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THE NONLINEAR NEUMANN PROBLEM
AND SHARP WEIGHTED SOBOLEV INEQUALITIES

BY

J. CHABROWSKI (St. Lucia, Qld) and P. M. GIRAO (Lisboa)

Abstract. We prove sharp inequalities in weighted Sobolev spaces. Our approach is
based on the blow-up technique applied to some nonlinear Neumann problems.

1. Introduction. The main purpose of this work is to prove some new
weighted Sobolev inequalities. These inequalities are obtained by analyz-
ing the asymptotic behaviour of solutions of nonlinear Neumann problems
involving the critical Sobolev exponent.

Let S denote the best Sobolev constant for the embedding of D1:2(RY)
into L2 (RY), where 2* = 2N /(N —2), N > 3, that is,

2
0 S = inf { ; ijTJ,Z“C‘lmfj/Q cwe D'2(RM)\ {o}}.
It is known that the constant S is attained by
[ N(N —2) :|(N—2)/2
N(N =2) + |z|?
The function U, called an instanton, satisfies the equation
—AU=U¥"1 RV
We also have {,y |[VU|?>dz = {5 U?" dz = SN/2.
Let € > 0 and y € RY. We define
Uey(z) = N220((z - y) fe).

Then any minimizer for S is of the form U, ,.

Let 2 C RN be a bounded domain with a smooth boundary 0f2. Let
(@ denote a Holder continuous and positive function defined on £2. Also, let
Qv = max, .5 Q(x) and Qn = max,coo Q(z). In what follows we write
p+ 1 =2*. In this paper the following inequalities are proved:

U(x) =
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(I) Let N > 5. Suppose that Qy < 22 (V=2)Q,,. Then there exists a
constant A;(§2) > 0 such that
2/(p+1)  92/N EHN*Q)/N
(g Q(x)|u]p+1d:c> < Qf [ IVulde+ 4,(2) | w?da
Q 2 o9
for every u € H'(£2).
(IT) Let N > 4 and 7 = 2N /(N — 1). Suppose that Qy < 22/N=2Q,,,.
Then there exists a constant A3(f2) > 0 such that

( S ()P da})Q/(p+1)
0

92/N gan2)/N 2/7
< QT [ IVul?dz + Ag(Q)( { ul” d:v)
%) %)
for every u € H(£2).
(ITT) Suppose Qyp > 22/N=2)Q,,. Let N > 5and 2 < 7 < 2N /(N — 1),
or N=4and2 <7 <2N/(N —1). Then there exists a constant A3({2) > 0

such that
(N=2)/N
(S Q(:U)]u]erl dx>2/(l)+1) < QMT S ]Vu]z d.’IJ—i—Ag(Q)(S Ju|” d:U)
2 2 2

2/T

for every u € H'($2).

These inequalities should be compared with the following ones, estab-
lished in the papers [6], [26]:

(A) There exists a constant A(£2) > ((N — 2)/2)H ({2) such that

2/(p+1)  92/N
( S |u|P T da:) < —< S \Vul|? dz + \(£2) S u? dx
2 Q o0
for every u € H(£2), where H({2) = max,cpo H(z) and H(x) denotes the
mean curvature at x € 92. N
(B) Let 7 = 2N /(N — 1). Then there exists a constant A({2) > 0 such
that

2/(p+1)  22/N ~ 2/7
|lu|PTt da < \Vu|? do + XN(2)( \ |u|” dz
(Shrna < 22y (g0

for every u € H'($2).

It is evident that none of (I)—(III) is a direct consequence of (A) and
(B). We also point out that an inequality of type (III) in the case Qv <
22/(N=2)Q) ., with 2 < 7 < 2N/(N — 1) is not possible. This will be clear
from our analysis (see Proposition 2.7). The inequalities (I)—(III) will be
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established by applying a blow-up technique to solutions of the following
Neumann problems:

(1)) —Au = Q(z)uP in 2,
A Ou/Ov+ Au =0 on 02,

and

(1n.r) { —Au+ ([, [u]" de)? 7T = Q(a)uP in 2,

ou/ov =0 on 012,

where v is the outward normal to 962, 2 <7 <2N/(N —1).

The proofs of the three inequalities are similar and proceed by contradic-
tion. One assumes that least energy solutions of problems (1) and (1, ;)
exist for all positive A and shows that they are close to some instantons.
This enables one to give a lower bound for the energy of the solutions and
to arrive at a contradiction.

In the case corresponding to inequality (I) the instantons concentrate
at the boundary of {2 and therefore we can apply the arguments used in
the proof of inequality (A). In the case corresponding to inequality (III) the
instantons concentrate in the interior of {2 and the estimates are slightly dif-
ferent from the ones in the proof of inequality (B). In the case corresponding
to inequality (II) the instantons either concentrate in the interior of (2, or
concentrate on the boundary of {2, in which case the estimates are similar
to those of (B).

This paper is organized as follows. Section 2 is concerned with the exis-
tence of least energy solutions of problems (1)) and (1, ;). In Section 3 we
prove inequality (I) and in Section 4 we prove inequalities (II) and (III).

It is natural to ask if there exists a constant A4(f2) > 0 such that

(N-2)/N
<M {|Vul’dz + 44(2) | v*da,

)2/(p+1>
a S 2 o1

(§Q@)u* ds
(9}

for all u € H'(£2), if Qum > 2%/(N=2Q,,. We have not been able to answer
this question.

2. Solvability of problems (1)) and (1, .). Solutions of problems
(1)) and (1) will be obtained as minimizers on H'(£2) \ {0} of the func-
tionals
_ SolVulPde + A\{,,u do

Ja(u) = (Vo Q@) ulp T dz)2/ D)

and
Jo |Vul® do + A(§q Jul” da)?/™

(§, Q) |ulptt da)2/ (v +1)

J/\,T(u) —
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We set
Sy = inf{Jx(u) : u € H'(£2)\ {0}}
:inf{ S |Vul? dz + X S uw?dr :u € VQ}
Q o0
and

Sy, = inf{Jy,(u) :u € H'(N2)\ {0}}

2/T
:inf{S]VuPd:E—i—A(S\qum) :uEVQ},
2 Q

where Vo = {u € H'(R2) : |, Q(x)|ul[PT! dz = 1}.

To show that Sy and Sy ; are achieved we need the following version of
P. L. Lions’ [14] concentration-compactness principle. Let {u,} C H' ()
be a weakly convergent sequence to u in H*({2) and such that |u,|[PT1 — 1
and |Vu|? — i weakly in the sense of measures. Then there exist numbers
p; >0, gy > 0 and points z; € 2, j € J, where J is at most a countable
set, such that

po=ulPt > e, =Vl >0k,
jeJg jed
Moreover, if z; € {2, then
(2) S(uy) NN < iy,
and if z; € 042, then
S _ ~
YN=2/N <

(3) W(Nﬁ

The following lemmas give criteria for the existence of minima for J)
and J. AT

LeMmMmA 2.1, If
S
(4) < 2N QU DN
and
(5) QM < 22/(N_2)va

then Sy is achieved.

Proof. Let {u,} C H'(£2) be such that {,Qlu,|[PT! = 1 for each n,
and {, [Vup|?dz + Ay, ulde — Sy as n — oco. We may assume that
up — win HY(2), u, — uw in L?(2) and u,, — u a.e. on 2. Applying the
concentration-compactness principle we can write

J QL+ Q) =1

9} jeJ
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and

Sy = lim (S |V, |? doe + A S uidm) > S |Vul? dz + A S u da:—}—z,u]
TN 00 Q jeJ

Using (2), (3) and (5) we derive the following estimate from below for S:

> S|Vu|2das+)\ S u? dx + Z i+ Z i

2 082 z;EN IJE(?Q
2/(p+1 )
2 sa(J Qi) 4 S G Q)
2 T €N
S
+ (i Q(a;) N =2/N
ﬁ;ﬂ 92/N Q(z,)(N-D/N i
2/(p+1) g )
= SA“Q'“'M“) + Y ey (@) I
2 T;E QM
S J—
+ Y i (QUa) ) NI

x;€00 22/NQ£nN_2)/N

2/(p+1) S -
> SA(SQMPH dx) +ZW(Q<%)M)W 2)/N
2

Since S satisfies (4) we must have pu; = 0 for all j € J and the result
follows. m

LEMMmA 2.2, If
S
(6) Sy < N3N
M
and
(7) QM 2 22/(N72)Qm7

then Sy is achieved.

The same method can be used to obtain conditions guaranteeing the
solvability of problem (1 ;).

LEMMA 2.3. If 2<7 <2N/(N —1),

S
(8) Sxr < 2N QN

and (5) holds, then Sy ; is achieved.

LEMMA 2.4, If 2<7 <2N/(N —1),

S
(9) Sxr < QU

and (7) holds, then Sy ; is achieved.
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If @ = 1, the functionals Jy and J , will be denoted by Iy and I} -,
respectively.
Adimurthi and Mancini [1] proved that if z, € 012, then
S N -2 5
(10) 1(Uan) = gy — Av (S Hl2) = A)e 4062, N 25,

where Ay > 0 is a constant depending on N. Using this asymptotic formula
we can give a condition on ) guaranteeing the validity of the inequality (4)
in Lemma 2.1.

For this we need the following assumption on Q:

(Q) There exists a point z, € 9f2 such that
Qre) = Qu and  [Q(x) — Q(wo)] = offz — o)
for x near z,.
If (Q) holds, we have
IaUe,) = Qo) NV VNI(Ue o) + 0(e)
and it follows from (10) that
22/NQZN—2)/N - Qg\f—]\;)/w <N2 ZH(%) - )\>5 + o(e).

We now observe that if H(z,) > 0 and A < ((N —2)/2)H(x,), then for
sufficiently small € > 0 we have

(1) Ia(Uew,) =

S
22/NQEHN—2)/N’
which shows that (4) is satisfied for A < (N —2)/2)H (z.).

PROPOSITION 2.5. Let N > 5. Suppose that Qu < 22WN-2Q.. and
(Q) holds with H(xo,) > 0. Then problem (1)) has a solution for A\ <
((N —2)/2)H(x,). Moreover,

J)\(Ua,a:o) <

: S
i Sx = 92/N QN -2/N"

Proposition 2.5 also holds for NV = 3,4 if one uses a suitable modification
of (10) ([1], [5]). Note that from the above discussion it is obvious that under
the assumption of Proposition 2.5, S, < S/(22/NQ£HN_2)/N) for all A > 0
and Sy < S/(QZ/NQI(DNQ)/N) for A < ((V —2)/2)H(S2). The proof of the
result on the asymptotic behaviour of S is standard.

In the case Qy > 22/(N=2)Q,,, condition (6) from Lemma 2.2 is difficult
to check. Obviously, it is satisfied for small A > 0. By testing Jy with U, ,,

where Q(y) = Qu, we easily show that Sy < S/QI(VJIV*Q)/N for all A > 0.
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LEMMA 2.6. If Qu > 22/(V=2Q,, then the condition Sy < S/Q\Y /N
1s satisfied for small A > 0 and

. S
AN =

We now turn our attention to the functional J ; and problem (1, ,).

By testing I » with U, ,_, for N > 5 we get
Inr(Uew,) = 8/22N — ANH (o) + ABe2N/7-(N=2)
+ o(AeHV/T=(N=2)) 4 o(e?),
where B > 0 is a constant depending on N and 7. If (Q) holds and
H(z,) > 0, then
J)‘vT(UEJ:o) = QI;I(N72)/NI>\77—(U57"EO) + 0(5)

Hence the condition (8) of Lemma 2.3 is satisfied for every A > 0 provided
2<7<2N/(N —-1).

PROPOSITION 2.7. Let N > 5 and Qum < 22WN=2)Q... Suppose that
(Q) holds, H(xzo) >0 and 2 <1 < 2N /(N —1). Then problem (1, ;) has a
solution for each A > 0. Moreover,

S

W f07'2§7'§

lim Sy, =
A—00 ’

N-1

As in the case of Proposition 2.5, this continues to hold for N = 3, 4.
Finally,

LEMMA 2.8. If Qu >22/(N=2Q,,, then the condition Sy , < S/Q\Y /N
1s satisfied for small A > 0 and

S

W fOTQSTS
Qm

lim Sy, =

A—00

N-1

To end this section we observe that from Propositions 2.5 and 2.7 and
Lemma 2.8 we can deduce a weak form of inequalities (I)—(III). Namely,
given a 0 > 0, there exist \y = A\ ({2), A2 = A2(£2) and A3 = A3(2) such
that, for every u € H'(2),

12) ( S Q)P+ d:z:>2/(p+1)
Q
(QQ/NQEnNz)/N
S - v

5 —}—5) !SQIVU|2d:c+)\1 S u? dz,

o1

and
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13 (§Q@luptar)”"
2
(N—2)/N ,
< (WQ+ +5> | IVul* dz + AQ(S \umx)z/
2 2

if QM < 22/(N_2)Qm7 and

a1 (JQuuptar)”

2

(N-2)/N 2/
< (MT + 5) §Z|Vu|2d:£ + A3<§Z|u|7dx>

if QM Z 22/(N_2)Qm-

3. Proof of inequality (I). The proof of inequality (I) is by contra-
diction. Throughout this section we suppose that inequality (5) is satisfied.

Assume that, for each A > 0, S\ < S/(QQ/NQI(«HN_2)/N). Let A\, — oo. For
each k there is a minimizer ug = uy, of Jy, with {, Qui+1 dr = 1. It satisfies

{ —Auk = S)%ng in .Q,
Ouy/Ov + A\gur, =0 on 0.

Our aim is to show that wy, is close to some instanton U, p, with P, — P,
Qm = Q(F,). This in turn will contradict the inequality Sy, <

S/(22/NQ£HN_2)/N).
We start by setting

(Tuy)

My, := max uy, = ug(Py)
2

for some Pj, € (2.
LEMMA 3.1. My — oo and up — 0 in H'(02).

Proof. Since {uy} is bounded in H!'({2) we may assume that u, — u
in H'(£2) and from (4) we deduce that ux, — 0 in L?(92). Hence u €

Assume that M is bounded. Then {, QuP*! dz = 1 and by the lower
semicontinuity of the norm with respect to weak convergence, we have

S

2
S Vul”de < 22/NQI(HN—2)/N‘

(9}

Since u € H1(£2) we also have
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§o | Vul?da - S S
WL )2 D) = AN-2)/N ~ oo N (N—2)/N
(§,@ ) Q) 22/N Qpy

which is impossible. This shows that the sequence { M} is unbounded.

Also, up — 0 in H'(£2), otherwise its weak limit u satisfies 0 <
§oQuPttdx < 1. The case |, QuPT' dz = 1 is excluded by the above ar-
gument. If 0 < §, QuPttdr < 1, we get a contradiction by applying the
concentration-compactness principle. m

Let

£k = M,;Q/(NJ).
LEMMA 3.2. A {5, u? — 0 and \ger — 0.
Proof. Applying inequality (12) to ug, we get

22/NQ(N*2)/N
1< <+ —|—(5> S |Vu;g|2 dr + M\ S uid:{;.
17) a0

Since 889 u? dz — 0 we obtain

2/N (N=2)/N
1< (L

; 2
5 + 5) leIEO§Z|Vuk| dz

22/NQ§HN*2)/N
< (f + 5) lerI;o Ix, (ug)
_ 22/NQ§HN—2)/N 5 S
B S 22/NQ1(nN*2)/N'

Since § > 0 is arbitrary we see that

S

. 2 _
lim S |Vug|® de = —22/NQI(DN72)/N

k—oco
and limy 0 Ak {50 ui dx = 0.
To prove the second assertion of the lemma, note that

A S ui dr = \per S M,f/(Nfz)u% dx
N o0
ul
= )\kek S Mlgﬁkg dx Z )\kek S ’LLZ d:C,
o0 k o0
where ¢ = 2(N — 1) /(N — 2). Therefore to complete the proof of the second
assertion it is sufficient to show that
lim inf S uf dx > 0.

k—o0

s
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We follow the argument used in [13] (see the proof of inequality (2.6) there).
In the contrary case, assume that limg_, o San ul dx = 0. Then we may
assume that ux — u in H!(£2), up to a subsequence. Using the Brézis-Lieb
lemma [8] we have

1= S Q(x)ul ™ dx = S Q(x)|ug — a|P ™ dx + S Q(z)[@P*tt dx + o(1),

2 9] 0
S Q(x)uwrt de <1,
P
S Q(x)|ug — ﬂ\p'H dx <1+ o0(1).
2

Using the last three relations and the inequality (see [9], inequality (1.9))

S|Vu]2dx+g( S |u!qd:r)2/q

(N-2)/N )
Q on

(S (e [ul ™ d:z:>2/(p+1) < <MT+E
Q

for u € H'(§2), where C > 0 is a constant, we easily deduce that for every
6 > 0 we have

Sx, = S|Vuk|2da:+)\k S up dx
Q 092
= S |V (up — 1) |* do + S (V|2 dz + A, S ui dz + o(1)
Q Q o9

s ~ 2/(p+1)
2<éﬁfﬁm"”g(§Q@W%—uW“d@
M 2

+ S, ( S Q(z)urt! dx) 2y + A\ S uj dx + o(1)

9] on

S _
> (oo —7) | @@~ o
M 2

+ 8y, \ Q@)@ dx + A\ \ uldx +o(1)
k k

2 a0
= 5 -5 Pt g
= (7w — 9~ 5u ) | Q@)ur —ulP ™ do
M Q
+ Sx, + Ak S up dz 4 o(1).
o9
Since
1(VZIV—2)/N < 92NQWN=2)/N _ S 7

limkﬂoo S)\k
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choosing § > 0 sufficiently small, we deduce that

klim S Q(x)|up — P dz =0

and consequently §, Q(z)uPt! dz = 1. This means that
§o|Val® da §o IVTl? dx
<S_Q Q(z)up T dx)?/(rt1) = QI(\ZV—2)/N(SQﬂp+1 dz)2/(e+1)
S S
T QAN T N N BN

since € H!(£2). On the other hand, by the lower semicontinuity of the
norm with respect to weak convergence, we have

S
2
§Z|VU’ dr < 22/NQI(HN—z)/N7

which is impossible. Therefore Agep — 0. =

LeEMMA 3.3. Up to a subsequence, P, — P,, where P, is such that
Q(P,) = Qum. Moreover, Py, € 012 for large k,

: “v—ayzy, (S2QuY = P\ [P
(15) kll}r{.lo S ’V(uk — ek( )/ U< SI/N - dx =0,
v Sl/ng/N ._Pp p+1
. N-2)/2 m 3
(16) klggo S U — 5k( )/ U( ST/N - > dxr = 0.

Proof. Let vi(x) = 6;N72)/2uk(5kac + Py) for x € 2, = (2 — Py)/ck.
Then the functions vy are solutions of the Neumann problems
—Av, = S)\kQ(€kx + Pk)vz in {2,

(1,.) Ovg /OV + A\gegvr, =0 on 082,
o 0<wup(x) <1 in (2,
’Uk(O) =1.

Passing to a subsequence, we can assume that P, — P, for some P, € £2, and
dist( Py, 082) /ex, converges in the extended real line. Using elliptic regularity
theory, we show that, up to a subsequence, vy — w in C2 ({2), where
25 = limp_. o £2;,. Thus w satisfies

—Aw = 5Q(Ps)w? in 20,

ow/dv =0 on 02,
0<w<1 in 2.,
w(0) =1,

where § = S/(22/NQ§HN72)/N).
We now distinguish two cases: (i) dist(Py, 0f2)/e), converges to oo, and
(ii) dist(Py, 082) /ey converges to a real number.
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If case (i) occurs then 2., = RY. By [12] (proof of Theorem 2.3 on p. 34)
we see that w(z) = U(Bx), where 5% = Q(P,)S. Since
S

2
S |VUI€| d.:U — 422/]\]@81\7_2)/]\[7

2
this yields
S

2—NgN/2 _ 2 : 2 _
BENGNEZ = | |Vwl dr < lim | IVog|? da = S QI

RN 2
Thus, ZQEnNiQ)/Q*JF(J\LQ)/2 < Q(P,)N=2/2_ We must have 22/(N-2)Q,, <
Q(Ps) < Qwm, which is impossible. Therefore (ii) prevails.
We can assume {2, is a half-space, which we take to be Rf . Notice that
P, € 0f2. Hence,
S

SN/2
- N . 2 . 2 - -
(17) PN = | Vel < lim | Vol de <

RY I
which implies @ < Q(FP,) and necessarily Q(P,) = Q. Following the
argument of the proof of Lemma 2.2 in [3] (see also [13], [6]), we check that

Py, € 012 for large k.
Equalities (15) and (16) now easily follow. m

Let Ex(u)=1,, |[Vul> dz+\ |, , u? dz for ue H' (2) and wy, :Qiﬂ/(pﬂ)uk.
Notice that

and by Lemma 3.3,
lim ||Vwy, — Vo, N 2/2g-WN=2)/491/(pt D)y (% P =0
ko0 k - 2 ’

where o), = e,21/N /(S1/2QHM).
The sequence wy, satisfies the assumptions of Lemma 3.4 in [6]. With the
aid of Lemmas 3.5-3.8 of [6] we deduce the estimate

S N -2

B n) 2 gy — A (S5 ) = A Jau + (&) + O0ed)
2 2

where Ay > 0 is a constant depending on N. Therefore there exists a A>0

such that Ey, (wg) > S/2%/N for A\, > X, which contradicts (18) and our

assumption that Sy < S/(QQ/NanN%)/N) for each A > 0. The proof of
inequality (I) is now complete.

4. Proof of inequalities (II) and (III). As with inequality (I), the
proofs of (IT) and (III) are by contradiction. We start with (III). The proof is
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a generalization of [26]. The main difference is that now concentration occurs
in the interior of 2 and the range of values of 7is 2 <7 <2N/(N —1).
Suppose Qn > 22/(N=2)Q, . Assume that for each A > 0, Sxar < S i=

S/Ql(\f[V_Z)/N. Let Ay — o0o. By Lemma 2.4, for each k there is a minimizer
up = uy, of Jy, r with SQ Qufrl dxr = 1. The function u; satisfies

(1rr) —Aug + Mo (§ ) [ur|” dr)?/mlup ™t = S, Qub in 0,
. Ou/Ov =0 on H.
First of all we observe the following result:

LEMMA 4.1. We have

(19) klim )\k< S ug, d:c) T = 0.
9]

Proof. Since Jy, (ug) < Soo, Ak |luk||? is bounded and uy, — 0 in H1(£2).
By inequality (14), for a § > 0, there exists A3 > 0 such that

2/(p+1)
1= ([ Q@)lulrt de)
Q
(N—2)/N 2/
< (Mi + 5) S |Vuy|? dz + )\3< S lug|™ dm)
S
Q Q
Therefore
B L) o {a
1< (T —|—5> klggos |Vug|* dz

Q
and since ¢ is arbitrary,

S , , s
Q7N < i [IVusls < Jim Ja, - (u) = vz
M M

Hence limg o [|Vugl|3 = S/Ql(\flv_z)/N and limy,—.c A (§,, uf dz)?7™ = 0.
Set M}, = maxg up = ug(Py) for some Py, € Q2 and
v(z) = EI(CN_Z)/zuk (exx + Py)
for x € 2 = (2 — Py)/ek, with
Ep = M,;Q/(N_m.
Note that the functions vy, satisfy 0 < vi(x) < 1 and v (0) = 1. Define
(20) o=2N/T— (N —2).
Since 2 < 7 < 2N /(N — 1), the value o satisfies 1 < ¢ < 2. Lemma 4.1
implies

LEMMA 4.2. limp_,o Axef = 0.
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Proof. Changing variables, we check that

2/T 2/T
(21) ( S uy, d:z:) = sg( S UL dm)
Q ot
But
1 1
(22) S v dx > S vzﬂd:c: Suz+1dm2—SQuz+ldm:—>0,
O O P Qum ;, Qm

Combining (19), (21) and (22) we conclude that lim,_o A\gef = 0. =

In particular, ¢ — 0 and M — oo. Next we verify that the sequence
{uy} is close to a sequence of instantons concentrating in the interior of {2.

LEMMA 4.3. If Qum > 22/N=2Q,. then, up to a subsequence, P, — Py,
where Q(Py) = Qm. Moreover,
2

_(N— -— P
(23)  lim | ‘V[uk —e 2)/2U(Sl/2Q11V{N€—’“>] dr = 0,
Q
N .- P p+1
(24) klim S Up — €, (v 2)/2U(51/QQMN€—k) dx = 0.
— 00 k

Proof. The functions vy are solutions of the Neumann problems

—Avy, + )\kez(snk |vg|™ dx)2/7_1v;_1 = Sx.,+Q(exx + Pr)vy  in (2,

dvy/ov =0 on 92,
0<w(z)<1 in (2,
'I}k(O) =1.

We can assume that P, — P, for some P, € 2, and dist(Py, 02)/ex con-
verges in the extended real line. Using elliptic regularity theory we show
that, up to a subsequence, vy — w in C2_(£2s), where 25 = limy_ o0 2.
The function w satisfies

—Aw = SQ(Ps)w? in 20,

ow/dv =0 on 02,
0<w<1 in 2.,
w(0) =1,

where § = 5/Q{Y /N,

We distinguish two cases: (i) dist(Py, 02) /i, converges to a real number,
and (ii) dist(Py, 012) /ey, converges to co. In case (i) we assume that 2., =
RY. By [12] we see that w(z) = U(Bz), where 32 = Q(P,)S. This yields

SN/2 S
2-N _ 2 . 2 5
Ié] — = S V| dxgklirrgo S |V dx—W.

RY 2
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Thus Qu < 22N-2)Q(P,) < 22/(N=2)Q,.. So case (ii) prevails. Therefore
s =RY,
S

2-N aN/2 _ 2 ; 2dr =
BNSN = | |Vwlde < lim | [V dfﬂ—W

RN 24
and Qu < Q(P,). Hence Q(P,) = Q. Equalities (23) and (24) follow. m

We now set W(-) = U(SI/QQ%\/{N') and
—(N— Y
We,y(') =& S 2)/2W(?)
for y € RY and ¢ > 0. Let
M={CW.,:CeR, e>0, ye 2}

We use the notation d(¢, M) = dist(¢, M) = inf{[|V (¢ — )2 : ¥ € M}.
The following lemma, together with the last one, guarantees the existence
of an instanton closest to ug, in the metric just defined.

LEMMA 4.4. Let § > 0 and {¢;} C H'(£2) be such that ¢; — 0 in H* ()
and

d(¢y, M)? < |V % — 26.

Then there exists lo, such that for all 1 > 1o, d(¢;, M) is achieved by some
CiWe, yi- If yi — y, with y an interior point of §2, and w; is defined by

&1 = CiWe, g, +wi,
then, up to a subsequence,
W) Lo e =0
(ii) if d(¢1, M) — 0 as | — oo, then llirgo C=C, #0;
(i) § W2 wrde = O™ || )

€LYl
? 0
. — N—-2)/2
(i) § W2 hwn 5= Wy de = O™ a1 0)-
0 7

The proof is almost identical to that of Lemma 5.6 in [21] and is omitted
(see also Lemma 3.1 in [3]).

It then follows from Lemma 4.4 that there exist sequences {C,Ws, ,, }
which minimize d(ux, M). Equality (23) implies that

kli{go HV(CchSk,yk) - VWSk,Pk H2 =0.
We deduce

(25) Cy—1, yr—y=PFP, and Z—k—>1.
k
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In particular, y is an interior point of {2. We set
(26) up, = CpWs,, . + Wk,
and define
Wi == Ws, -
Obviously, from (23) and the definition of Cy Wy, we get | Vwg||2 — 0. From

(25), we get |We, p, — CuWgl|lp+1 — 0, which together with (24) implies
Jwllpsr — 0.

LEMMA 4.5. There exists 0 < p < 1 such that, for sufficiently large k,

pSQYN | QWP w de < p([|Vwr 3 + Axllwkl|?).
0

This follows from Lemma 5.9 of [21].

The next lemma is essentially due to Wang [20] and Zhu [26]. We give
its proof since they do not present it for the whole range of values of 7 we
are interested in.

LEMMA 4.6. Let N > 5 and 2 < 7 < 2N/(N—1), or N = 4 and
2<1<2N/(N —1). For any v > 0,

{ Wi ol dz < 0(1)8;7/% + [Jwil|7-
(9]
Proof. Choose

c N 1 2N T
T ma. .
IN-27—1'N+2['7-1

Note that this interval is nonempty since on the one hand

T 2N < 2N
r—1 N+4+1~ N+2

min

and on the other hand

N 2<2§7’ for N>5 and 7>2 for N=4.

The conjugate exponent of r satisfies ' € |7,2N /(N — 2)[. By the Holder
inequality,

—1)r 1/r ’ 1/T/

S W,z71|wk]d$ < (S WIET D dx) (S |wg|" dm)

Q Q Q

< O(Sk_(T_l)(N_2)/2+N/T”wkH’r’7

and, by the interpolation inequality,

lwrller < llwe I lwg 55,
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where
1 1—-a
r’ p+1’
If v > 0, there exists a C(y) such that

+ 0<a<l.

REES

27) W wk| da
2

1

—(tr—1)(N—-2)/2+N/r —a
< O, TR 19 o 127

T —(r—=1)(N—=2)/24+N/r)-7/(T—a T7(l—a)/(T—a
< lwnl} + C)of DN NI/ 17,

Now, from the definition of a,

1 1 1 1
a —_——_—— = - - —
T p+1 r p+1

Hence

r 2N 2 2
( (r—1)(N -2) N> T TO
_ 4+ = — 7
2 r T—a 2

Substituting into (27), we derive

T— T TO /2 7(l—a)/(T—a
| Wit wil da < yllwil|7 + O ()85 w1 .
(9]

Since (24) implies that HwkH;Srlfa)/(T*a) — 0 as k — oo, the proof is com-

plete. m

We will now prove that for large k, Jy, -(ux) > S/Ql(vzlv_z)/N, which
contradicts Lemma 2.8 and proves inequality (I1I). So, we estimate the terms
in Jy,,r- By construction, {, Qlux[P™! dz = 1. However, it is convenient to
give the following lower bound whose proof follows from (iii) of Lemma 4.4
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and the arguments in [26]:

—2/(p+1) —(N=2)/N o _
(§ QPunf*" dx) > Q"IN Il
2

" (1 (), QW i da
CRIWelb i

N-2)/2 41
= O iy — Ol )
where ~; is any positive number. Regarding HWkH;fl, we have

IWil2, = Q% 2N + o).

Inserting this estimate in the last inequality, we get the following lower
bound for (§,, Q[ug|P+! dz) =/ P+D):

o2 (1 (P 7) S, QWP wde
g C2|[ Wy |2t

— O8N Dy s ) — Cln)llwn 5L ) + 0(5,?)) |

To estimate (§,, uf dz)?/", note first that

(fwz dx)Q/T —op(Jw dx)2/T = COF + o(6F)
2 k

since (N —2)7 > N. In fact, (N —2)/N < 2 < 7 except when N = 4, but
in this case 7 > 2. So we can follow the argument in [26] to prove that for
any 0 < 2 < 1 there is a constant C(v2) such that

(§updr)”" 2 vallunl2 + Co=)37.
2

To estimate {, |Vug|* dz, note that

1 S
2 5 2 5 N-2
§2|VWk| dr = S(N_Q)QQI(\;[vfz)/N §2|VUk| dr = Ql(\ivfz)/N + 05, 7).
Therefore
S _
Q @y Q

We are now in a position to estimate Jy, r(uj). Combining the previous
estimates gives
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S Sy Vel e ellwell; | Cy2) Ao
J)\kﬂ—(’UJk) > [W + O((Sév 2) + o 2 + 2 + oo k
QM k k k
" [1 (), QWET W} da
C3|Willots

N—
— CO P will g ) — Clva) ki) + 0(5,5)] .

For k large, this is greater than or equal to

S C(’YZ))\MS]? N-2
(N—2)/N o2 + 05, 7)
M i
+72HVwkH§ + M llwel2 - (p+1)S T, QW)™ wi dz
2 N—_2)/N :
Ci crou MWl

By Lemma 4.5, for k sufficiently large, the difference
IVl MellunlE (04 10)S S QW i do
2

2 N-2)/N 1
Gy o2\ N w1t

is greater than or equal to

pQiN (72 p+’n>

Cy \np p

| QW tw} do,
2

for some 0 < p < 1. Choosing v such that u < v < 1, and then ~;
sufficiently small, we get

B _PEn
H p
This implies that
S C(72)

g, (ug) > Q(N72)/N + 2 A0y + 0(5{:’—2).
M k

Since 1 < o < 2, it follows that o < N — 2, because if N = 4 we do not
allow 7 (and hence o) to equal 2. So, for sufficiently large k,

T () > S/QU Y,
which implies inequality (III), as explained above.

Now that we have proved (III), let us outline the proof of inequality
(I1). Let Qu < 22/(V=2)Q,,. One assumes that Sy, < S/(22/NQ£HN_2)/N)
for each A > 0, picks Ay, — oo and minimizers u, = uy, of Jy, r with
o QuzJrl dr = 1, and starts to prove analogues of the previous lemmas.
When one gets to the analogue Lemma 4.3, one proves that, up to a sub-
sequence, {ug} either concentrates in the interior of 2 or concentrates on
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the boundary of (2. In the former case concentration occurs at a point P,
with Q(P,) = Qum and one can repeat the argument given above to derive
a contradiction. In the latter case concentration occurs at a point P, with

Q(PO) = Qm-
Let By - (u) =1, [Vul> + A(§,, u™)?/" for ue H' (£2) and wp=Qu{ "y
Notice that

(28) By r(wi) = QU 2N By, (uk) < -

Following the arguments in [26], one can prove that Ey, ,(wy) > S/2%/N for
Ai sufficiently large, which contradicts (28) and proves inequality (II).
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