define $f_{i}(a)=\mathscr{O}_{g(i, a)}$ for $a \neq 0$, and $f_{i}(0)=0$. This defines $f_{i}: A_{i} \rightarrow \bigoplus_{i \in I}^{B} A_{i}$.

Proposition 1.2. f_{i} is an isomorphism of A_{i} into $\bigoplus_{i \in I}^{B} A_{i}$.
Proof. Suppose that $a_{0}, a_{1} \in A$; we show that $f_{i}\left(a_{0}+a_{1}\right)=f_{i}\left(a_{0}\right)$ $+f_{i}\left(a_{1}\right)$. If one of a_{0}, a_{1} is 0 , this is clear, so assume that both are nonzero. We want to show that $\mathscr{O}_{g\left(i, a_{0}+a_{1}\right)}=\operatorname{int} \operatorname{cl}\left(\mathscr{O}_{g\left(i, a_{0}\right)} \cup \mathscr{O}_{g\left(i, a_{1}\right)}\right)$. Clearly $\mathscr{O}_{g\left(i, a_{0}\right)}$
$\cup \mathscr{O}_{g\left(i, a_{1}\right)} \subseteq \mathscr{O}_{g\left(i, a_{0}+a_{1}\right)}$, and hence int $\operatorname{cl}\left(\mathscr{O}_{g\left(i, a_{0}\right)} \cup \mathscr{O}_{g\left(i, a_{1}\right)}\right) \subseteq \mathscr{O}_{g\left(i, a_{0}+a_{1}\right)}$. Now suppose that $x \in \mathscr{O}_{g\left(i, a_{0}+a_{1}\right)}$ and $y \leq x$; we want to show that $\mathscr{O}_{y} \cap$ $\left(\mathscr{O}_{g\left(i, a_{0}\right)} \cup \mathscr{O}_{g\left(i, a_{1}\right)}\right) \neq \emptyset$. Suppose that $\mathscr{O}_{y} \cap \mathscr{O}_{g\left(i, a_{0}\right)}=\emptyset$. Clearly then $y_{i} \cdot a_{0}$ $=0$. Since $y \leq x \in \mathscr{O}_{g\left(i, a_{0}+a_{1}\right)}$, it follows that $y_{i} \leq a_{0}+a_{1}$, so $y_{i} \leq a_{1}$. So $y \in \mathscr{O}_{g\left(i, a_{1}\right)}$, as desired. Thus f_{i} preserves + .

To show that f_{i} preserves - , note first that $f_{i}(1)=1$, and hence it suffices to take $a \in A_{i}$ such that $0<a<1$ and show that $f_{i}(-a)=-f_{i}(a)$. Now $-f_{i}(a)=-\mathscr{O}_{g(i, a)}=\operatorname{int}\left(B^{\star} \backslash \mathscr{O}_{g(i, a)}\right)$. Clearly $f_{i}(-a)=\mathscr{O}_{g(i,-a)} \subseteq$ $B^{\star} \backslash \mathscr{O}_{g(i, a)}$, and hence $f_{i}(-a) \subseteq-f_{i}(a)$. Now suppose that $x \in-f_{i}(a)$. If $x_{i} \cdot a \neq 0$, then clearly $\mathscr{O}_{x} \cap \mathscr{O}_{g(i, a)} \neq 0$, contradiction. So $x_{i} \cdot a=0$, hence $x \in \mathscr{O}_{g(i,-a)}=f_{i}(-a)$, as desired. So f is a homomorphism. Clearly it is one-one.

Proposition 1.3. If $b \in B^{\star}$, then $\mathscr{O}_{b}=\bigcap_{i \in I} f_{i}\left(b_{i}\right)=\prod_{i \in I} f_{i}\left(b_{i}\right)$.
Proof. Clearly $b \leq g\left(i, b_{i}\right)$, so $\mathscr{O}_{b} \subseteq f_{i}\left(b_{i}\right)$, for each $i \in I$. If $y \in f_{i}\left(b_{i}\right)$ for all $i \in I$, then $y \leq g\left(i, b_{i}\right)$ for all $i \in I$, hence $y \leq b$ and so $y \in \mathscr{O}_{b}$.

Corollary 1.4. $\left\langle f_{i}\left[A_{i}\right]: i \in I\right\rangle$ is an independent system of subalgebras of $\bigoplus_{i \in I}^{B} A_{i}$.

Proposition 1.5. If $B=\prod_{i \in I}^{\mathrm{w}} A_{i}$, then $\bigoplus_{i \in I}^{B} A_{i} \cong \bigoplus_{i \in I} A_{i}$.
Proof. By Handbook 11.4 it suffices to show that $\bigoplus_{i \in I}^{B} A_{i}$ is generated by $\bigcup_{i \in I} f_{i}\left[A_{i}\right]$. Take any $b \in B^{\star}$. Then $F:=\left\{i \in I: b_{i} \neq 1\right\}$ is finite. Hence $\bigcap_{i \in I} f_{i}\left(b_{i}\right)=\bigcap_{i \in F} f_{i}\left(b_{i}\right)$. The desired conclusion now follows from Proposition 1.3.

Proposition 1.6. If $b \neq c$, then $\mathscr{O}_{b} \neq \mathscr{O}_{c}$.
Proof. Say $b \not \leq c$. Then $b \in \mathscr{O}_{b} \backslash \mathscr{O}_{c}$.
Proposition 1.7. $-\mathscr{O}_{b}=\left\{x \in B^{\star}: \exists i \in I\left(x_{i} \leq-b_{i}\right)\right\}$.
Proof. To prove this, first recall that $-\mathscr{O}_{b}=\operatorname{int}\left(B^{\star} \backslash \mathscr{O}_{b}\right)$. If $x_{i} \leq-b_{i}$ for some $i \in I$, then $\mathscr{O}_{x} \cap \mathscr{O}_{b}=0$, and so $x \in \operatorname{int}\left(B^{\star} \backslash \mathscr{O}_{b}\right)$. Now suppose that $x_{i} \cdot b_{i} \neq 0$ for all $i \in I$. Clearly then $\mathscr{O}_{x} \cap \mathscr{O}_{b} \neq 0$, and so $x \notin \operatorname{int}\left(B^{\star} \backslash \mathscr{O}_{b}\right)$.

Proposition 1.8. B^{\star} is order-isomorphic to a dense generating set of $\bigoplus_{i \in I}^{B} A_{i}$. Moreover, $b \leq c$ iff $\mathscr{O}_{b} \subseteq \mathscr{O}_{c}$.

Proof. The second statement is obvious, and it immediately implies the first statement.

PROPOSITION 1.9. (i) $\mathscr{O}_{b} \cdot \mathscr{O}_{c}=\mathscr{O}_{b} \cap \mathscr{O}_{c}$.
(ii) $\mathscr{O}_{b} \cdot \mathscr{O}_{c} \neq 0$ iff $\forall i \in I\left[b_{i} \cdot c_{i} \neq 0\right]$.
(iii) If $\mathscr{O}_{b} \cdot \mathscr{O}_{c} \neq 0$, then $\mathscr{O}_{b} \cdot \mathscr{O}_{c}=\mathscr{O}_{b \cdot c}$.

Proposition 1.10. Suppose that m is a positive integer and b, c^{0}, \ldots $\ldots, c^{m-1} \in B^{\star}$. Then the following conditions are equivalent:
(i) $\mathscr{O}_{b} \subseteq \mathscr{O}_{c^{0}}+\ldots+\mathscr{O}_{c^{m-1}}$.
(ii) $\forall w \in B^{\star}\left(w \leq b \Rightarrow \exists i<m\left(w \cdot c^{i} \in B^{\star}\right)\right)$.
(iii) For all $j<m$ and all $i \in I$, if $b_{i} \cdot-c_{i}^{j} \neq 0$, then $\mathscr{O}_{\mathcal{S}\left(b, i, b_{i} \cdot-c_{i}^{j}\right)} \subseteq$ $\sum_{k<m, k \neq j} \mathscr{O}_{c^{k}}$.

Proof. Note that $\mathscr{O}_{c^{0}}+\ldots+\mathscr{O}_{c^{m-1}}=\operatorname{int} \operatorname{cl}\left(\mathscr{O}_{c^{0}} \cup \ldots \cup \mathscr{O}_{c^{m-1}}\right)$. Hence

$$
\begin{aligned}
\mathscr{O}_{b} \subseteq \mathscr{O}_{c^{0}}+\ldots+\mathscr{O}_{c^{m-1}} & \text { iff } \quad \mathscr{O}_{b} \subseteq \operatorname{cl}\left(\mathscr{O}_{c^{0}} \cup \ldots \cup \mathscr{O}_{c^{m-1}}\right) \\
& \text { iff } \forall w \in B^{\star}\left(w \leq b \Rightarrow \exists i<m\left(w \cdot c^{i} \in B^{\star}\right)\right) .
\end{aligned}
$$

It follows that (i) and (ii) are equivalent.
For (i) \Rightarrow (iii), suppose that (iii) fails. We then obtain $j<m$ and $i \in I$ such that $b_{i} \cdot-c_{i}^{j} \neq 0$ and $\mathscr{O}_{\mathcal{S}\left(b, i, b_{i},-c_{i}^{j}\right)} \nsubseteq \sum_{k<m, k \neq j} \mathscr{O}_{c^{k}}$. This means by (ii) that there is an $s \leq \mathcal{S}\left(b, i, b_{i} \cdot-c_{i}^{j}\right)$ such that $\mathscr{O}_{s} \cap \mathscr{O}_{c^{k}}=0$ for all $k<m$ for which $k \neq j$. But also clearly $\mathscr{O}_{s} \cap \mathscr{O}_{c^{j}}=0$, contradiction.
$(\mathrm{iii}) \Rightarrow(\mathrm{i})$. Suppose that $\mathscr{O}_{b} \nsubseteq \mathscr{O}_{c^{0}}+\ldots+\mathscr{O}_{c^{m-1}}$. Then by (ii) there is an $s \in \mathscr{O}_{b}$ such that $\mathscr{O}_{s} \cap \mathscr{O}_{c^{j}}=0$ for all $j<m$. Choose $i \in I$ such that $s_{i} \cdot c_{i}^{0}=0$. Then $b_{i} \cdot-c_{i}^{0} \neq 0$, so by (iii), $\mathscr{O}_{\mathcal{S}\left(b, i, b_{i} \cdot-c_{i}^{0}\right)} \subseteq \sum_{k<m, k \neq 0} \mathscr{O}_{c^{k}}$. But $s \leq \mathcal{S}\left(b, i, b_{i} \cdot-c_{i}^{0}\right)$, contradiction.

Corollary 1.11. Suppose that m is a natural number, $b, c^{0}, \ldots, c^{m-1}$ $\in B^{\star}$, and $\mathscr{O}_{b} \subseteq \mathscr{O}_{c^{0}}+\ldots+\mathscr{O}_{c^{m-1}}$. Then $m>0$ and $b \leq c^{0}+\ldots+c^{m-1}$.

Proof. Since $\mathscr{O}_{b} \neq 0$, it follows that $m>0$. Now suppose that $b \not \leq c^{0}+\ldots$ $\ldots+c^{m-1}$. Choose i such that $u:=b_{i} \cdot-c_{i}^{0} \cdot \ldots \cdot-c_{i}^{m-1} \neq 0$. Then $\mathcal{S}(b, i, u) \leq b$ and $\forall j<m\left(\mathcal{S}(b, i, u) \cdot c^{i} \notin B^{\star}\right)$, contradicting Proposition 1.10.

Proposition 1.12. Suppose that m is a positive integer and b, c^{0}, \ldots $\ldots, c^{m-1} \in B^{\star}$. For each $\varepsilon \in{ }^{m} I$ define $d^{\varepsilon} \in B$ by setting, for each $i \in I$,

$$
d_{i}^{\varepsilon}=b_{i} \cdot \prod_{j<m, \varepsilon(j)=i}-c_{i}^{j}
$$

Then

$$
\mathscr{O}_{b} \cap-\mathscr{O}_{c^{0}} \cap \ldots \cap-\mathscr{O}_{c^{m-1}}=\bigcup_{\varepsilon \in^{m} I, d^{\varepsilon} \in B^{\star}} \mathscr{O}_{d^{\varepsilon}}
$$

Proof. Suppose $w \in \mathscr{O}_{b} \cap-\mathscr{O}_{c^{0}} \cap \ldots \cap \mathscr{O}_{c^{m-1}}$. By Proposition 1.7, for each $j<m$ choose $\varepsilon(j) \in I$ such that $w_{\varepsilon(j)} \leq-c_{\varepsilon(j)}^{j}$. Clearly then $w \leq d^{\varepsilon}$.

Conversely, if $w \in d^{\varepsilon}$, it is clear that $w \in \mathscr{O}_{b} \cap-\mathscr{O}_{c^{0}} \cap \ldots \cap-\mathscr{O}_{c^{m-1}}$.
Corollary 1.13. Suppose that m is a positive integer and b, c^{0}, \ldots $\ldots, c^{m-1} \in B^{\star}$. Then $\mathscr{O}_{b} \leq \mathscr{O}_{c^{0}}+\ldots+\mathscr{O}_{c^{m-1}}$ iff

$$
\forall \varepsilon \in{ }^{m} I \exists i \in I\left[b_{i} \leq \sum_{j<m, \varepsilon(j)=i} c_{i}^{j}\right]
$$

So much for the elementary arithmetic of generalized free products. Now we turn to elementary algebraic results, specifically to universal mapping properties.

Proposition 1.14. Suppose that B and C are finitely closed subalgebras of $\prod_{i \in I} A_{i}$, and $B \leq C$. Then $\bigoplus_{i \in I}^{B} A_{i}$ can be isomorphically embedded in $\bigoplus_{i \in I}^{C} A_{i}$. In fact, the mapping f such that $f\left(\mathscr{O}_{b}^{B}\right)=\mathscr{O}_{b}^{C}$ for all $b \in B^{\star}$ can be extended to an isomorphism into.

Proof. Let $b^{0}, \ldots, b^{m-1}, c^{0}, \ldots, c^{n-1} \in B^{\star}$. It suffices to show that

$$
\begin{aligned}
\mathscr{O}_{b^{0}}^{\mathrm{B}} \cdot \ldots \cdot \mathscr{O}_{b^{m-1}}^{\mathrm{B}} \cdot-\mathscr{O}_{c^{0}}^{\mathrm{B}} & \ldots \cdot-\mathscr{O}_{c^{n-1}}^{\mathrm{B}}=0 \\
& \quad \text { iff } \mathscr{O}_{b^{0}}^{\mathrm{C}} \cdot \ldots \cdot \mathscr{O}_{b^{m-1}}^{\mathrm{C}} \cdot-\mathscr{O}_{c^{0}}^{\mathrm{C}} \cdot \ldots \cdot-\mathscr{O}_{c^{n-1}}^{\mathrm{C}}=0 .
\end{aligned}
$$

We may assume that $m>0$ (put $b^{0}=1$ otherwise). Now

$$
\mathscr{O}_{b^{0}}^{\mathrm{B}} \cdot \ldots \cdot \mathscr{O}_{b^{m-1}}^{\mathrm{B}}= \begin{cases}0 & \text { if }\left(b^{0} \cdot \ldots \cdot b^{m-1}\right)_{i}=0 \text { for some } i \in I \\ \mathscr{O}_{b^{0} \ldots . . b^{m-1}}^{\mathrm{B}} & \text { otherwise } .\end{cases}
$$

and similarly for $\mathscr{O}_{b^{0}}^{\mathrm{C}} \cdot \ldots \cdot \mathscr{O}_{b^{m-1}}^{\mathrm{C}}$, so we may assume that $m=1$. Clearly then $n>0$.

Next, using Corollary 1.13 we have

$$
\begin{aligned}
\mathscr{O}_{b^{0}}^{B} \cdot-\mathscr{O}_{c^{0}}^{B} \cdot \ldots \cdot-\mathscr{O}_{c^{n-1}}^{B}=0 & \text { iff } \forall \varepsilon \in{ }^{n} I \exists i \in I\left[b_{i}^{0} \leq \sum_{j<n, \varepsilon(j)=i} c_{i}^{j}\right] \\
& \text { iff } \mathscr{O}_{b^{0}}^{C} \cdot-\mathscr{O}_{c^{0}}^{C} \cdot \ldots \cdot-\mathscr{O}_{c^{n-1}}^{C}=0 .
\end{aligned}
$$

The following proposition abstractly characterizes generalized free products.

Theorem 1.15. Let $\left\langle A_{i}: i \in I\right\rangle$ be a system of $B A s$, and let B be a finitely closed subalgebra of $\prod_{i \in I} A_{i}$. Then for any $B A C$, the following conditions are equivalent:
(i) $C \cong \bigoplus_{i \in I}^{B} A_{i}$.
(ii) There exist embeddings f_{i} of A_{i} into C with the following properties:
(a) For all $b \in B^{\star}, \prod_{i \in I}^{C} f_{i}\left(b_{i}\right)$ exists and is nonzero;
(b) $\left\{\prod_{i \in I}^{C} f_{i}\left(b_{i}\right): b \in B^{\star}\right\}$ is a dense generating set for C.

Proof. (i) \Rightarrow (ii) by Propositions 1.2, 1.3.
$($ ii $) \Rightarrow\left(\right.$ i). Assume (ii). Define $F\left(\mathscr{O}_{b}\right)=\prod_{i \in I}^{C} b_{i}$ for any $b \in B^{\star}$. It suffices now to show that if $b^{0}, \ldots, b^{m-1}, c^{0}, \ldots, c^{n-1} \in B^{\star}$, then
$\mathscr{O}_{b^{0}} \cdot \ldots \cdot \mathscr{O}_{b^{m-1}} \cdot-\mathscr{O}_{c^{0}} \cdot \ldots \cdot-\mathscr{O}_{c^{n-1}}=0$
iff $\prod_{i \in I} f_{i}\left(b_{i}^{0}\right) \cdot \ldots \cdot \prod_{i \in I} f_{i}\left(b_{i}^{m-1}\right) \cdot-\prod_{i \in I} f_{i}\left(c_{i}^{0}\right) \cdot \ldots \cdot-\prod_{i \in I} f_{i}\left(c_{i}^{n-1}\right)=0$.

As in the proof of Proposition 1.14 we may assume that $m=1$. Then $n>0$. So what we want to prove is that

$$
\mathscr{O}_{b} \subseteq \mathscr{O}_{c^{0}}+\ldots+\mathscr{O}_{c^{n-1}} \quad \text { iff } \quad \prod_{i \in I} f_{i}\left(b_{i}\right) \leq \prod_{i \in I} f_{i}\left(c_{i}^{0}\right)+\ldots+\prod_{i \in I} f_{i}\left(c_{i}^{n-1}\right)
$$

We have

$$
\begin{aligned}
& \prod_{i \in I} f_{i}\left(b_{i}\right) \leq \prod_{i \in I} f_{i}\left(c_{i}^{0}\right)+\ldots+\prod_{i \in I} f_{i}\left(c_{i}^{n-1}\right) \\
& \text { iff } \\
& \prod_{i \in I} f_{i}\left(b_{i}\right) \cdot \sum_{i \in I}-f_{i}\left(c_{i}^{0}\right) \cdot \ldots \cdot \sum_{i \in I}-f_{i}\left(c_{i}^{n-1}\right)=0 \\
& \text { iff } \sum_{\varepsilon \in{ }^{n} I}\left(\prod_{i \in I} f_{i}\left(b_{i}\right) \cdot \prod_{j \in n}-f_{\varepsilon(j)}\left(c_{\varepsilon(j)}^{j}\right)\right)=0 \\
& \text { iff } \sum_{\varepsilon \in \in^{n} I}\left(\prod_{i \in I} f_{i}\left(b_{i}\right) \cdot \prod_{j \in n} f_{\varepsilon(j)}\left(-c_{\varepsilon(j)}^{j}\right)\right)=0 .
\end{aligned}
$$

Now we claim that this last equality is equivalent to saying

$$
\begin{equation*}
\forall \varepsilon \in{ }^{n} I \exists i \in I\left[f_{i}\left(b_{i}\right) \cdot \prod_{j<n, \varepsilon(j)=i} f_{\varepsilon(j)}\left(-c_{i}^{j}\right)=0\right] . \tag{*}
\end{equation*}
$$

In fact, the latter condition clearly implies the indicated equality. Conversely, suppose that for some $\varepsilon \in{ }^{n} I$ it is the case that

$$
\forall i \in I\left[f_{i}\left(b_{i}\right) \cdot \prod_{j<n, \varepsilon(j)=i} f_{\varepsilon(j)}\left(-c_{i}^{j}\right) \neq 0\right]
$$

Then, since f_{i} is an embedding,

$$
\forall i \in I\left[b_{i} \cdot \prod_{j<n, \varepsilon(j)=i}-c_{i}^{j} \neq 0\right] .
$$

So if we define a new element e by

$$
e_{i}=b_{i} \cdot \prod_{j<n, \varepsilon(j)=i}-c_{i}^{j}
$$

for all $i \in I$, then $e \in B^{\star}$, and so by (a), $\prod_{i \in I} f_{i}\left(e_{i}\right) \neq 0$. But this means that

$$
\prod_{i \in I} f_{i}\left(b_{i}\right) \cdot \prod_{j \in n} f_{\varepsilon(j)}\left(-c_{\varepsilon(j)}^{j}\right) \neq 0
$$

so that the indicated equality fails. Thus our equivalence is true, and hence

$$
\begin{aligned}
\prod_{i \in I} f_{i}\left(b_{i}\right) \leq \prod_{i \in I} f_{i}\left(c_{i}^{0}\right)+\ldots+ & \prod_{i \in I} f_{i}\left(c_{i}^{n-1}\right) \\
& \text { iff } \quad \forall \varepsilon \in{ }^{n} I \exists i \in I\left[b_{i} \cdot \prod_{j<n, \varepsilon(j)=i}-c_{i}^{j}=0\right] \\
& \text { iff } \quad \mathscr{O}_{b} \subseteq \mathscr{O}_{c^{0}}+\ldots+\mathscr{O}_{c^{n-1}} .
\end{aligned}
$$

Here we have used the hypothesis (ii)(a) and Corollary 1.13.
Corollary 1.16. Suppose that B is a finitely closed subalgebra of $\prod_{i \in I} A_{i}$, and $J \subseteq I$. Let $B_{J}=\{f \upharpoonright J: f \in B\}$ and $B_{I \backslash J}=\{f \upharpoonright(I \backslash J)$: $f \in B\}$. Assume also

$$
\begin{equation*}
B=\left\{u \frown v: u \in B_{J} \text { and } v \in B_{I \backslash J}\right\} \tag{*}
\end{equation*}
$$

Then

$$
\bigoplus_{i \in I}^{B} A_{i} \cong\left(\bigoplus_{i \in J}^{B_{J}} A_{i}\right) \oplus\left(\bigoplus_{i \in I \backslash J}^{B_{I \backslash J}} A_{i}\right)
$$

Proof. For brevity let $C=\bigoplus_{i \in J}^{B_{J}} A_{i}$ and $D=\bigoplus_{i \in I \backslash J}^{B_{I \backslash J}} A_{i}$. We consider C and D as subalgebras of $E:=C \oplus D$. For each $i \in J$ let f_{i} be the isomorphism of A_{i} into C defined before Proposition 1.2, and for each $i \in I \backslash J$ let g_{i} be the isomorphism of A_{i} into D given there. We intend to check the conditions of Theorem 1.15 in order to show that $E \cong \bigoplus_{i \in I}^{B} A_{i}$. To check 1.15(a), suppose that $b \in B^{\star}$. Let $c_{0}=\prod_{i \in J}^{C} f_{i}\left(b_{i}\right)$; this product exists and is nonzero by 1.15 for C. Similarly, let $c_{1}=\prod_{i \in I \backslash J}^{D} g_{i}\left(b_{i}\right)$; it is nonzero. Thus the member $c_{0} \cdot c_{1}$ of E is nonzero. We claim that it is the product in E of all members of

$$
\begin{equation*}
\left\{f_{i}\left(b_{i}\right): i \in J\right\} \cup\left\{g_{i}\left(b_{i}\right): i \in I \backslash J\right\} \tag{**}
\end{equation*}
$$

To check this, first we have $c_{0} \cdot c_{1} \leq c_{0} \leq f_{i}\left(b_{i}\right)$ for all $i \in I$ by the definition of c_{0}. Similarly, $c_{0} \cdot c_{1} \leq g_{i}\left(b_{i}\right)$ for all $i \in I \backslash J$. Now suppose that $e \in E$ and e is a lower bound for all members of the set $(* *)$. Write

$$
e=\sum_{i<m} u_{i} \cdot v_{i}
$$

where each $u_{i} \in C$ and $v_{i} \in D$. From $u_{i} \cdot v_{i} \leq f_{j}\left(b_{j}\right)$ we infer that $u_{i} \leq f_{j}\left(b_{j}\right)$ by the basic property of free products, for each $i<m$ and each $j \in J$. So u_{i} is a lower bound for $\left\{f_{j}\left(b_{j}\right): j \in J\right\}$, so $u_{i} \leq c_{0}$. Similarly, $v_{i} \leq c_{1}$ for each $i<m$. Hence $e \leq c_{0} \cdot c_{1}$. This establishes our claim. Hence 1.15(a) holds for E.

To prove $1.15(\mathrm{~b})$, given a nonzero $e \in E$, choose nonzero $d_{0} \in C$ and $d_{1} \in D$ such that $d_{0} \cdot d_{1} \leq e$. Then by $1.15(\mathrm{~b})$ for C and D we can find $u \in B_{J}^{\star}$ and $v \in B_{I \backslash J}^{\star}$ such that $\prod_{i \in J}^{C} f_{i}\left(u_{i}\right) \leq d_{0}$ and $\prod_{i \in I \backslash J}^{D} g_{i}\left(v_{i}\right) \leq d_{1}$. Let $b=u^{\frown} v$; then $b \in B^{\star}$ by $(*)$, and by the above the product in E of all
$f_{i}\left(u_{i}\right)$ and $g_{j}\left(v_{j}\right)$ for $i \in J, j \in I \backslash J$ is $\leq e$. So the indicated elements are dense in E. Clearly they generate E.

The two most important special cases of $\bigoplus_{i \in I}^{B} A_{i}$ are the one in which $B=\prod_{i \in I}^{\mathrm{w}} A_{i}$, where $\bigoplus_{i \in I}^{B} A_{i}$ is isomorphic to the ordinary free product by Proposition 1.5, and the one in which $B=\prod_{i \in I} A_{i}$. We denote the latter by $\bigoplus_{i \in I}^{\pi} A_{i}$. It is the notion mainly studied here.

The following universal property of generalized free products generalizes the one for usual free products.

Theorem 1.17. Suppose that $\left\langle A_{i}: i \in I\right\rangle$ is a system of BAs each with at least four elements, and B is a finitely closed subalgebra of $\prod_{i \in I} A_{i}$. Let C be any $B A$, and suppose that $h_{i}: A_{i} \rightarrow C$ is a homomorphism for every $i \in I$ such that for any $b \in B^{\star}$, the product $\prod_{i \in I} h_{i}\left(b_{i}\right)$ exists. Then there is a homomorphism $k: \bigoplus_{i \in I}^{B} A_{i} \rightarrow C$ such that $k\left(\mathscr{O}_{b}\right)=\prod_{i \in I} h_{i}\left(b_{i}\right)$ for all $b \in B^{\star}$.

Proof. For any $b \in B^{\star}$ let $k\left(\mathscr{O}_{b}\right)=\prod_{i \in I} h_{i}\left(b_{i}\right)$. We want to show that k extends to a homomorphism from $\bigoplus_{i \in I}^{B} A_{i}$ into C. To this end, suppose that

$$
\mathscr{O}_{b^{0}} \cdot \ldots \cdot \mathscr{O}_{b^{m-1}} \cdot-\mathscr{O}_{c^{0}} \cdot \ldots \cdot-\mathscr{O}_{c^{n-1}}=0
$$

we want to show that

$$
\prod_{i \in I} h_{i}\left(b_{i}^{0}\right) \cdot \ldots \cdot \prod_{i \in I} h_{i}\left(b_{i}^{m-1}\right) \cdot-\prod_{i \in I} h_{i}\left(c_{i}^{0}\right) \cdot \ldots \cdot-\prod_{i \in I} h_{i}\left(c_{i}^{n-1}\right)=0
$$

As in the proof of Proposition 1.14, we may assume that $m=1$; so we drop the superscript ${ }^{0}$ on b^{0}. Then it is clear that $n>0$. Now suppose that $\prod_{i \in I} h_{i}\left(b_{i}\right) \cdot-\prod_{i \in I} h_{i}\left(c_{i}^{0}\right) \cdot \ldots \cdot-\prod_{i \in I} h_{i}\left(c_{i}^{n-1}\right) \neq 0$. Then there exist $i_{0}, \ldots, i_{n-1} \in I$ such that $\prod_{i \in I} h_{i}\left(b_{i}\right) \cdot-h_{i_{0}}\left(c_{i_{0}}^{0}\right) \cdot-h_{i_{n-1}}\left(c_{i_{n-1}}^{n-1}\right) \neq 0$. We now define

$$
w_{i}=b_{i} \cdot \prod\left\{-c_{i_{k}}^{k}: i_{k}=i\right\}
$$

for every $i \in I$. Then

$$
\prod_{i \in I} h_{i}\left(w_{i}\right)=\prod_{i \in I} h_{i}\left(b_{i}\right) \cdot-h_{i_{0}}\left(c_{i_{0}}^{0}\right) \cdot \ldots \cdot-h_{i_{n-1}}\left(c_{i_{n-1}}^{n-1}\right) \neq 0
$$

and hence $w \in B^{\star}$. But by Proposition 1.7 we have $w \in \mathscr{O}_{b} \cdot-\mathscr{O}_{c^{0}} \ldots \cdot-\mathscr{O}_{c^{n-1}}$, contradiction.

It follows that k can be extended to a homomorphism.
Proposition 1.18. Suppose that $\left\langle A_{i}: i \in I\right\rangle$ is a system of $B A s$ each with at least four elements, and B is a finitely closed subalgebra of $\prod_{i \in I} A_{i}$. Then $\bigoplus_{i \in I} A_{i}$ is a retract of $\bigoplus_{i \in I}^{B} A_{i}$.

Proof. By 1.14 let g be the isomorphism of $\bigoplus_{i \in I} A_{i}$ into $\bigoplus_{i \in I}^{B} A_{i}$ such that $g\left(\mathscr{O}_{b}\right)=\mathscr{O}_{b}^{B}$ for all $b \in C^{\star}$, where $C=\prod_{i \in I}^{\mathrm{w}} A_{i}$. Let $f_{i}: A_{i} \rightarrow \bigoplus_{i \in I} A_{i}$ be as before 1.2.

$$
\begin{equation*}
\text { If } b \in B^{\star} \text { and }\left\{i \in I: b_{i} \neq 1\right\} \text { is infinite, then } \prod_{i \in I} f_{i}\left(b_{i}\right)=0 \tag{1}
\end{equation*}
$$

For, suppose that $\prod_{i \in I} f_{i}\left(b_{i}\right) \neq 0$. Then there is a $c \in C^{\star}$ such that $\mathscr{O}_{c} \subseteq$ $f_{i}\left(b_{i}\right)$ for all $i \in I$. Choose $i \in I$ such that $c_{i}=1$ and $b_{i} \neq 1$. Then $\mathscr{O}_{c} \subseteq f_{i}\left(b_{i}\right)=\mathscr{O}_{g\left(i, b_{i}\right)}$, so by $1.8,1 \leq b_{i}$, contradiction. Thus (1) holds.

By (1) and 1.17 let k be a homomorphism from $\bigoplus_{i \in I}^{B} A_{i}$ into $\bigoplus_{i \in I} A_{i}$ such that $k\left(\mathscr{O}_{b}^{B}\right)=\prod_{i \in I} f_{i}\left(b_{i}\right)$ for all $b \in B^{\star}$. Then for any $b \in C^{\star}$,

$$
k\left(g\left(\mathscr{O}_{b}\right)\right)=k\left(\mathscr{O}_{b}^{B}\right)=\prod_{i \in I} f_{i}\left(b_{i}\right)=\mathscr{O}_{b},
$$

and so $k \circ g$ is the identity on $\bigoplus_{i \in I} A_{i}$, as desired.
Proposition 1.19. Suppose that $\left\langle A_{i}: i \in I\right\rangle$ is a system of $B A s$ each with at least four elements, and B is a finitely closed subalgebra of $\prod_{i \in I} A_{i}$. Let $\left\langle F_{i}: i \in I\right\rangle$ be a system consisting of an ultrafilter F_{i} on A_{i} for each $i \in I$. Then there is a homomorphism k from $\bigoplus_{i \in I}^{B} A_{i}$ into B such that $\left(\prod_{i \in I} F_{i}\right) \cap B$ is a subset of $\operatorname{rng}(k)$.

Proof. For each $i \in I$ we define $h_{i}: A_{i} \rightarrow \prod_{k \in I} A_{k}$ as follows: for any $a \in A_{i}$ and $k \in I$,

$$
\left(h_{i}(a)\right)_{k}= \begin{cases}a & \text { if } i=k \\ 1 & \text { if } i \neq k \text { and } a \in F_{i} \\ 0 & \text { if } i \neq k \text { and } a \notin F_{i}\end{cases}
$$

Clearly h_{i} is a homomorphism from A_{i} into $\prod_{i \in I}^{\mathrm{w}} A_{i}$, for each $i \in I$.
Now we check the condition of Theorem 1.17. Suppose that $b \in B^{\star}$. Define $c \in \prod_{k \in I} A_{k}$ as follows: for any $k \in I$,

$$
c_{k}= \begin{cases}0 & \text { if }-b_{i} \in F_{i} \text { for some } i \neq k \\ b_{k} & \text { otherwise }\end{cases}
$$

We claim that $c=\prod_{i \in I} h_{i}\left(b_{i}\right)$ in B. First take any $i \in I$. To show that $c \leq h_{i}\left(b_{i}\right)$, take any $k \in I$; we want to show that $c_{k} \leq\left(h_{i}\left(b_{i}\right)\right)_{k}$. This is clear if $-b_{j} \in F_{j}$ for some $j \neq k$, so assume that $b_{j} \in F_{j}$ for all $j \neq k$. Then

$$
\left(h_{i}\left(b_{i}\right)\right)_{k}= \begin{cases}b_{i} & \text { if } i=k \\ 1 & \text { if } i \neq k\end{cases}
$$

Since $c_{k}=b_{k}$, it follows that $c_{k} \leq\left(h_{i}\left(b_{i}\right)\right)_{k}$. Thus c is a lower bound for all of the $h_{i}\left(b_{i}\right)$'s.

Now suppose that d is any lower bound for the $h_{i}\left(b_{i}\right)$'s. To show that $d \leq c$, take any $i \in I$. If $b_{k} \in F_{k}$ for all $k \neq i$, then $d_{i} \leq\left(h_{i}\left(b_{i}\right)\right)_{i}=b_{i}=c_{i}$. If $b_{k} \notin F_{k}$ for some $k \neq i$, then $d_{i} \leq\left(h_{k}\left(b_{k}\right)\right)_{i}=0 \leq c_{i}$.

So we have established that $c=\prod_{i \in I} h_{i}\left(b_{i}\right)$. Hence we can apply Theorem 1.17 to obtain a homomorphism $k: \bigoplus_{i \in I}^{B} A_{i} \rightarrow B$ such that $k\left(\mathscr{O}_{b}\right)=$ $\prod_{i \in I} h_{i}\left(b_{i}\right)$ for all $b \in B^{\star}$. If $b \in\left(\prod_{i \in I} F_{i}\right) \cap B$, then c, as defined above, is equal to b, and so $k\left(\mathscr{O}_{b}\right)=b$.

Proposition 1.20. (i) If b_{i} is an atom for all $i \in I$, then \mathscr{O}_{b} is an atom of $\bigoplus_{i \in I}^{\pi} A_{i}$.
(ii) If A_{i} is atomic for all $i \in I$, then $\bigoplus_{i \in I}^{\pi} A_{i}$ is atomic.
2. Duality. Let B be a finitely closed subalgebra of $\prod_{i \in I} A_{i}$. Suppose that $F=\left\langle F_{i}: i \in I\right\rangle$ is a system consisting of an ultrafilter F_{i} on A_{i} for each $i \in I$. Then

$$
\left\{\mathscr{O}_{b}: \forall i \in I\left(b_{i} \in F_{i}\right)\right\} \cup\left\{-\mathscr{O}_{b}: \exists i \in I\left(b_{i} \notin F_{i}\right)\right\}
$$

has fip (and hence filter-generates an ultrafilter). In fact, suppose that

$$
\mathscr{O}_{b^{0}} \cap \ldots \cap \mathscr{O}_{b^{m-1}} \cap-\mathscr{O}_{c^{0}} \cap \ldots \cap-\mathscr{O}_{c^{n-1}}=0,
$$

where $f^{i} \in F_{i}$ and $c^{i} \notin F_{i}$ for all $i \in I$. Then $b^{0} \cdot \ldots \cdot b^{m-1} \in B^{\star}$. For each $j<n$ choose $i_{j} \in I$ such that $c_{i_{j}}^{j} \notin F_{i}$. Now define

$$
x_{i}=b_{i}^{0} \cdot \ldots \cdot b_{i}^{m-1} \cdot \prod_{j<n, i_{j}=i}-c_{i_{j}}^{j}
$$

for each $i \in I$. Since $x_{i} \in F_{i}$ for each $i \in I$, we have $x \in B^{\star}$. And

$$
x \in \mathscr{O}_{b^{0}} \cap \ldots \cap \mathscr{O}_{b^{m-1}} \cap-\mathscr{O}_{c^{0}} \cap \ldots \cap-\mathscr{O}_{c^{n-1}},
$$

contradiction. This shows that the indicated set has the fip, and we let U_{F} be the associated ultrafilter.

Now conversely, let G be an ultrafilter on $\bigoplus_{i \in I}^{B} A_{i}$, and let $i \in I$. Clearly, $\left\{a \in A_{i}^{+}: f(i, a) \in G\right\}$ has fip. We let K_{i}^{G} be an ultrafilter containing this set. Let $K^{G}=\left\langle K_{i}^{G}: i \in I\right\rangle$.

Suppose now that $F=\left\langle F_{i}: i \in I\right\rangle$ is a system consisting of an ultrafilter F_{i} on A_{i} for each $i \in I$. We claim that $K^{U_{F}}=F$. For, let $i \in I$. We show that $K_{i}^{U_{F}} \subseteq F_{i}$ (hence they are equal). Let $a \in K_{i}^{U_{F}}$. Then $f(i, a) \in U_{F}$, and hence $a \in F_{i}$.

From this it follows that U is one-one.
We claim that U is continuous with respect to the box topology when $B=\prod_{i \in I} A_{i}$. For, suppose that $F \in U^{-1}\left[\mathcal{S}\left(\mathscr{O}_{b}\right)\right]$. Thus $U_{F} \in \mathcal{S}\left(\mathscr{O}_{b}\right)$, so $\mathscr{O}_{b} \in U_{F}$. Hence $\forall i \in I\left(b_{i} \in F_{i}\right)$. We claim that $F \in \prod_{i \in I} \mathcal{S}\left(b_{i}\right) \subseteq$ $U^{-1}\left[\mathcal{S}\left(\mathscr{O}_{b}\right)\right]$. For, suppose that $H \in \prod_{i \in I} \mathcal{S}\left(b_{i}\right)$. Then $\forall i \in I\left(b_{i} \in H_{i}\right)$, so $\mathscr{O}_{b} \in U_{H}$ and $H \in U^{-1}\left[\mathcal{S}\left(\mathscr{O}_{b}\right)\right]$, as desired.

It is not true in general that $U_{K^{G}}=G$ for G an ultrafilter on $\bigoplus_{i \in I}^{B} A_{i}$. For example, for each $i \in \omega$ let A_{i} be the free BA on free generators
z_{0}, z_{1}, \ldots, and let $B=\prod_{i \in \omega} A_{i}$. Then z itself is a member of B^{\star}, and by Proposition 1.7,

$$
-\mathscr{O}_{z}=\left\{x \in B^{\star}: \exists i \in \omega\left(x_{i} \leq-z_{i}\right)\right\}
$$

Clearly now $\left\{f\left(i, z_{i}\right): i \in \omega\right\} \cup\left\{-\mathscr{O}_{z}\right\}$ has fip, and so is included in an ultrafilter G on $\bigoplus_{i \in I}^{B} A_{i}$. For any $i \in \omega$ we have $z_{i} \in K_{i}^{G}$, so $\mathscr{O}_{z} \in U_{K^{G}}$. This shows that $G \neq U_{K^{G}}$.

On the other hand, if $B=\prod_{i \in I}^{\mathrm{w}} A_{i}$, then always $U_{K^{G}}=G$, and the Stone topology on $\bigoplus_{i \in I}^{B} A_{i}$ corresponds to the product topology on $\prod_{i \in I} \operatorname{Ult}\left(A_{i}\right)$, as one would expect.

To prove this, suppose that G is an ultrafilter on $\bigoplus_{i \in I}^{B} A_{i}$. If $\mathscr{O}_{b} \in G$, then $\forall i \in I\left[b_{i} \in K_{i}^{G}\right]$, and so $\mathscr{O}_{b} \in U_{K^{G}}$. On the other hand, suppose that $-\mathscr{O}_{b} \in G$. Let $F=\left\{i \in I: b_{i} \neq 1\right\}$. So F is finite. By Proposition 1.3, $\mathscr{O}_{b}=\prod_{i \in F} f_{i}\left(b_{i}\right)$. It follows that there is an $i \in F$ such that $f_{i}\left(b_{i}\right) \notin G$. Hence $b_{i} \notin K_{i}^{G}$. Hence $-\mathscr{O}_{b} \in U_{K^{G}}$. Thus we have shown that $U_{K^{G}}=G$.

To finish proving our italicized statement it suffices to show that K is continuous. To do this it suffices to take any $i \in I$, any $a \in A_{i}$, and any $G \in K^{-1}\left[\left\{x \in \prod_{j \in I} \operatorname{Ult}\left(A_{j}\right): x_{i} \in \mathcal{S}(a)\right\}\right]$ and find an open set U in $\operatorname{Ult}\left(\bigoplus_{j \in I}^{B} A_{j}\right)$ such that

$$
G \in U \subseteq K^{-1}\left[\left\{x \in \prod_{j \in I} \operatorname{Ult}\left(A_{j}\right): x_{i} \in \mathcal{S}(a)\right\}\right]
$$

Let $U=\mathcal{S}(f(i, a))$. Now $K_{i}^{G} \in \mathcal{S}(a)$, so $a \in K_{i}^{G}$ and hence $f(i, a) \in G$ and $G \in U$. Now suppose that $H \in U$. Then $f(i, a) \in H, a \in K_{i}^{H}, K_{i}^{H} \in \mathcal{S}(a)$, and hence

$$
H \in K^{-1}\left[\left\{x \in \prod_{j \in I} \operatorname{Ult}\left(A_{j}\right): x_{i} \in \mathcal{S}(a)\right\}\right]
$$

as desired.
Thus these facts do not actually characterize the Stone spaces. We now give such a characterization. A suitable set is a subset C of B^{\star} with the following property: for every finite subset F of C and every finite subset G of $B^{\star} \backslash C$ there is a $j \in{ }^{G} I$ such that for all $i \in I$,

$$
\prod_{c \in F} c_{i} \cdot \prod_{b \in G, j(b)=i}-b_{i} \neq 0
$$

If U is an ultrafilter on $\bigoplus_{i \in I}^{B} A_{i}$, let $\mathscr{C}^{U}=\left\{b: \mathscr{O}_{b} \in U\right\}$. Then \mathscr{C}^{U} is suitable. In fact, suppose that F is a finite subset of \mathscr{C}^{U} and G is a finite subset of $B^{\star} \backslash \mathscr{C}^{U}$. Hence $\mathscr{O}_{b} \in U$ for all $b \in F$, and $-\mathscr{O}_{b} \in U$ for all $b \in G$.

Therefore,

$$
\bigcap_{b \in F} \mathscr{O}_{b} \cap \bigcap_{b \in G}-\mathscr{O}_{b} \neq 0
$$

Choose x in this intersection. Thus $x \in B^{\star}$. Moreover, $x \in \mathscr{O}_{c}$ for all $c \in F$, so $x \leq c$ for all $c \in F$. For each $b \in G$ choose $j(b) \in I$ such that $x_{j(b)} \leq-b_{j(b)}$, by Proposition 1.7. Thus for all $i \in I$,

$$
x_{i} \leq \prod_{c \in F} c_{i} \cdot \prod_{b \in G, j(b)=i}-b_{i}
$$

as desired. So, we have shown that \mathscr{C}^{U} is suitable.
Conversely, suppose that C is suitable. Then clearly the set $\left\{\mathscr{O}_{b}: b \in C\right\}$ $\cup\left\{-\mathscr{O}_{b}: b \in B^{\star} \backslash C\right\}$ has fip, and hence determines an ultrafilter V^{C}.

If C is suitable, clearly $\mathscr{C}^{V^{C}}=C$. And if U is an ultrafilter on $\bigoplus_{i \in I}^{B} A_{i}$, clearly $V^{\mathscr{C}^{U}}=U$. Thus we have a one-one correspondence between ultrafilters on $\bigoplus_{i \in I}^{B} A_{i}$ and suitable subsets of B^{\star}.

The Stone topology on suitable sets is given by the basis consisting of the following set for each $a \in \bigoplus_{i \in I}^{B} A_{i}$:

$$
\begin{array}{r}
\mathcal{S}^{\prime}(a)=\left\{C: C \text { is suitable and there exist } F \subseteq C \text { and } G \subseteq B^{\star} \backslash C\right. \\
\text { such that } \left.\bigcap_{b \in F} \mathscr{O}_{b} \cap \bigcap_{b \in G}-\mathscr{O}_{b} \subseteq a\right\} .
\end{array}
$$

This is proved as follows: for any suitable set C,

$$
\begin{aligned}
& C \in \mathscr{C}[\mathcal{S}(a)] \text { iff } \\
& \text { iff } \exists U \in \mathcal{S}(a)\left(C=\mathscr{C}^{U}\right) \\
& \text { iff } \quad \exists U\left(U \text { is an ultrafilter, } a \in U, \text { and } C=\mathscr{C}^{U}\right) \\
& \text { iff } a \in V^{C} \\
& \text { iff } C \in \mathcal{S}^{\prime}(a) .
\end{aligned}
$$

3. Cellularity. Recall that $\mathrm{c} A$ is the supremum of cardinalities of disjoint subsets of A, while $c^{\prime} A$ is the least infinite cardinal greater than all such cardinalities. Two related notions are the set $\mathrm{PT}(A)$ of cardinalities of partitions of unity of A, and $\mathfrak{a}(A)$, the least infinite member of $\operatorname{PT}(A)$.

Proposition 3.1. If $\kappa_{i} \in \operatorname{PT}\left(A_{i}\right)$ for each $i \in I$, then $\prod_{i \in I} \kappa_{i} \in$ $\mathrm{PT}\left(\bigoplus_{i \in I}^{\pi} A_{i}\right)$.

Proof. For each $i \in I$ let X_{i} be a partition of unity in A_{i} such that $\left|X_{i}\right|=\kappa_{i}$. It suffices to show that

$$
Y:=\left\{\mathscr{O}_{b}: b \in \prod_{i \in I} X_{i}\right\}
$$

is a partition of unity in $\bigoplus_{i \in I}^{\pi} A_{i}$. Clearly Y is a collection of nonzero pairwise disjoint elements. Suppose that \mathscr{O}_{c} is given. For each $i \in I$ there is a $b_{i} \in X_{i}$ such that $c_{i} \cdot b_{i} \neq 0$. Then $\mathscr{O}_{c} \cdot \mathscr{O}_{b} \neq 0$, as desired.

Proposition 3.2. Assume that A_{i} has at least four elements for all $i \in I, I$ infinite. Then $\omega \in \operatorname{PT}\left(\bigoplus_{i \in I}^{\pi} A_{i}\right)$, and hence $\mathfrak{a}\left(\bigoplus_{i \in I}^{\pi} A_{i}\right)=\omega$.

Proof. Let $B=\prod_{i \in I} A_{i}$. Let f be a one-one function mapping ω into I. For each $i \in I$ let a_{i} be an element of A_{i} such that $0<a_{i}<1$. Now for each $i \in \omega$ we define $b^{i} \in B$ by setting, for each $j \in I$,

$$
b_{j}^{i}= \begin{cases}-a_{j} & \text { if } j \in \operatorname{rng}(f) \text { and } f^{-1}(j)<i \\ a_{i} & \text { if } j \in \operatorname{rng}(f) \text { and } f^{-1}(j)=i \\ 1 & \text { otherwise }\end{cases}
$$

We also define $b^{\infty} \in B$ by setting, for each $j \in I$,

$$
b_{j}^{\omega}= \begin{cases}-a_{j} & \text { if } j \in \operatorname{rng}(f) \\ 1 & \text { otherwise }\end{cases}
$$

Thus $b^{i} \in B^{\star}$ for each $i \in \omega+1$. If $i<j<\omega$, then $b_{f(i)}^{i} \cdot b_{f(i)}^{j}=a_{f(i)} \cdot-a_{f(i)}=0$. Hence $\mathscr{O}_{b^{i}} \cdot \mathscr{O}_{b^{j}}=0$. And if $i<\omega$, then $b_{f(i)}^{i} \cdot b_{f(i)}^{\omega}=a_{f(i)} \cdot-a_{f(i)}=0$, and hence $\mathscr{O}_{b^{i}} \cdot \mathscr{O}_{b^{\omega}}=0$. Now suppose that $c \in B^{\star}$. If $c_{j} \leq-a_{j}$ for all $j \in \operatorname{rng}(f)$, then $c \leq b^{\omega}$, and hence $\mathscr{O}_{c} \subseteq \mathscr{O}_{b^{\omega}}$. Suppose that $c_{j} \cdot a_{j} \neq 0$ for some $j \in \operatorname{rng}(f)$. Choose i minimum such that $c_{f(i)} \cdot a_{f(i)} \neq 0$. Then $\mathscr{O}_{c} \cdot \mathscr{O}_{b^{i}} \neq 0$.

Now we begin the discussion of $\mathrm{c}\left(\bigoplus_{i \in I}^{\pi} A_{i}\right)$ itself. If I is finite, so that we are dealing with the ordinary free product, the situation has been thoroughly treated by Todorčević and Shelah; see, e.g., Monk [96]. For example, there is an atomless BA C such that $\mathrm{c}(C \oplus C)>\mathrm{c}(C)$.

For infinite index sets I the situation is different: rather than $\sup _{i \in I} \mathrm{c}\left(A_{i}\right)$, which is the natural thing to compare $\mathrm{c}\left(\bigoplus_{i \in I} A_{i}\right)$ with, the product $\prod_{i \in I} \mathrm{c}\left(A_{i}\right)$ turns out to be what should be compared with $\mathrm{c}\left(\bigoplus_{i \in I}^{\pi} A_{i}\right)$.

Proposition 3.3. If $\kappa_{i}<\mathrm{c}^{\prime} A_{i}$ for all $i \in I$, then $\prod_{i \in I} \kappa_{i}<\mathrm{c}^{\prime}\left(\bigoplus_{i \in I}^{\pi} A_{i}\right)$.
Proof. For each $i \in I$ let Y_{i} be a disjoint subset of A_{i} of size κ_{i}. Clearly $\left\{\mathscr{O}_{b}: b \in \prod_{i \in I} Y_{i}\right\}$ is a disjoint subset of $\bigoplus_{i \in I}^{\pi} A_{i}$.

Corollary 3.4. If $\mathrm{c} A_{i}$ is attained for each $i \in I$, then $\prod_{i \in I} \mathrm{c} A_{i} \leq$ $\mathrm{c}\left(\bigoplus_{i \in I}^{\pi} A_{i}\right)$.

Corollary 3.5. $\mathrm{c}\left(A_{j}\right) \leq \mathrm{c}\left(\bigoplus_{i \in I}^{\pi} A_{i}\right)$ for each $j \in I$.
Proposition 3.6. Suppose that $\left\langle A_{i}: i \in I\right\rangle$ is a system of $B A s$ each of size at least four, with I infinite, and $\mathrm{c} A_{i}$ is attained and is at most equal to $|I|$, for all $i \in I$. Then $\mathrm{c}\left(\bigoplus_{i \in I}^{\pi} A_{i}\right)=\prod_{i \in I} \mathrm{c}\left(A_{i}\right)$, and it is attained.

Proof. The inequality \geq, and the fact that there is a disjoint set of size $\prod_{i \in I} \mathrm{c}\left(A_{i}\right)$, are true by Proposition 3.3. Now suppose that $X \subseteq \bigoplus_{i \in I}^{\pi} A_{i}$,
X is disjoint, and $|X|>\prod_{i \in I} \mathrm{c}\left(A_{i}\right)$. Without loss of generality $X=\left\{\mathscr{O}_{b}\right.$: $b \in Y\}$, where $Y \subseteq B^{\star}$. Then

$$
[Y]^{2}=\bigcup_{i \in I}\left\{\{x, y\}: x, y \in Y, x \neq y, x_{i} \cdot y_{i}=0\right\}
$$

Note that $2^{|I|} \leq \prod_{i \in I} \mathrm{c} A_{i}$. Hence by the Erdős-Rado theorem, there exist $Z \in[Y]^{|I|^{+}}$and $i \in I$ such that for any two distinct $x, y \in Z$ we have $x_{i} \cdot y_{i}=0$. This gives a disjoint subset of A_{i} of size $|I|^{+}$, contradiction.

For the next proposition, recall that for any BA B, the cardinal number $\pi(B)$ is the smallest cardinality of a dense subset of B.

Proposition 3.7. Let $\left\langle A_{i}: i \in I\right\rangle$ be a system of $B A s$ each with at least four elements, I infinite. Then $\mathrm{c}\left(\bigoplus_{i \in I}^{\pi} A_{i}\right) \leq \prod_{i \in I} \pi A_{i}$.

Proof. Suppose that $X \subseteq \bigoplus_{i \in I}^{\pi} A_{i}$ is pairwise disjoint. We may assume that $X=\left\{\mathscr{O}_{b}: b \in Y\right\}$. For each $i \in I$ let Z_{i} be a subset of $A_{i} \backslash\{0\}$ which is dense in A_{i}, with $\left|Z_{i}\right|=\pi A_{i}$. For each $b \in Y$ and $i \in I$ choose $c_{b}(i) \in Z_{i}$ such that $c_{b}(i) \leq b(i)$. Now if $b, b^{\prime} \in Y$ and $b \neq b^{\prime}$, then $\mathscr{O}_{b} \cap \mathscr{O}_{b^{\prime}}=0$, and hence there is an $i \in I$ such that $b_{i} \cdot b_{i}^{\prime}=0$; so $c_{b}(i) \cdot c_{b^{\prime}}(i)=0$ and hence $c_{b} \neq c_{b^{\prime}}$. Each c_{b} is in $\prod_{i \in I} Z_{i}$, and hence $|X| \leq \prod_{i \in I} \pi A_{i}$.

Corollary 3.8. Let $\left\langle A_{i}: i \in I\right\rangle$ be a system of atomic BAs each with at least four elements, I infinite. Then $\mathrm{c}\left(\bigoplus_{i \in I}^{\pi} A_{i}\right)=\prod_{i \in I} \mathrm{c} A_{i}$, with cellularity attained.

Example 3.9. There is a system $\left\langle A_{i}: i \in I\right\rangle$ such that $\prod_{i \in I} \mathrm{c} A_{i}<$ $\mathrm{c}\left(\bigoplus_{i \in I}^{\pi} A_{i}\right)$.

This example is just a slight adaptation of an example of Shelah concerning cellularity in ultraproducts. (The example is based on a method of Todorčević.) It depends on the following theorem of Shelah (Theorem 3.22 in Monk [96]):

Let $\lambda=\theta^{+}$with θ an infinite cardinal. Then there is a $d:[\lambda]^{2} \rightarrow \omega$ such that for all $m, n \in \omega$, if $\left\langle\zeta_{i}: i<\lambda\right\rangle$ is a system of n-tuples of members of λ such that $\zeta_{i}^{1}<\ldots<\zeta_{i}^{n}$ for all $i<\lambda$ and $\zeta_{i}^{n}<\zeta_{j}^{1}$ for $i<j<\lambda$, then there exist $i, j \in \lambda$ with $i<j$ such that $d\left\{\zeta_{i}^{k}, \zeta_{j}^{i}\right\} \geq m$ for all $k, l=1, \ldots, n$.

We now describe the construction of some BAs and their properties found in the proof of Theorem 3.23 of Monk [96], also due to Shelah. Take λ, θ, and d as indicated. Also, take any $n \in \omega$. Let C_{n} be freely generated by $\left\langle x_{\alpha}^{n}: \alpha<\lambda\right\rangle$. Let I_{n} be the ideal in C_{n} generated by the set $\left\{x_{\alpha}^{n} \cdot x_{\beta}^{n}: \alpha<\right.$ $\beta<\lambda$ and $d\{\alpha, \beta\} \leq n\}$. Let $B_{n}=C_{n} / I_{n}$, and let $y_{\alpha}^{n}=x_{\alpha}^{n} / I_{n}$ for each $\alpha<\lambda$. It is shown in the indicated proof that each B_{n} satisfies the λ-cc, and that each y_{α}^{n} is nonzero.

We claim that $\bigoplus_{n \in \omega}^{\pi} B_{n}$ has a disjoint subset of size λ. Namely, let $b_{\alpha}=\left\langle y_{\alpha}^{n}: n \in \omega\right\rangle$ for each $\alpha<\lambda$. Then $\left\langle\mathscr{O}_{b_{\alpha}}: \alpha<\lambda\right\rangle$ is the desired family. For, suppose that $\alpha<\beta<\lambda$. With $n=d\{\alpha, \beta\}$, we have $y_{\alpha}^{n} \cdot y_{\beta}^{n}=0$, and hence $\mathscr{O}_{b_{\alpha}} \cap \mathscr{O}_{b_{\beta}}=0$, as desired.

Now, taking any infinite cardinal κ and letting $\theta=2^{\kappa}$ and $\lambda=\theta^{+}$in this construction we get the desired example: each B_{n} has cellularity at most 2^{κ}, hence $\prod_{n \in \omega} \mathrm{c} B_{n} \leq 2^{\kappa}$, while $\mathrm{c}\left(\bigoplus_{n \in \omega}^{\pi} B_{n}\right) \geq\left(2^{\kappa}\right)^{+}$.

The following question appears to be open:
Problem 1. Is there a system $\left\langle A_{i}: i \in I\right\rangle$ of BAs such that $\left.\prod_{i \in I} \mathrm{c} A_{i}\right\rangle$ $\mathrm{c}\left(\bigoplus_{i \in I}^{\pi} A_{i}\right)$?

With regard to this problem, the above results imply that an example of such a system would necessarily have infinitely many A_{i} 's with $\mathrm{c}\left(A_{i}\right)$ not attained (therefore inaccessible by the Erdős-Tarski theorem). In fact, if the set $J:=\left\{i \in I: \mathrm{c}\left(A_{i}\right)\right.$ is not attained $\}$ is finite, then by Proposition 3.3, $\prod_{i \in I \backslash J} \mathrm{c}\left(A_{i}\right) \leq \mathrm{c}\left(\bigoplus_{i \in I}^{\pi} A_{i}\right)$, and by Corollary $3.5, \prod_{i \in J} \mathrm{c}\left(A_{j}\right) \leq$ $\mathrm{c}\left(\bigoplus_{i \in I}^{\pi} A_{i}\right)$, so that $\prod_{i \in I} \mathrm{c} A_{i} \leq \mathrm{c}\left(\bigoplus_{i \in I}^{\pi} A_{i}\right)$.
4. Complete generalized free products. We call the algebras $\mathrm{RO}\left(B^{\star}\right)$ complete generalized free products.

Theorem 4.1. If A_{i} is complete, then the embedding f_{i} defined before Proposition 1.2 is a complete embedding.

Proof. Let $X \subseteq A_{i}$. Obviously $\sum_{x \in X} f_{i}(x) \leq f_{i}\left(\sum X\right)$. Suppose that $f_{i}\left(\sum X\right) \cdot-\sum_{x \in X} f_{i}(x) \neq 0$. Choose $b \in B^{\star}$ such that $\mathscr{O}_{b} \leq f_{i}\left(\sum X\right)$. $-\sum_{x \in X} f_{i}(x) \neq 0$. Then $\mathscr{O}_{b} \subseteq \mathscr{O}_{g\left(i, \sum X\right)}$, so $b \leq g\left(i, \sum X\right)$, and hence $b_{i} \leq \sum X$. On the other hand, $\mathscr{O}_{b} \cap \mathscr{O}_{g(i, x)}=0$ for each $x \in X$, so $b_{i} \cdot x=0$ for all $x \in X$, contradiction.

Corollary 4.2. Suppose that B and C are finitely closed subalgebras of $\prod_{i \in I} A_{i}$, and $B \leq C$. Then $\mathrm{RO}\left(B^{\star}\right)$ is isomorphicallly embedded into $\mathrm{RO}\left(C^{\star}\right)$ by a mapping extending the one sending each set \mathscr{O}_{b}^{B} to \mathscr{O}_{b}^{C}. In case B is a dense subalgebra of C, the embedding is complete.

Proof. It is immediate from Proposition 1.14 and Sikorski's extension theorem that the indicated mapping f exists and is an isomorphism into.

Now assume that B is a dense subalgebra of C. Then define f as follows: for any $x \in \mathrm{RO}\left(B^{\star}\right)$,

$$
\begin{equation*}
f(x)=\sum\left\{\mathscr{O}_{b}^{C}: b \in B^{\star} \text { and } \mathscr{O}_{b}^{B} \subseteq x\right\} \tag{*}
\end{equation*}
$$

In fact, for f defined this way, it is clear that $f\left(\mathscr{O}_{b}^{B}\right)=\mathscr{O}_{b}^{C}$ for all $b \in B^{\star}$. To show that f preserves \cdot, suppose that $x, y \in \operatorname{RO}\left(B^{*}\right)$. Thus

$$
f(x \cdot y)=f(x \cap y)=\sum\left\{\mathscr{O}_{b}^{C}: b \in B^{\star} \text { and } \mathscr{O}_{b}^{B} \subseteq x \cap y\right\}
$$

and

$$
\begin{aligned}
f(x) & \cdot f(y) \\
& =\left(\sum\left\{\mathscr{O}_{b}^{C}: b \in B^{\star} \text { and } \mathscr{O}_{b}^{B} \subseteq x\right\}\right) \cdot\left(\sum\left\{\mathscr{O}_{b}^{C}: b \in B^{\star} \text { and } \mathscr{O}_{b}^{B} \subseteq y\right\}\right) \\
\quad= & \sum\left\{\mathscr{O}_{b}^{C} \cap \mathscr{O}_{d}^{C}: b, d \in B^{\star} \text { and } \mathscr{O}_{b} \subseteq x \text { and } \mathscr{O}_{d} \subseteq y\right\}
\end{aligned}
$$

Clearly then $f(x \cdot y) \subseteq f(x) \cdot f(y)$. For the converse, it suffices to take any $b, d \in B^{\star}$ such that $\mathscr{O}_{b}^{C} \cap \mathscr{O}_{d}^{C} \neq 0, \mathscr{O}_{b}^{B} \subseteq x$, and $\mathscr{O}_{d}^{B} \subseteq y$ and show that $\mathscr{O}_{b}^{C} \cap \mathscr{O}_{d}^{C} \subseteq f(x \cdot y)$. Thus $b \cdot d \in B^{\star}$ and $\mathscr{O}_{b \cdot d}^{B} \subseteq x \cap y$, and hence

$$
\mathscr{O}_{b}^{C} \cap \mathscr{O}_{d}^{C}=\mathscr{O}_{b \cdot d}^{C} \subseteq f(x \cdot y)
$$

So, f preserves \cdot.
To show that f preserves - , let $x \in \operatorname{RO}\left(B^{\star}\right)$. Suppose that $\mathscr{O}_{b}^{B} \subseteq x$, $\mathscr{O}_{d}^{B} \subseteq-x$, and $\mathscr{O}_{b}^{C} \cap \mathscr{O}_{d}^{C} \neq 0$. Then $b \cdot d \in B^{\star}$ and $\mathscr{O}_{b \cdot d}^{B} \subseteq x \cdot-x$, contradiction. Hence $f(x) \cdot f(-x)=0$. To show that $f(x)+f(-x)=B^{\star}$, it suffices to show that $f(x) \cup f(-x)$ is dense in B^{\star}. To this end, take any \mathscr{O}_{c}^{C}.

CASE 1: $\mathscr{O}_{c}^{C} \cap x \neq 0$. Choose $d \in C^{\star}$ such that $\mathscr{O}_{d}^{C} \subseteq \mathscr{O}_{c}^{C} \cap x$. By the denseness, choose $b \in B^{\star}$ such that $b \leq d$. Then $\mathscr{O}_{b}^{C} \subseteq f(x)$, and hence $\mathscr{O}_{c}^{C} \cap f(x) \neq 0$.

CASE 2: $\mathscr{O}_{c}^{C} \subseteq C^{\star} \backslash x$. Again choose $b \in B^{\star}$ such that $b \leq c$. Then $\mathscr{O}_{b}^{B} \subseteq-x$, and hence $\mathscr{O}_{c}^{C} \cap f(-x) \neq 0$. Thus we have proved $(*)$.

To show that f is a complete embedding, suppose that $X \subseteq \operatorname{RO}(B)$. Clearly $\sum_{x \in X} f(x) \leq f\left(\sum X\right)$. Suppose that $f\left(\sum X\right) \cdot-\sum_{x \in X} f(x) \neq 0$, and choose $c \in C^{\star}$ such that $\mathscr{O}_{c} \subseteq f\left(\sum X\right) \cdot-\sum_{x \in X} f(x)$. Then there is a $b \in B^{\star}$ such that $b \leq c$. Since

$$
f\left(\sum X\right)=\sum\left\{\mathscr{O}_{b}^{C}: b \in B^{\star} \wedge \mathscr{O}_{b}^{B} \subseteq \sum X\right\}
$$

there is a $b^{\prime} \in B^{\star}$ such that $\mathscr{O}_{b}^{C} \cap \mathscr{O}_{b^{\prime}}^{C} \neq 0$ and $\mathscr{O}_{b^{\prime}}^{B} \subseteq \sum X$. It follows that $b^{\prime \prime}$, the pointwise infimum of b and b^{\prime}, is in B^{\star}. Thus $\mathscr{O}_{b^{\prime \prime}}^{B} \subseteq \mathscr{O}_{b^{\prime}}^{B} \subseteq \sum X$. So there is an $x \in X$ such that $\mathscr{O}_{b^{\prime \prime}}^{B} \cap x \neq 0$. Then there is a $b^{\prime \prime \prime} \in B^{\star}$ such that $\mathscr{O}_{b^{\prime \prime}}^{B} \cap \mathscr{O}_{b^{\prime \prime \prime}}^{B} \neq 0$ and $\mathscr{O}_{b^{\prime \prime \prime}}^{B} \subseteq x$. Let $b^{\text {iv }}$ be the pointwise infimum of $b^{\prime \prime}$ and $b^{\prime \prime \prime}$. Then $\mathscr{O}_{b^{\text {iv }}}^{C} \subseteq f(x)$. But $\mathscr{O}_{c}^{C} \cap f(x)=0$, and $\mathscr{O}_{b^{\text {iv }}}^{C} \subseteq \mathscr{O}_{c}^{C}$, contradiction.

Corollary 4.3. Let $\left\langle A_{i}: i \in I\right\rangle$ be a system of $B A s$, and let B be a finitely closed subalgebra of $\prod_{i \in I} A_{i}$. Then for any complete $B A C$, the following conditions are equivalent:
(i) $C \cong \mathrm{RO}\left(B^{\star}\right)$.
(ii) There exist embeddings f_{i} of A_{i} into C with the following properties:
(a) For all $b \in B^{\star}, \prod_{i \in I}^{C} f_{i}\left(b_{i}\right) \neq 0$;
(b) $\left\{\prod_{i \in I}^{C} f_{i}\left(b_{i}\right): b \in B^{\star}\right\}$ is dense in C.

Proof. By Theorem 1.15.

Corollary 4.4. Suppose B is a finitely closed subalgebra of $\prod_{i \in I} A_{i}$, and $J \subseteq I$. Let $B_{J}=\{f \upharpoonright J: f \in B\}$ and $B_{I \backslash J}=\{f \upharpoonright(I \backslash J): f \in B\}$. Assume also

$$
\begin{equation*}
B=\left\{u \frown v: u \in B_{J} \text { and } v \in B_{I \backslash J}\right\} . \tag{*}
\end{equation*}
$$

Then $\mathrm{RO}\left(B^{\star}\right) \cong \overline{\mathrm{RO}\left(B_{J}^{\star}\right) \oplus \operatorname{RO}\left(B_{I \backslash J}^{\star}\right)}$.

Proof. By 1.16 and 4.3.

Proposition 4.5. Suppose that $\left\langle A_{i}: i \in I\right\rangle$ is a system of BAs each with at least four elements, and B is a finitely closed subalgebra of $\prod_{i \in I} A_{i}$. Then $\overline{\bigoplus_{i \in I} A_{i}}$ is a retract of $\mathrm{RO}\left(B^{\star}\right)$.

Proof. We use the notation of the proof of Proposition 1.18. By Sikorski's extension theorem, let g^{+}and k^{+}be extensions of g, k to homomorphisms from $\overline{\bigoplus_{i \in I} A_{i}}$ to $\mathrm{RO}\left(B^{\star}\right)$ and from $\mathrm{RO}\left(B^{\star}\right)$ to $\overline{\bigoplus_{i \in I} A_{i}}$ respectively. Then

$$
\begin{equation*}
a \leq k^{+}\left(g^{+}(a)\right) \quad \text { for any } a \in \overline{\bigoplus_{i \in I} A_{i}} \tag{*}
\end{equation*}
$$

In fact, if $\mathscr{O}_{b} \subseteq a$ with $b \in C^{\star}$, then $\mathscr{O}_{b}=k\left(g\left(\mathscr{O}_{b}\right)\right)=k^{+}\left(g^{+}\left(\mathscr{O}_{b}\right) \leq\right.$ $k^{+}\left(g^{+}(a)\right)$. Since $a=\sum\left\{\mathscr{O}_{b}: b \in C^{\star}, \mathscr{O}_{b} \subseteq a\right\}$, the condition $(*)$ follows.

From $(*)$ we also get $-a \leq k^{+}\left(g^{+}(-a)\right)=-k^{+}\left(g^{+}(a)\right)$, so $a=k^{+}\left(g^{+}(a)\right)$ for all $a \in \overline{\bigoplus_{i \in I} A_{i}}$.
5. On Easton's theorem. As an illustration of using the methods of this paper, we indicate the connection between forcing and complete BAs connected to Easton's theorem (for sets, not proper classes). We follow the notation of Kunen [80].

The basic forcing topology for posets, used in our main definitions, runs as follows. If P is a poset, the sets $\{q: q \leq p\}$, for p a member of P, form a base for the topology.

Here we apply this to the sets $\operatorname{Fn}(\kappa, \lambda, \mu)$ defined in Kunen [80], where the order is reverse inclusion.

Suppose that E is an Easton function, as on page 263 of Kunen's book. Let $I=\operatorname{dmn}(E)$. For each $\kappa \in I$ let $A_{E \kappa}=\operatorname{RO}(\operatorname{Fn}(E(\kappa), 2, \kappa))$. Define

$$
\begin{aligned}
& B_{E}=\left\{f \in \prod_{\kappa \in I} A_{E \kappa}:\right. \\
& \qquad \begin{array}{ll}
& \text { for every infinite regular } \lambda \\
& \text { or }|\{\kappa \in \lambda \cap I: f(\kappa) \neq 1\}|<\lambda \\
& \mid \kappa \lambda \cap I: f(\kappa) \neq 0\} \mid<\lambda\}
\end{array}
\end{aligned}
$$

Clearly, B_{E} is a finitely closed subalgebra of $\prod_{\kappa \in I} A_{E \kappa}$. Let $C_{E}=\operatorname{RO}\left(B_{E}^{\star}\right)$.

For any cardinal λ, let

$$
\begin{aligned}
J_{\lambda}^{-} & =\{\kappa \in I: \kappa \leq \lambda\}, & B_{E \lambda}^{-}=\left\{f \upharpoonright J_{\lambda}^{-}: f \in B_{E}\right\}, \\
J_{\lambda}^{+} & =\{\kappa \in I: \lambda<\kappa\}, & B_{E \lambda}^{+}=\left\{f \upharpoonright J_{\lambda}^{+}: f \in B_{E}\right\} .
\end{aligned}
$$

Then $B_{E} \cong B_{E \lambda}^{-} \times B_{E \lambda}^{+}$via $f \mapsto\left(f \upharpoonright J_{\lambda}^{-}, f \upharpoonright J_{\lambda}^{+}\right)$. So by Corollary 4.4 we have

$$
\mathrm{RO}\left(B_{E}^{\star}\right) \cong \overline{\left.\mathrm{RO}\left(\left(B_{E \lambda}^{-}\right)^{\star}\right) \oplus \mathrm{RO}\left(\left(B_{E \lambda}^{+}\right)^{\star}\right)\right)}
$$

Next, there is an isomorphism of $\mathbb{P}(E)$ (defined in Kunen [80]) onto a dense subset of $\operatorname{RO}\left(B_{E}^{\star}\right)$. In fact, for each $p \in \mathbb{P}(E)$ define $f(p) \in \prod_{\kappa \in I} A_{E \kappa}$ by setting $f(p)_{\kappa}=\mathscr{O}_{p(\kappa)}$. Clearly, $f(p)_{\kappa} \in A_{E \kappa}$. Note that $1_{A_{E \kappa}}=\mathscr{O}_{0}$. Now for any $\kappa \in \lambda \cap I$ we have $f(p)_{\kappa} \neq 1$ iff $p(k) \neq 0$. It follows that $f(p) \in B_{E}^{\star}$. Now

$$
\begin{array}{lll}
p \leq q & \text { iff } & \forall \kappa \in I(p(\kappa) \leq q(\kappa)) \\
& \text { iff } \quad \forall \kappa \in I\left(\mathscr{O}_{p(\kappa)} \subseteq \mathscr{O}_{q(\kappa)}\right) \\
& \text { iff } & f(p) \leq f(q)
\end{array}
$$

Finally, $\operatorname{rng}(f)$ is dense, since if $b \in B_{E}^{\star}$, then we can choose $p(\kappa) \in$ $\operatorname{Fn}(E(\kappa), 2, \kappa)$ such that $\mathscr{O}_{p(\kappa)} \subseteq b_{k}$ for every $\kappa \in I$. Clearly, $p \in \mathbb{P}(E)$, and $f(p) \subseteq \mathscr{O}_{b}$.

REFERENCES

K. Kunen [80], Set Theory, North-Holland.
J. D. Monk [96], Cardinal Invariants on Boolean Algebras, Birkhäuser.
O. Spinas [96], Partitioning products of $\mathscr{P}(\omega) /$ fin, Pacific J. Math. 176, 249-262.

Mathematics Department
University of Colorado
395 UCB
Boulder, CO 80309, U.S.A.
E-mail: monkd@euclid.colorado.edu

