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THE NONLINEAR NEUMANN PROBLEM

AND SHARP WEIGHTED SOBOLEV INEQUALITIES

BY

J. CHABROWSKI (St. Lucia, Qld) and P. M. GIRÃO (Lisboa)

Abstract. We prove sharp inequalities in weighted Sobolev spaces. Our approach is
based on the blow-up technique applied to some nonlinear Neumann problems.

1. Introduction. The main purpose of this work is to prove some new
weighted Sobolev inequalities. These inequalities are obtained by analyz-
ing the asymptotic behaviour of solutions of nonlinear Neumann problems
involving the critical Sobolev exponent.
Let S denote the best Sobolev constant for the embedding of D1,2(RN )

into L2
⋆

(RN ), where 2⋆ = 2N/(N − 2), N ≥ 3, that is,

(1) S = inf

{ T
RN
|∇u|2 dx

(
T
RN
|u|2⋆ dx)2/2⋆

: u ∈ D1,2(RN ) \ {0}

}
.

It is known that the constant S is attained by

U(x) =

[
N(N − 2)

N(N − 2) + |x|2

](N−2)/2
.

The function U , called an instanton, satisfies the equation

−∆U = U2
⋆
−1 in R

N .

We also have
T
RN
|∇U |2 dx =

T
RN

U2
⋆

dx = SN/2.
Let ε > 0 and y ∈ R

N . We define

Uε,y(x) = ε
−(N−2)/2U((x− y)/ε).

Then any minimizer for S is of the form Uε,y.
Let Ω ⊂ R

N be a bounded domain with a smooth boundary ∂Ω. Let
Q denote a Hölder continuous and positive function defined on Ω. Also, let
QM = maxx∈Ω Q(x) and Qm = maxx∈∂Ω Q(x). In what follows we write
p+ 1 = 2⋆. In this paper the following inequalities are proved:
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(I) Let N ≥ 5. Suppose that QM < 22/(N−2)Qm. Then there exists a
constant Λ1(Ω) > 0 such that

( \
Ω

Q(x)|u|p+1 dx
)2/(p+1)

≤
22/NQ

(N−2)/N
m

S

\
Ω

|∇u|2 dx+ Λ1(Ω)
\
∂Ω

u2 dx

for every u ∈ H1(Ω).
(II) Let N ≥ 4 and τ = 2N/(N − 1). Suppose that QM ≤ 2

2/(N−2)Qm.
Then there exists a constant Λ2(Ω) > 0 such that
( \
Ω

Q(x)|u|p+1 dx
)2/(p+1)

≤
22/NQ

(N−2)/N
m

S

\
Ω

|∇u|2 dx+ Λ2(Ω)
( \
Ω

|u|τ dx
)2/τ

for every u ∈ H1(Ω).
(III) Suppose QM > 22/(N−2)Qm. Let N ≥ 5 and 2 ≤ τ ≤ 2N/(N − 1),

or N = 4 and 2 < τ ≤ 2N/(N − 1). Then there exists a constant Λ3(Ω) > 0
such that
( \
Ω

Q(x)|u|p+1 dx
)2/(p+1)

≤
Q
(N−2)/N
M

S

\
Ω

|∇u|2 dx+ Λ3(Ω)
( \
Ω

|u|τ dx
)2/τ

for every u ∈ H1(Ω).

These inequalities should be compared with the following ones, estab-
lished in the papers [6], [26]:

(A) There exists a constant λ(Ω) ≥ ((N − 2)/2)H(Ω) such that

( \
Ω

|u|p+1 dx
)2/(p+1)

≤
22/N

S

\
Ω

|∇u|2 dx+ λ(Ω)
\
∂Ω

u2 dx

for every u ∈ H1(Ω), where H(Ω) = maxx∈∂ΩH(x) and H(x) denotes the
mean curvature at x ∈ ∂Ω.
(B) Let τ = 2N/(N − 1). Then there exists a constant λ̃(Ω) > 0 such

that
( \
Ω

|u|p+1 dx
)2/(p+1)

≤
22/N

S

\
Ω

|∇u|2 dx+ λ̃(Ω)
( \
Ω

|u|τ dx
)2/τ

for every u ∈ H1(Ω).

It is evident that none of (I)–(III) is a direct consequence of (A) and
(B). We also point out that an inequality of type (III) in the case QM ≤
22/(N−2)Qm with 2 ≤ τ < 2N/(N − 1) is not possible. This will be clear
from our analysis (see Proposition 2.7). The inequalities (I)–(III) will be
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established by applying a blow-up technique to solutions of the following
Neumann problems:

(1λ)

{
−∆u = Q(x)up in Ω,
∂u/∂ν + λu = 0 on ∂Ω,

and

(1λ,τ )

{
−∆u+ λ(

T
Ω
|u|τ dx)2/τ−1uτ−1 = Q(x)up in Ω,

∂u/∂ν = 0 on ∂Ω,

where ν is the outward normal to ∂Ω, 2 ≤ τ ≤ 2N/(N − 1).

The proofs of the three inequalities are similar and proceed by contradic-
tion. One assumes that least energy solutions of problems (1λ) and (1λ,τ )
exist for all positive λ and shows that they are close to some instantons.
This enables one to give a lower bound for the energy of the solutions and
to arrive at a contradiction.

In the case corresponding to inequality (I) the instantons concentrate
at the boundary of Ω and therefore we can apply the arguments used in
the proof of inequality (A). In the case corresponding to inequality (III) the
instantons concentrate in the interior of Ω and the estimates are slightly dif-
ferent from the ones in the proof of inequality (B). In the case corresponding
to inequality (II) the instantons either concentrate in the interior of Ω, or
concentrate on the boundary of Ω, in which case the estimates are similar
to those of (B).

This paper is organized as follows. Section 2 is concerned with the exis-
tence of least energy solutions of problems (1λ) and (1λ,τ ). In Section 3 we
prove inequality (I) and in Section 4 we prove inequalities (II) and (III).

It is natural to ask if there exists a constant Λ4(Ω) > 0 such that

( \
Ω

Q(x)|u|p+1 dx
)2/(p+1)

≤
Q
(N−2)/N
M

S

\
Ω

|∇u|2 dx+ Λ4(Ω)
\
∂Ω

u2 dx,

for all u ∈ H1(Ω), if QM ≥ 2
2/(N−2)Qm. We have not been able to answer

this question.

2. Solvability of problems (1λ) and (1λ,τ ). Solutions of problems
(1λ) and (1λ,τ ) will be obtained as minimizers on H

1(Ω) \ {0} of the func-
tionals

Jλ(u) =

T
Ω
|∇u|2 dx+ λ

T
∂Ω

u2 dx

(
T
Ω
Q(x)|u|p+1 dx)2/(p+1)

and

Jλ,τ (u) =

T
Ω
|∇u|2 dx+ λ(

T
Ω
|u|τ dx)2/τ

(
T
Ω
Q(x)|u|p+1 dx)2/(p+1)

.



196 J. CHABROWSKI AND P. M. GIRÃO

We set
Sλ = inf{Jλ(u) : u ∈ H

1(Ω) \ {0}}

= inf
{ \
Ω

|∇u|2 dx+ λ
\
∂Ω

u2 dx : u ∈ VQ

}

and
Sλ,τ = inf{Jλ,τ (u) : u ∈ H

1(Ω) \ {0}}

= inf
{ \
Ω

|∇u|2 dx+ λ
( \
Ω

|u|τ dx
)2/τ
: u ∈ VQ

}
,

where VQ = {u ∈ H
1(Ω) :

T
Ω
Q(x)|u|p+1 dx = 1}.

To show that Sλ and Sλ,τ are achieved we need the following version of
P. L. Lions’ [14] concentration-compactness principle. Let {un} ⊂ H1(Ω)
be a weakly convergent sequence to u in H1(Ω) and such that |un|

p+1 ⇀ µ
and |∇u|2 ⇀ µ̃ weakly in the sense of measures. Then there exist numbers
µj > 0, µ̃j > 0 and points xj ∈ Ω, j ∈ J , where J is at most a countable
set, such that

µ = |u|p+1 +
∑

j∈J

µjδxj , µ̃ ≥ |∇u|2 +
∑

j∈J

µ̃jδxj .

Moreover, if xj ∈ Ω, then

(2) S(µj)
(N−2)/N ≤ µ̃j ,

and if xj ∈ ∂Ω, then

(3)
S

22/N
(µj)

(N−2)/N ≤ µ̃j .

The following lemmas give criteria for the existence of minima for Jλ
and Jλ,τ .

Lemma 2.1. If

(4) Sλ <
S

22/NQ
(N−2)/N
m

and

(5) QM < 22/(N−2)Qm,

then Sλ is achieved.

Proof. Let {un} ⊂ H1(Ω) be such that
T
Ω
Q|un|

p+1 = 1 for each n,
and

T
Ω
|∇un|

2 dx + λ
T
∂Ω

u2n dx → Sλ as n → ∞. We may assume that
un ⇀ u in H1(Ω), un → u in L2(Ω) and un → u a.e. on Ω. Applying the
concentration-compactness principle we can write\

Ω

Q|u|p+1 +
∑

j∈J

Q(xj)µj = 1
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and

Sλ = lim
n→∞

( \
Ω

|∇un|
2 dx+ λ

\
∂Ω

u2n dx
)
≥
\
Ω

|∇u|2 dx+ λ
\
∂Ω

u2 dx+
∑

j∈J

µ̃j .

Using (2), (3) and (5) we derive the following estimate from below for Sλ:

Sλ ≥
\
Ω

|∇u|2 dx+ λ
\
∂Ω

u2 dx+
∑

xj∈Ω

µ̃j +
∑

xj∈∂Ω

µ̃j

≥ Sλ

( \
Ω

Q|u|p+1 dx
)2/(p+1)

+
∑

xj∈Ω

S

Q(xj)(N−2)/N
(µjQ(xj))

(N−2)/N

+
∑

xj∈∂Ω

S

22/NQ(xj)(N−2)/N
(µjQ(xj))

(N−2)/N

≥ Sλ

( \
Ω

Q|u|p+1 dx
)2/(p+1)

+
∑

xj∈Ω

S

Q
(N−2)/N
M

(Q(xj)µj)
(N−2)/N

+
∑

xj∈∂Ω

S

22/NQ
(N−2)/N
m

(Q(xj)µj)
(N−2)/N

≥ Sλ

( \
Ω

Q|u|p+1 dx
)2/(p+1)

+
∑

j∈J

S

22/NQ
(N−2)/N
m

(Q(xj)µj)
(N−2)/N .

Since Sλ satisfies (4) we must have µj = 0 for all j ∈ J and the result
follows.

Lemma 2.2. If

(6) Sλ <
S

Q
(N−2)/N
M

and

(7) QM ≥ 2
2/(N−2)Qm,

then Sλ is achieved.

The same method can be used to obtain conditions guaranteeing the
solvability of problem (1λ,τ ).

Lemma 2.3. If 2 ≤ τ ≤ 2N/(N − 1),

(8) Sλ,τ <
S

22/NQ
(N−2)/N
m

and (5) holds, then Sλ,τ is achieved.

Lemma 2.4. If 2 ≤ τ ≤ 2N/(N − 1),

(9) Sλ,τ <
S

Q
(N−2)/N
M

and (7) holds, then Sλ,τ is achieved.
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If Q ≡ 1, the functionals Jλ and Jλ,τ will be denoted by Iλ and Iλ,τ ,
respectively.

Adimurthi and Mancini [1] proved that if x◦ ∈ ∂Ω, then

(10) Iλ(Uε,x◦) =
S

22/N
−AN

(
N − 2

2
H(x◦)− λ

)
ε+O(ε2), N ≥ 5,

where AN > 0 is a constant depending on N . Using this asymptotic formula
we can give a condition on Q guaranteeing the validity of the inequality (4)
in Lemma 2.1.

For this we need the following assumption on Q:

(Q) There exists a point x◦ ∈ ∂Ω such that

Q(x◦) = Qm and |Q(x)−Q(x◦)| = o(|x− x◦|)

for x near x◦.

If (Q) holds, we have

Jλ(Uε,x◦) = Q(x◦)
−(N−2)/NIλ(Uε,x◦) + o(ε)

and it follows from (10) that

(11) Jλ(Uε,x◦) =
S

22/NQ
(N−2)/N
m

−
AN

Q
(N−2)/N
m

(
N − 2

2
H(x◦)− λ

)
ε+ o(ε).

We now observe that if H(x◦) > 0 and λ < ((N − 2)/2)H(x◦), then for
sufficiently small ε > 0 we have

Jλ(Uε,x◦) <
S

22/NQ
(N−2)/N
m

,

which shows that (4) is satisfied for λ < ((N − 2)/2)H(x◦).

Proposition 2.5. Let N ≥ 5. Suppose that QM ≤ 2
2/(N−2)Qm and

(Q) holds with H(x◦) > 0. Then problem (1λ) has a solution for λ <
((N − 2)/2)H(x◦). Moreover ,

lim
λ→∞

Sλ =
S

22/NQ
(N−2)/N
m

.

Proposition 2.5 also holds for N = 3, 4 if one uses a suitable modification
of (10) ([1], [5]). Note that from the above discussion it is obvious that under

the assumption of Proposition 2.5, Sλ ≤ S/(22/NQ
(N−2)/N
m ) for all λ > 0

and Sλ < S/(22/NQ
(N−2)/N
m ) for λ < ((N − 2)/2)H(Ω). The proof of the

result on the asymptotic behaviour of Sλ is standard.

In the case QM > 22/(N−2)Qm, condition (6) from Lemma 2.2 is difficult
to check. Obviously, it is satisfied for small λ > 0. By testing Jλ with Uε,y,

where Q(y) = QM, we easily show that Sλ ≤ S/Q
(N−2)/N
M for all λ > 0.
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Lemma 2.6. If QM ≥ 2
2/(N−2)Qm, then the condition Sλ<S/Q

(N−2)/N
M

is satisfied for small λ > 0 and

lim
λ→∞

Sλ =
S

Q
(N−2)/N
M

.

We now turn our attention to the functional Jλ,τ and problem (1λ,τ ).
By testing Iλ,τ with Uε,x◦ , for N ≥ 5 we get

Iλ,τ (Uε,x◦) = S/2
2/N −ANH(x◦)ε+ λBε

2N/τ−(N−2)

+ o(λε2N/τ−(N−2)) + o(ε2),

where B > 0 is a constant depending on N and τ . If (Q) holds and
H(x◦) > 0, then

Jλ,τ (Uε,x◦) = Q
−(N−2)/N
m Iλ,τ (Uε,x◦) + o(ε).

Hence the condition (8) of Lemma 2.3 is satisfied for every λ > 0 provided
2 ≤ τ < 2N/(N − 1).

Proposition 2.7. Let N ≥ 5 and QM ≤ 2
2/(N−2)Qm. Suppose that

(Q) holds, H(x◦) > 0 and 2 ≤ τ < 2N/(N − 1). Then problem (1λ,τ ) has a
solution for each λ > 0. Moreover ,

lim
λ→∞

Sλ,τ =
S

22/NQ
N/(N−2)
m

for 2 ≤ τ ≤
2N

N − 1
.

As in the case of Proposition 2.5, this continues to hold for N = 3, 4.

Finally,

Lemma 2.8. If QM≥2
2/(N−2)Qm, then the condition Sλ,τ <S/Q

(N−2)/N
M

is satisfied for small λ > 0 and

lim
λ→∞

Sλ,τ =
S

Q
(N−2)/N
M

for 2 ≤ τ ≤
2N

N − 1
.

To end this section we observe that from Propositions 2.5 and 2.7 and
Lemma 2.8 we can deduce a weak form of inequalities (I)–(III). Namely,
given a δ > 0, there exist λ1 = λ1(Ω), λ2 = λ2(Ω) and λ3 = λ3(Ω) such
that, for every u ∈ H1(Ω),

(12)
( \
Ω

Q(x)|u|p+1 dx
)2/(p+1)

≤

(
22/NQ

(N−2)/N
m

S
+ δ

) \
Ω

|∇u|2 dx+ λ1
\
∂Ω

u2 dx,

and
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(13)
( \
Ω

Q(x)|u|p+1 dx
)2/(p+1)

≤

(
22/NQ

(N−2)/N
m

S
+ δ

) \
Ω

|∇u|2 dx+ λ2

( \
Ω

|u|τ dx
)2/τ

if QM ≤ 2
2/(N−2)Qm, and

(14)
( \
Ω

Q(x)|u|p+1 dx
)2/(p+1)

≤

(
Q
(N−2)/N
M

S
+ δ

) \
Ω

|∇u|2 dx+ λ3

( \
Ω

|u|τ dx
)2/τ

if QM ≥ 2
2/(N−2)Qm.

3. Proof of inequality (I). The proof of inequality (I) is by contra-
diction. Throughout this section we suppose that inequality (5) is satisfied.

Assume that, for each λ > 0, Sλ < S/(22/NQ
(N−2)/N
m ). Let λk → ∞. For

each k there is a minimizer uk = uλk of Jλk with
T
Ω
Qup+1k dx = 1. It satisfies

(1uk)

{
−∆uk = SλkQu

p
k in Ω,

∂uk/∂ν + λkuk = 0 on ∂Ω.

Our aim is to show that uk is close to some instanton Uεk,Pk with Pk → P◦,
Qm = Q(P◦). This in turn will contradict the inequality Sλk <

S/(22/NQ
(N−2)/N
m ).

We start by setting

Mk := max
Ω

uk = uk(Pk)

for some Pk ∈ Ω.

Lemma 3.1. Mk →∞ and uk ⇀ 0 in H
1(Ω).

Proof. Since {uk} is bounded in H
1(Ω) we may assume that uk ⇀ u

in H1(Ω) and from (4) we deduce that uk → 0 in L
2(∂Ω). Hence u ∈

H1
◦
(Ω).

Assume that Mk is bounded. Then
T
Ω
Qup+1 dx = 1 and by the lower

semicontinuity of the norm with respect to weak convergence, we have\
Ω

|∇u|2 dx ≤
S

22/NQ
(N−2)/N
m

.

Since u ∈ H1
◦
(Ω) we also have
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Ω
|∇u|2 dx

(
T
Ω
Qup+1 dx)2/(p+1)

≥
S

Q
(N−2)/N
M

>
S

22/NQ
(N−2)/N
m

,

which is impossible. This shows that the sequence {Mk} is unbounded.

Also, uk ⇀ 0 in H1(Ω), otherwise its weak limit u satisfies 0 <T
Ω
Qup+1 dx ≤ 1. The case

T
Ω
Qup+1 dx = 1 is excluded by the above ar-

gument. If 0 <
T
Ω
Qup+1 dx < 1, we get a contradiction by applying the

concentration-compactness principle.

Let

εk =M
−2/(N−2)
k .

Lemma 3.2. λk
T
∂Ω

u2k → 0 and λkεk → 0.

Proof. Applying inequality (12) to uk, we get

1 ≤

(
22/NQ

(N−2)/N
m

S
+ δ

)\
Ω

|∇uk|
2 dx+ λ1

\
∂Ω

u2k dx.

Since
T
∂Ω

u2k dx→ 0 we obtain

1 ≤

(
22/NQ

(N−2)/N
m

S
+ δ

)
lim
k→∞

\
Ω

|∇uk|
2 dx

≤

(
22/NQ

(N−2)/N
m

S
+ δ

)
lim
k→∞

Jλk(uk)

=

(
22/NQ

(N−2)/N
m

S
+ δ

)
S

22/NQ
(N−2)/N
m

.

Since δ > 0 is arbitrary we see that

lim
k→∞

\
Ω

|∇uk|
2 dx =

S

22/NQ
(N−2)/N
m

and limk→∞ λk
T
∂Ω

u2k dx = 0.

To prove the second assertion of the lemma, note that

λk
\
∂Ω

u2k dx = λkεk
\
∂Ω

M
2/(N−2)
k u2k dx

= λkεk
\
∂Ω

Mqk
u2k
M2k

dx ≥ λkεk
\
∂Ω

uqk dx,

where q = 2(N − 1)/(N − 2). Therefore to complete the proof of the second
assertion it is sufficient to show that

lim inf
k→∞

\
∂Ω

uqk dx > 0.
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We follow the argument used in [13] (see the proof of inequality (2.6) there).
In the contrary case, assume that limk→∞

T
∂Ω

uqk dx = 0. Then we may
assume that uk ⇀ u in H1

◦
(Ω), up to a subsequence. Using the Brézis–Lieb

lemma [8] we have

1 ≡
\
Ω

Q(x)up+1k dx =
\
Ω

Q(x)|uk − u|
p+1 dx+

\
Ω

Q(x)|u|p+1 dx+ o(1),\
Ω

Q(x)up+1 dx ≤ 1,\
Ω

Q(x)|uk − u|
p+1 dx ≤ 1 + o(1).

Using the last three relations and the inequality (see [9], inequality (1.9))

( \
Ω

Q(x)|u|p+1 dx
)2/(p+1)

≤

(
Q
(N−2)/N
M

S
+ε

) \
Ω

|∇u|2 dx+
C

ε

( \
∂Ω

|u|q dx
)2/q

for u ∈ H1(Ω), where C > 0 is a constant, we easily deduce that for every
δ > 0 we have

Sλk =
\
Ω

|∇uk|
2 dx+ λk

\
∂Ω

u2k dx

=
\
Ω

|∇(uk − u)|
2 dx+

\
Ω

|∇u|2 dx+ λk
\
∂Ω

u2k dx+ o(1)

≥

(
S

Q
(N−2)/N
M

− δ

)( \
Ω

Q(x)|uk − u|
p+1 dx

)2/(p+1)

+ Sλk

( \
Ω

Q(x)up+1 dx
)2/(p+1)

+ λk
\
∂Ω

u2k dx+ o(1)

≥

(
S

Q
(N−2)/N
M

− δ

) \
Ω

Q(x)|uk − u|
p+1 dx

+ Sλk

\
Ω

Q(x)up+1 dx+ λk
\
∂Ω

u2k dx+ o(1)

=

(
S

Q
(N−2)/N
M

− δ − Sλk

) \
Ω

Q(x)|uk − u|
p+1 dx

+ Sλk + λk
\
∂Ω

u2k dx+ o(1).

Since

Q
(N−2)/N
M < 22/NQ(N−2)/Nm =

S

limk→∞ Sλk
,
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choosing δ > 0 sufficiently small, we deduce that

lim
k→∞

\
Ω

Q(x)|uk − u|
p+1 dx = 0

and consequently
T
Ω
Q(x)up+1 dx = 1. This means thatT

Ω
|∇u|2 dx

(
T
Ω
Q(x)up+1 dx)2/(p+1)

≥

T
Ω
|∇u|2 dx

Q
(N−2)/N
M (

T
Ω
up+1 dx)2/(p+1)

>
S

Q
(N−2)/N
M

>
S

22/NQ
(N−2)/N
m

,

since u ∈ H1
◦
(Ω). On the other hand, by the lower semicontinuity of the

norm with respect to weak convergence, we have\
Ω

|∇u|2 dx ≤
S

22/NQ
(N−2)/N
m

,

which is impossible. Therefore λkεk → 0.

Lemma 3.3. Up to a subsequence, Pk → P◦, where P◦ is such that
Q(P◦) = Qm. Moreover , Pk ∈ ∂Ω for large k,

lim
k→∞

\
Ω

∣∣∣∣∇
(
uk − ε

−(N−2)/2
k U

(
S1/2Q

1/N
m

21/N
· − Pk
εk

))∣∣∣∣
2

dx = 0,(15)

lim
k→∞

\
Ω

∣∣∣∣uk − ε
−(N−2)/2
k U

(
S1/2Q

1/N
m

21/N
· − Pk
εk

)∣∣∣∣
p+1

dx = 0.(16)

Proof. Let vk(x) = ε
(N−2)/2
k uk(εkx + Pk) for x ∈ Ωk = (Ω − Pk)/εk.

Then the functions vk are solutions of the Neumann problems

(1vk)





−∆vk = SλkQ(εkx+ Pk)v
p
k in Ωk,

∂vk/∂ν + λkεkvk = 0 on ∂Ωk,

0 ≤ vk(x) ≤ 1 in Ωk,
vk(0) = 1.

Passing to a subsequence, we can assume that Pk → P◦ for some P◦ ∈ Ω, and
dist(Pk, ∂Ω)/εk converges in the extended real line. Using elliptic regularity
theory, we show that, up to a subsequence, vk → ω in C2loc(Ω∞), where
Ω∞ = limk→∞Ωk. Thus ω satisfies




−∆ω = ŜQ(P◦)ω
p in Ω∞,

∂ω/∂ν = 0 on ∂Ω∞,
0 ≤ ω ≤ 1 in Ω∞,
ω(0) = 1,

where Ŝ = S/(22/NQ
(N−2)/N
m ).

We now distinguish two cases: (i) dist(Pk, ∂Ω)/εk converges to ∞, and
(ii) dist(Pk, ∂Ω)/εk converges to a real number.
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If case (i) occurs then Ω∞ = R
N . By [12] (proof of Theorem 2.3 on p. 34)

we see that ω(x) = U(βx), where β2 = Q(P◦)Ŝ. Since\
Ωk

|∇vk|
2 dx→

S

22/NQ
(N−2)/N
m

,

this yields

β2−NSN/2 =
\

RN

|∇ω|2 dx ≤ lim
k→∞

\
Ωk

|∇vk|
2 dx =

S

22/NQ
(N−2)/N
m

.

Thus, 2Q
(N−2)/2∗+(N−2)/2
m ≤ Q(P◦)

(N−2)/2. We must have 22/(N−2)Qm ≤
Q(P◦) ≤ QM, which is impossible. Therefore (ii) prevails.
We can assume Ω∞ is a half-space, which we take to be R

N
+ . Notice that

P◦ ∈ ∂Ω. Hence,

(17) β2−N
SN/2

2
=
\

R
N
+

|∇ω|2 dx ≤ lim
k→∞

\
Ωk

|∇vk|
2 dx ≤

S

22/NQ
(N−2)/N
m

,

which implies Qm ≤ Q(P◦) and necessarily Q(P◦) = Qm. Following the
argument of the proof of Lemma 2.2 in [3] (see also [13], [6]), we check that
Pk ∈ ∂Ω for large k.
Equalities (15) and (16) now easily follow.

Let Eλ(u)=
T
Ω
|∇u|2 dx+λ

T
∂Ω

u2 dx for u∈H1(Ω) and wk=Q
1/(p+1)
m uk.

Notice that

(18) Eλk(wk) = Q
(N−2)/N
m Eλk(uk) <

S

22/N

and by Lemma 3.3,

lim
k→∞

∥∥∥∥∇wk −∇σ
−(N−2)/2
k S−(N−2)/421/(p+1)U

(
· − Pk
σk

)∥∥∥∥
2

= 0,

where σk = εk2
1/N/(S1/2Q

1/N
m ).

The sequence wk satisfies the assumptions of Lemma 3.4 in [6]. With the
aid of Lemmas 3.5–3.8 of [6] we deduce the estimate

Eλk(wk) ≥
S

22/N
−AN

(
N − 2

2
H(yk)− λk

)
εk +O(ε

2
k) +O(λkε

2
k),

where AN > 0 is a constant depending on N . Therefore there exists a λ > 0
such that Eλk(wk) > S/22/N for λk ≥ λ, which contradicts (18) and our

assumption that Sλ < S/(22/NQ
(N−2)/N
m ) for each λ > 0. The proof of

inequality (I) is now complete.

4. Proof of inequalities (II) and (III). As with inequality (I), the
proofs of (II) and (III) are by contradiction. We start with (III). The proof is
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a generalization of [26]. The main difference is that now concentration occurs
in the interior of Ω and the range of values of τ is 2 ≤ τ ≤ 2N/(N − 1).
Suppose QM > 22/(N−2)Qm. Assume that for each λ > 0, Sλ,τ < S∞ :=

S/Q
(N−2)/N
M . Let λk → ∞. By Lemma 2.4, for each k there is a minimizer

uk = uλk of Jλk,τ with
T
Ω
Qup+1k dx = 1. The function uk satisfies

(1λk,τ )

{
−∆uk + λk(

T
Ω
|uk|

τ dx)2/τ−1uτ−1k = Sλk,τQu
p
k in Ω,

∂uk/∂ν = 0 on ∂Ω.

First of all we observe the following result:

Lemma 4.1. We have

(19) lim
k→∞

λk

( \
Ω

uτk dx
)2/τ
= 0.

Proof. Since Jλk,τ (uk) < S∞, λk‖uk‖
2
τ is bounded and uk ⇀ 0 inH

1(Ω).
By inequality (14), for a δ > 0, there exists λ3 > 0 such that

1 =
( \
Ω

Q(x)|uk|
p+1 dx

)2/(p+1)

≤

(
Q
(N−2)/N
M

S
+ δ

) \
Ω

|∇uk|
2 dx+ λ3

( \
Ω

|uk|
τ dx
)2/τ

.

Therefore

1 ≤

(
Q
(N−2)/N
M

S
+ δ

)
lim
k→∞

\
Ω

|∇uk|
2 dx

and since δ is arbitrary,

S

Q
(N−2)/N
M

≤ lim
k→∞
‖∇uk‖

2
2 ≤ lim

k→∞
Jλk,τ (uk) =

S

Q
(N−2)/N
M

.

Hence limk→∞ ‖∇uk‖
2
2 = S/Q

(N−2)/N
M and limk→∞ λk(

T
Ω
uτk dx)

2/τ = 0.

Set Mk = maxΩ uk = uk(Pk) for some Pk ∈ Ω and

vk(x) = ε
(N−2)/2
k uk(εkx+ Pk)

for x ∈ Ωk = (Ω − Pk)/εk, with

εk =M
−2/(N−2)
k .

Note that the functions vk satisfy 0 ≤ vk(x) ≤ 1 and vk(0) = 1. Define

(20) σ = 2N/τ − (N − 2).

Since 2 ≤ τ ≤ 2N/(N − 1), the value σ satisfies 1 ≤ σ ≤ 2. Lemma 4.1
implies

Lemma 4.2. limk→∞ λkε
σ
k = 0.
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Proof. Changing variables, we check that

(21)
( \
Ω

uτk dx
)2/τ
= εσk

( \
Ωk

vτk dx
)2/τ

.

But

(22)
\
Ωk

vτk dx ≥
\
Ωk

vp+1k dx =
\
Ω

up+1k dx ≥
1

QM

\
Ω

Qup+1k dx =
1

QM
> 0.

Combining (19), (21) and (22) we conclude that limk→∞ λkε
σ
k = 0.

In particular, εk → 0 and Mk → ∞. Next we verify that the sequence
{uk} is close to a sequence of instantons concentrating in the interior of Ω.

Lemma 4.3. If QM > 22/(N−2)Qm then, up to a subsequence, Pk → P0,
where Q(P0) = QM. Moreover ,

lim
k→∞

\
Ω

∣∣∣∣∇
[
uk − ε

−(N−2)/2
k U

(
S1/2Q

1/N
M

· − Pk
εk

)]∣∣∣∣
2

dx = 0,(23)

lim
k→∞

\
Ω

∣∣∣∣uk − ε
−(N−2)/2
k U

(
S1/2Q

1/N
M

· − Pk
εk

)∣∣∣∣
p+1

dx = 0.(24)

Proof. The functions vk are solutions of the Neumann problems



−∆vk + λkε
σ
k(
T
Ωk
|vk|
τ dx)2/τ−1vτ−1k = Sλk,τQ(εkx+ Pk)v

p
k in Ωk,

∂vk/∂ν = 0 on ∂Ωk,
0 ≤ vk(x) ≤ 1 in Ωk,
vk(0) = 1.

We can assume that Pk → P◦, for some P◦ ∈ Ω, and dist(Pk, ∂Ω)/εk con-
verges in the extended real line. Using elliptic regularity theory we show
that, up to a subsequence, vk → ω in C2loc(Ω∞), where Ω∞ = limk→∞Ωk.
The function ω satisfies




−∆ω = ŜQ(P◦)ω
p in Ω∞,

∂ω/∂ν = 0 on ∂Ω∞,
0 ≤ ω ≤ 1 in Ω∞,
ω(0) = 1,

where Ŝ = S/Q
(N−2)/N
M .

We distinguish two cases: (i) dist(Pk, ∂Ω)/εk converges to a real number,
and (ii) dist(Pk, ∂Ω)/εk converges to ∞. In case (i) we assume that Ω∞ =

R
N
+ . By [12] we see that ω(x) = U(βx), where β

2 = Q(P◦)Ŝ. This yields

β2−N
SN/2

2
=
\

R
N
+

|∇ω|2 dx ≤ lim
k→∞

\
Ωk

|∇vk|
2 dx =

S

Q
(N−2)/N
M

.
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Thus QM ≤ 2
2/(N−2)Q(P◦) ≤ 2

2/(N−2)Qm. So case (ii) prevails. Therefore
Ω∞ = R

N ,

β2−NSN/2 =
\

RN

|∇ω|2 dx ≤ lim
k→∞

\
Ωk

|∇vk|
2 dx =

S

Q
(N−2)/N
M

and QM ≤ Q(P◦). Hence Q(P◦) = QM. Equalities (23) and (24) follow.

We now set W (·) = U(S1/2Q
1/N
M ·) and

Wε,y(·) = ε
−(N−2)/2W

(
· − y

ε

)

for y ∈ R
N and ε > 0. Let

M = {CWε,y : C ∈ R, ε > 0, y ∈ Ω}

We use the notation d(φ,M) = dist(φ,M) = inf{‖∇(φ − ψ)‖2 : ψ ∈ M}.
The following lemma, together with the last one, guarantees the existence
of an instanton closest to uk, in the metric just defined.

Lemma 4.4. Let δ > 0 and {φl} ⊂ H
1(Ω) be such that φl ⇀ 0 in H

1(Ω)
and

d(φl,M)
2 ≤ ‖∇φl‖

2
2 − 2δ.

Then there exists l◦ such that for all l ≥ l◦, d(φl,M) is achieved by some
ClWεl,yl . If yl → y, with y an interior point of Ω, and wl is defined by

φl = ClWεl,yl + wl,

then, up to a subsequence,

(i) lim
l→∞

εl = 0;

(ii) if d(φl,M)→ 0 as l→∞, then lim
l→∞

Cl = C◦ 6= 0;

(iii)
\
Ω

W pεl,ylwl dx = O(ε
(N−2)/2
l ‖wl‖H1(Ω));

(iv)
\
Ω

W p−1εl,ylwl
∂

∂xi
Wεl,yl dx = O(ε

(N−2)/2
l ‖wl‖H1(Ω)).

The proof is almost identical to that of Lemma 5.6 in [21] and is omitted
(see also Lemma 3.1 in [3]).
It then follows from Lemma 4.4 that there exist sequences {CkWδk,yk}

which minimize d(uk,M). Equality (23) implies that

lim
k→∞
‖∇(CkWδk,yk)−∇Wεk,Pk‖2 = 0.

We deduce

(25) Ck → 1, yk → y = P◦ and
εk
δk
→ 1.
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In particular, y is an interior point of Ω. We set

(26) uk = CkWδk,yk + wk,

and define

Wk :=Wδk,yk .

Obviously, from (23) and the definition of CkWk, we get ‖∇wk‖2 → 0. From
(25), we get ‖Wεk,Pk − CkWk‖p+1 → 0, which together with (24) implies
‖wk‖p+1 → 0.

Lemma 4.5. There exists 0 < µ < 1 such that , for sufficiently large k,

pSQ
2/N
M

\
Ω

QW p−1k w2k dx ≤ µ(‖∇wk‖
2
2 + λk‖wk‖

2
τ ).

This follows from Lemma 5.9 of [21].

The next lemma is essentially due to Wang [20] and Zhu [26]. We give
its proof since they do not present it for the whole range of values of τ we
are interested in.

Lemma 4.6. Let N ≥ 5 and 2 ≤ τ ≤ 2N/(N − 1), or N = 4 and
2 < τ ≤ 2N/(N − 1). For any γ > 0,\

Ω

W τ−1k |wk| dx ≤ o(1)δ
τσ/2
k + γ‖wk‖

τ
τ .

Proof. Choose

r ∈

]
max

{
N

N − 2

1

τ − 1
,
2N

N + 2

}
,

τ

τ − 1

[
.

Note that this interval is nonempty since on the one hand

min
τ

τ − 1
=
2N

N + 1
>
2N

N + 2
,

and on the other hand

N

N − 2
< 2 ≤ τ for N ≥ 5 and τ > 2 for N = 4.

The conjugate exponent of r satisfies r′ ∈ ]τ, 2N/(N − 2)[. By the Hölder
inequality,\

Ω

W τ−1k |wk| dx ≤
( \
Ω

W
(τ−1)r
k dx

)1/r( \
Ω

|wk|
r′ dx
)1/r′

≤ Cδ
−(τ−1)(N−2)/2+N/r
k ‖wk‖r′ ,

and, by the interpolation inequality,

‖wk‖r′ ≤ ‖wk‖
a
τ‖wk‖

1−a
p+1,
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where
1

r′
=
a

τ
+
1− a

p+ 1
, 0 < a < 1.

If γ > 0, there exists a C(γ) such that

(27)
\
Ω

W τ−1k |wk| dx

≤ Cδ
−(τ−1)(N−2)/2+N/r
k ‖wk‖

a
τ‖wk‖

1−a
p+1

≤ γ‖wk‖
τ
τ + C(γ)δ

(−(τ−1)(N−2)/2+N/r)·τ/(τ−a)
k ‖wk‖

τ(1−a)/(τ−a)
p+1 .

Now, from the definition of a,

a

(
1

τ
−
1

p+ 1

)
=
1

r′
−
1

p+ 1

and from the definition of σ (eq. (20)),

a

(
1

τ
−
1

p+ 1

)
=

aσ

2N
.

Hence
aσ

2N
=
1

r′
−
1

p+ 1
.

From this we successively get

1

r
−
1

N
=
1

2
−
aσ

2N
,

1

r
−
(N − 2)(τ − 1)

2N
=

(
τ

2N
−

a

2N

)
σ,

(
−
(τ − 1)(N − 2)

2
+
N

r

)
·

τ

τ − a
=
τσ

2
.

Substituting into (27), we derive\
Ω

W τ−1k |wk| dx ≤ γ‖wk‖
τ
τ + C(γ)δ

τσ/2
k ‖wk‖

τ(1−a)/(τ−a)
p+1 .

Since (24) implies that ‖wk‖
τ(1−a)/(τ−a)
p+1 → 0 as k → ∞, the proof is com-

plete.

We will now prove that for large k, Jλk,τ (uk) > S/Q
(N−2)/N
M , which

contradicts Lemma 2.8 and proves inequality (III). So, we estimate the terms
in Jλk,τ . By construction,

T
Ω
Q|uk|

p+1 dx = 1. However, it is convenient to
give the following lower bound whose proof follows from (iii) of Lemma 4.4
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and the arguments in [26]:

( \
Ω

Q|uk|
p+1 dx

)−2/(p+1)
≥ Q

−(N−2)/N
M C−2k ‖Wk‖

−2
p+1

×

(
1−
(p+ γ1)

T
Ω
QW p−1k w2k dx

C2k‖Wk‖
p+1
p+1

− Cδ
(N−2)/2
k ‖wk‖H1(Ω) − C(γ1)‖wk‖

p+1
H1(Ω)

)

where γ1 is any positive number. Regarding ‖Wk‖
−2
p+1, we have

‖Wk‖
−2
p+1 ≥ Q

(N−2)/N
M +O(δNk ).

Inserting this estimate in the last inequality, we get the following lower
bound for (

T
Ω
Q|uk|

p+1 dx)−2/(p+1):

C−2k

(
1−
(p+ γ1)

T
Ω
QW p−1k w2k dx

C2k‖Wk‖
p+1
p+1

− Cδ
(N−2)/2
k ‖wk‖H1(Ω) − C(γ1)‖wk‖

p+1
H1(Ω) +O(δ

N
k )

)
.

To estimate (
T
Ω
uτk dx)

2/τ , note first that

( \
Ω

W τk dx
)2/τ
= δσk

( \
Ωk

W τ dx
)2/τ
= Cδσk + o(δ

σ
k )

since (N − 2)τ > N . In fact, (N − 2)/N < 2 ≤ τ except when N = 4, but
in this case τ > 2. So we can follow the argument in [26] to prove that for
any 0 < γ2 < 1 there is a constant C(γ2) such that

( \
Ω

uτk dx
)2/τ
≥ γ2‖wk‖

2
τ + C(γ2)δ

σ
k .

To estimate
T
Ω
|∇uk|

2 dx, note that\
Ω

|∇Wk|
2 dx =

1

S(N−2)/2Q
(N−2)/N
M

\
Ω

|∇Uk|
2 dx =

S

Q
(N−2)/N
M

+O(δN−2k ).

Therefore \
Ω

|∇uk|
2 dx = C2k

S

Q
(N−2)/N
M

+O(δN−2k ) +
\
Ω

|∇wk|
2 dx.

We are now in a position to estimate Jλk,τ (uk). Combining the previous
estimates gives
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Jλk,τ (uk) ≥

[
S

Q
(N−2)/N
M

+O(δN−2k ) +
‖∇wk‖

2
2

C2k
+
γ2λk‖wk‖

2
τ

C2k
+
C(γ2)λkδ

σ
k

C2k

]

×

[
1−
(p+ γ1)

T
Ω
QW p−1k w2k dx

C2k‖Wk‖
p+1
p+1

− Cδ
(N−2)/2
k ‖wk‖H1(Ω) − C(γ1)‖wk‖

p+1
H1(Ω) +O(δ

N
k )

]
.

For k large, this is greater than or equal to

S

Q
(N−2)/N
M

+
C(γ2)λkδ

σ
k

C2k
+O(δN−2k )

+ γ2
‖∇wk‖

2
2 + λk‖wk‖

2
τ

C2k
−
(p+ γ1)S

T
Ω
QW p−1k w2k dx

C2kQ
(N−2)/N
M ‖Wk‖

p+1
p+1

.

By Lemma 4.5, for k sufficiently large, the difference

γ2
‖∇wk‖

2
2 + λk‖wk‖

2
τ

C2k
−
(p+ γ1)S

T
Ω
QW p−1k w2k dx

C2kQ
(N−2)/N
M ‖Wk‖

p+1
p+1

is greater than or equal to

pQ
2/N
M

C2k

(
γ2
µ
−
p+ γ1
p

) \
Ω

QW p−1k w2k dx,

for some 0 < µ < 1. Choosing γ2 such that µ < γ2 < 1, and then γ1
sufficiently small, we get

γ2
µ
−
p+ γ1
p

> 0.

This implies that

Jλk,τ (uk) ≥
S

Q
(N−2)/N
M

+
C(γ2)

C2k
λkδ
σ
k +O(δ

N−2
k ).

Since 1 ≤ σ ≤ 2, it follows that σ ≤ N − 2, because if N = 4 we do not
allow τ (and hence σ) to equal 2. So, for sufficiently large k,

Jλk,τ (uk) > S/Q
(N−2)/N
M ,

which implies inequality (III), as explained above.

Now that we have proved (III), let us outline the proof of inequality

(II). Let QM ≤ 2
2/(N−2)Qm. One assumes that Sλ,τ < S/(22/NQ

(N−2)/N
m )

for each λ > 0, picks λk → ∞ and minimizers uk = uλk of Jλk,τ withT
Ω
Qup+1k dx = 1, and starts to prove analogues of the previous lemmas.

When one gets to the analogue Lemma 4.3, one proves that, up to a sub-
sequence, {uk} either concentrates in the interior of Ω or concentrates on
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the boundary of Ω. In the former case concentration occurs at a point P◦
with Q(P◦) = QM and one can repeat the argument given above to derive
a contradiction. In the latter case concentration occurs at a point P◦ with
Q(P◦) = Qm.

Let Eλ,τ (u)=
T
Ω
|∇u|2+λ(

T
Ω
uτ )2/τ for u∈H1(Ω) and wk=Q

1/(p+1)
m uk.

Notice that

(28) Eλk,τ (wk) = Q
(N−2)/N
m Eλk(uk) <

S

22/N
.

Following the arguments in [26], one can prove that Eλk,τ (wk) > S/22/N for
λk sufficiently large, which contradicts (28) and proves inequality (II).
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