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Abstract. Prestel introduced a generalization of the notion of an ordering of a field,
which is called a semiordering. Prestel’s axioms for a semiordered field differ from the usual
(Artin–Schreier) postulates in requiring only the closedness of the domain of positivity
under x 7→ xa2 for non-zero a, in place of requiring that positive elements have a positive
product. Our aim in this work is to study this type of ordering in the case of a division ring.
We show that it actually behaves just as in the commutative case. Further, we show that
the bounded subring associated with that ordering is a valuation ring which is preserved
under conjugation, so one can associate with the semiordering a natural valuation.

1. Introduction. The investigation of ordered fields has a long tra-
dition (see [1–4, 6]). They play an important part in many branches of
mathematics. In [5], Prestel introduced a generalization of an ordering of
a field, which is called a semiordering. Prestel’s axioms for a semiordered
field differ from the usual (Artin–Schreier) postulates in requiring only the
closedness of the positive cone under x 7→ xa2 for non-zero a, in place of
requiring that positive elements have a positive product. This generalization
of positive cones and orderings is based on the following observation. Very
often one only uses the property x > 0 ⇒ xa2 > 0 of an ordering together
with 1 > 0. This is especially the case if one deals with quadratic forms. Our
aim in this work is to study this type of ordering in the case of a division
ring. We show that it actually behaves just as in the commutative case. For
example, a division ring admits a semiordering if and only if −1 is not a sum
of products of squares. In fact, we show that every semiordered division ring
is ordered. Moreover, we show that every archimedean semiordered division
ring is an ordered field.

Further, we are concerned with the existence of a natural valuation asso-
ciated with the semiordering. This requires the study of the bounded subring
associated with a given semiordering. We show that the bounded subring is
a valuation ring which is preserved under conjugation, so one can associate
with the semiordering a natural valuation.

2000 Mathematics Subject Classification: Primary 06F25, 16W10.

[263]



264 I. M. IDRIS

To study extensions of semiorderings to larger division rings, we investi-
gate the notion of pre-semiordering in Section 4. Finally, we give an example
of a semiordering which is not an ordering for a division ring. Throughout
we denote by Q the field of rationals and by Q+ the positive rationals.

2. Preliminaries. Throughout this work, D denotes a (not necessarily
commutative) division ring, and D· denotes its multiplicative group of non-
zero elements. We start by giving the definition of a semiordering.

Definition 2.1. By a semiordering (or q-ordering) of a division ring D,
we mean an order relation < such that D contains a subset P (the positive
cone) satisfying

(1) P + P ⊂ P ,
(2) a ∈ P ⇒ ab2 ∈ P for 0 6= b ∈ D,
(3) 0 6∈ P and 1 ∈ P ,
(4) P ∪ {0} ∪ −P = D;

then a > b⇔ a− b ∈ P , and P = {a ∈ D | a > 0}.
We first remark that this definition is the same as in the commutative

case (see [5]). Clearly any ordering of D is also a semiordering.
If D is semiordered we denote P by PD. Let CD be the subset of all

finite sums of elements of the form a21a
2
2 . . . a

2
k in D with every ai 6= 0.

Clearly, CD is closed under sums and products. Also, CD contains inverses
(for c ∈ CD, c−2 ∈ CD ⇒ c−1 = cc−2 ∈ CD). If D is a semiordered division
ring, then for a ∈ PD and c ∈ CD we have ac ∈ PD (by applying conditions
(1) and (2) of the above definition several times). Since 1 ∈ PD, we clearly
have CD ⊂ PD. Also, −1 6∈ PD implies that −1 6∈ CD. So by [8, Theorem
1], D is an ordered division ring. Hence

Theorem 2.2. Every semiordered division ring is ordered.

We note that, although a semiordered division ring is ordered, there is
no guarantee that the given semiordering is an ordering. At the end of this
work, we will give an example of a semiordering which is not an ordering.

Corollary 2.3. A division ring D admits a semiordering if and only
if −1 6∈ CD.
We now prove some properties of semiorderings.

Lemma 2.4. Let D be any semiordered division ring , a ∈ D and CD be
the set defined above. Then

(1) a > 0 if and only if a−1 > 0,
(2) if a > 0, then d2a > 0 for 0 6= d ∈ D and hence ca > 0 for c ∈ CD,
(3) if a > 0, then ra > 0 for every r ∈ Q+,
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(4) if a > 1, then a−1 < 1,
(5) if 0 < a < b and a, b ∈ CD, then a−1 > b−1,
(6) if 0 < a < b and a ∈ CD, then a2 < b2,
(7) if 0 < a < b and b ∈ CD, then a2 < b2,
(8) if a > 0, then xax−1 > 0 for all x ∈ D·.
Proof. (1) Clearly a > 0 implies a−1 = aa−2 > 0.
(2) If a > 0, then ab2 > 0, and b−2a−1 > 0 by (1). So b−2a = b−2a−1a2

> 0. This shows that d2a > 0 for every d ∈ D·. For the rest of (2), use
arguments similar to the proof of Theorem 1.
(3) This is evident.
(4) Since a− 1 > 0, we have 1− a−1 = (a− 1)a−2 + (1− a−1)2 > 0, and

a−1 < 1.
(5) Since b− a > 0 and a−1 ∈ CD, we have ba−1 − 1 = (b− a)a−1 > 0,

i.e., ba−1 > 1. So a−1 > b−1, because b−1 ∈ CD.
(6) Since b − a > 0 and a ∈ CD, we have (b − a)a−1 > 0 and hence

ba−1 > 1. Using (4) gives ab−1 = (ba−1)−1 < 1. So b−1 < a−1 (because
a−1 ∈ CD). From b2b−1a2 < b2a−1a2, it follows that ba2 < b2a so that
ba < b2. Also, a2 < ba (because a < b and a ∈ CD). Thus a2 < ba < b2.
(7) Use a similar argument.
(8) This follows from xax−1 = a(a−1)2(ax)2(x−1)2.

Theorem 2.5. A semiordering < is an ordering of D if and only if for
all a, b ∈ D, 0 < a < b implies a2 < b2.
Proof. Assume < is a semiordering which satisfies the condition in the

statement of the theorem. We prove that < is an ordering. We first claim
that for all a, b ∈ D with a, b > 0 we have ba + ab > 0. Since a − b > 0 or
b − a > 0, we may assume that 0 < a < b. Clearly, a + b > b > b − a > 0
and so (a + b)2 > b2 > (b − a)2. Hence 2(ba + ab) > 0. By Lemma 2.4(3),
ba+ ab > 0.
Next we claim that bab > 0 and bab−1 > 0 for all a, b > 0 in D. If

bab < 0, then −bab > 0 and a > 0 implies (−bab)a + a(−bab) > 0. Thus
−(ba)2 − (ab)2 > 0, which is a contradiction. Hence bab > 0 and bab−1 =
babb−2 > 0.
Now assume that there exist a, b > 0 such that ab < 0. Then −ab > 0

and −ba = b(−ab)b−1 > 0. So −ab− ba > 0, which is a contradiction. Hence
ab > 0 for all a, b > 0 and the semiordering is an ordering.

We call a semiordering < on a division ring D archimedean if for every
a ∈ D, there is some natural number n such that a < n.
Proposition 2.6. A semiordering < on a division ring D is archimed-

ean if and only if Q is dense in D with respect to < (i.e., if a < b then
there is r ∈ Q such that a < r < b).
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The proof of Proposition 2.6 is similar to the one in the case of a field
(see [5]).

Theorem 2.7. Every archimedean semiordered division ring D is an or-
dered field.

Proof. It is known that every archimedean ordered division ring D is an
ordered field. Hence, to prove the theorem, it remains to show that D is
ordered.
Let a, b ∈ D with a > b > 0. Then a+ b > a− b > 0, and there is some

r ∈ Q such that a+b > r > a−b. By Lemma 2.4, (a+b)2 > r2 > (a−b)2. As
in the proof of Theorem 2.5, one can show that ab > 0, i.e., D is ordered.

3. Order valuation. Our next goal is to study the notion of the order
valuation of a semiordered division ring D. We first define the notion of
a bounded element in D. Call a ∈ D bounded if a2 ≤ r for some r ∈ Q+. If
a2 < r for every r ∈ Q+, we call a an infinitesimal. Let VD denote the set
of all bounded elements of D, and let JD denote the set of all infinitesimals
in D. We first establish that VD is a valuation ring in D and the multiplica-
tive group UD of invertible elements in VD is formed by precisely those a
such that r1 ≤ a2 ≤ r2 for some positive rationals r1 and r2 (we call these
elements units). Three more remarks will be needed.

Remark 3.1. For non-zero elements a, b ∈ D and r ∈ Q+:

(1) (a± b)2 ≤ 2(a2 + b2),
(2) a2 < r2 if and only if −r < a < r.
Proof. (1) This follows from the identity

(a+ b)2 + (a− b)2 = 2(a2 + b2),
and the fact that every non-zero square is positive.
(2) Assume −r < a < r; then r − a > 0 and (r + a)2(r − a) > 0. Also

a+ r > 0 implies (r − a)2(r + a) > 0. Hence
2r(r2 − a2) = (r + a)2(r − a) + (r − a)2(r + a) > 0,

i.e., a2 < r2. Conversely, if a2 < r2, then

r ± a = 1
2r
[(r ± a)2 + (r2 − a2)] > 0.

Therefore −r < a < r.
The following two remarks follow immediately from the definition and

Remark 3.1.

Remark 3.2. (1) The set VD of bounded elements is an additive sub-
group of D.
(2) The set JD of infinitesimals is an additive subgroup.
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Remark 3.3. If a is a positive element in a semiordered division ring
D and 0 6= x ∈ D, then:
(1) a is bounded if and only if a < r for some r ∈ Q+,
(2) a is a unit if and only if r2 < a < r1 for some r1, r2 ∈ Q+,
(3) a is infinitesimal if and only if a < r for every r ∈ Q+, and
(4) x is bounded (resp. unit , infinitesimal) if and only if x2 is bounded

(resp. unit , infinitesimal).

Theorem 3.4. Let D be a semiordered division ring. Under the nota-
tions introduced above we have

(1) VD is a total subring of D, i.e., VD is a subring which contains x or
x−1 for every x ∈ D·.
(2) The set of non-units of the ring VD is precisely the ideal of infinites-

imals and consequently , JD is the unique maximal ideal of VD.

Proof. (1) Let a, b ∈ VD, i.e., a2 ≤ r1 and b2 ≤ r2 for some r1, r2 ∈ Q+.
Then

(a− b)2 ≤ 2(a2 + b2) ≤ 2(r1 + r2) = r for some r ∈ Q+.

Hence, from a2+b2− (ab+ba) = (a−b)2 ∈ VD, it follows that ab+ba ∈ VD.
Thus,

bab = 12 [(ab+ ba)b+ b(ab+ ba)− (b2a+ ab2)] ∈ VD.
Similarly, ba2b, ab2a ∈ VD, and (ab)2+(ba)2 = a(bab)+(bab)a ∈ VD; so that

(ab− ba)2 = (ab)2 + (ba)2 − [ab2a+ ba2b] ∈ VD.
By Remark 3.3, ab− ba ∈ VD. Finally, 2ab = (ab+ ba)+ (ab− ba) ∈ VD and
so ab ∈ VD.
If x ∈ D and x 6∈ VD, then x2 > r for all r ∈ Q+, and hence 1− rx−2 =

(x2 − r)x−2 > 0. Then x−2 < 1/r and so x−1 ∈ VD. Thus VD is a total
subring.
(2) We show here that the units are precisely the invertible elements

in VD. If x is a unit, then x ∈ VD and x2 ≥ r for some r ∈ Q+. Then
(x2 − r)x−2 ≥ 0 and so x−2 ≤ 1/r. Hence x−1 ∈ VD and x is invertible in
VD. Conversely, if x is invertible in VD, then x

2 ≤ r1 for some r1 ∈ Q+.
Also, x−1 ∈ VD implies that x−2 ≤ r2 for some r2 ∈ Q+. So, as above,
x2 ≥ 1/r2 = r′2. Hence r′2 ≤ x2 ≤ r1 and x is a unit.
Theorem 3.5. If D is a semiordered division ring , then the bounded

subring VD is preserved under conjugation. Therefore, VD is a valuation
subring of D.

Proof. Let a ∈ VD, a > 0. Then by Remark 3.3, a < r for some r ∈ Q+.
By Lemma 2.4(8), x(r − a)x−1 > 0 for every x ∈ D·, so that xax−1 < r.
Since xax−1 > 0, it follows that xax−1 ∈ VD for every x ∈ D·. If a < 0
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in VD, then −a > 0. Hence −xax−1 ∈ VD and also xax−1 ∈ VD for every
x ∈ D·.
The bounded subring VD of a semiordered division ring D is now a valu-

ation ring. Let G denote the multiplicative group D·/UD, written additively.
We set a = aUD > 0 in G if and only if a ∈ JD. We write a > b⇔ a− b > 0.
Then we have a group ordering on G. Define ω : D· → G by ω(a) = a. For
all a, b ∈ D·, we have

ω(ab) = ω(a) + ω(b), ω(a+ b) ≥ min(ω(a), ω(b)),
i.e., ω is a valuation with valuation ring precisely the bounded subring VD
(see [7]). This valuation is naturally called the order valuation.

Theorem 3.6. In any semiordered division ring D, the residue division
ring D = VD/JD has a semiordering which is archimedean, so D is an
archimedean ordered field.

Proof. Let P = {a+JD | a is a positive unit in D}. Clearly, 1 = 1+JD ∈
P and 0 6∈ P . It is straightforward to check that P is a positive cone of some
semiordering in D.
Consider the element a = a + JD ∈ P , where r2 ≤ a ≤ r1 for some

r1, r2 ∈ Q+. Then r2 = r2 + JD ≤ a ≤ r1 = r1 + JD and we can find a
natural number n such that a < n. Hence, D is an archimedean semiordered
division ring. By Theorem 2.7, D is an archimedean ordered field.

4. Semiorderings under division ring extensions. Let us now dis-
cuss extensions of a semiordering of a division ring D to larger division
rings. As in the commutative case (see [5]), we have to use the notion of a
pre-positive cone. A subset P ⊂ D is called a pre-positive cone if it satisfies:
(1) P + P ⊂ P ,
(2) a ∈ P ⇒ ab2 ∈ P for 0 6= b ∈ D,
(3) 0 6∈ P and 1 ∈ P .
A pre-positive cone P induces an order relation onD, which we call a pre-

semiordering. Any positive cone of a semiordering is clearly a pre-positive
cone. Also, any intersection of positive cones of D is a pre-positive cone
of D. In this section we assume that D is semiordered, that is, −1 6∈ CD,
or equivalently 0 6∈ CD; then CD is a pre-positive cone with the following
features: CD ⊂ P and CDP = PCD = P , for each pre-positive cone P .
Theorem 4.1. If P is a pre-positive cone of D and a 6∈ P , then there is

a pre-positive cone P ′ of D containing P with −a ∈ P ′.
Proof. Let P ′ = P ∪ −aCD ∪ (P + (−a)CD). Clearly −a ∈ P ′. We

check axioms (1) to (3) for P ′. Since P and CD are additive, it follows that
P ′ + P ′ ⊂ P ′. Clearly 1 ∈ P ′, and to show that 0 6∈ P ′, it suffices to show
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that 0 6∈ P + (−a)CD. If 0 ∈ P + (−a)CD, then p− ac = 0 for some p ∈ P
and c ∈ CD. Hence a = pc−1 ∈ PCD = P , which is a contradiction. Axiom
(2) is evident.

Theorem 4.2. Any pre-positive cone P0 of D can be extended to some
positive cone P .

Proof. By Zorn’s lemma, the set of all pre-positive cones extending P0
contains some maximal pre-positive cone P . If a 6∈ P for some a ∈ D, it
follows by Theorem 4.1 that there is a pre-positive cone P ′ containing P and
such that −a ∈ P ′. The maximality of P yields P ′ = P , so that −a ∈ P .
Thus P is a positive cone.

Corollary 4.3. A pre-positive cone P of D is maximal (with respect
to set theoretical inclusion) if and only if P is positive cone.

Theorem 4.4. Let E be any division ring extension of D. Let PD be a
positive cone of D. Let P1 be the set of elements in E which are expressible
as sums of elements of the form

∏

i ajicji (aji ∈ PD and cji ∈ CE = the set
of all finite sums of products of squares in E). If 0 6∈ P1, then the set PD
can be enlarged to some positive cone of E.

Proof. Since 0 6∈ P1, it follows that 0 6∈ CE , and E is ordered. One can
show that P1 is a pre-positive cone of E. Thus, by Theorem 4.2, P1 can be
extended to some positive cone of E which contains P .

Exactly as for a semiordering, one can define the bounded elements, the
infinitesimals and the units for a given pre-semiordering of the division ring
D. For P0 a pre-positive cone of some pre-semiordering, let V0, J0 denote
the sets of all bounded elements and infinitesimals respectively.

Theorem 4.5. Let {Pi}i∈I be the family of positive cones containing a
given pre-positive cone P0 of the division ring D. Let Vi, Ji be the subring
of bounded elements and the ideal of infinitesimals respectively , attached to
the semiordering induced by Pi. Let Ui be the group of units of the ring Vi.
Then

(i)
⋂

i Vi = V0,
(ii)
⋂

i Ji = J0,

(iii)
⋂

i Ui = U0.

Proof. We prove (i); for (ii) and (iii) use similar arguments. Clearly V0 ⊂
⋂

i Vi. Conversely, if a 6∈ V0, we show that a 6∈ Vi for some i. From a 6∈ V0,
it follows that a2 > r for every positive rational r, that is, a2 − r ∈ P0 for
every rational r. Let Pr = P0∪ (a2−r)C ∪ (P0+(a2−r)C) and P ′0 =

⋃

r Pr.
One can show that P ′0 is a pre-positive cone of D containing P0 and a

2 − r
for every rational r. By Theorem 4.2, P ′0 can be extended to some positive
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cone P . Clearly P0 ⊂ P and a2 − r ∈ P for every rational r. Thus a is not
bounded in P , i.e., a 6∈ Vi for some i.
To a certain extent Theorem 4.5 reduces the treatment of pre-semiorder-

ings to that of semiorderings. For instance one has the following fact.

Corollary 4.6. For any pre-positive cone P0 of D, the bounded subring
V0 is preserved under conjugation.

5. An example. Finally, we give an example of a semiordering which
is not an ordering for a division ring. Start with a semiordered commutative
field F (e.g., R). Construct the field F ((x)) of formal Laurent series in one
indeterminate x over F . Next form the division ring D of formal Laurent
series in an indeterminate y with coefficients in F ((x)) written on the left,
according to the relation yx = 2xy. We note that the characteristic of F is
not 2 (actually the characteristic of any ordered field is zero). Clearly, the
centre of D is F . We will show that D has a semiordering which extends
that of F , and this semiordering is not an ordering.

Let G = Z × Z be an abelian group under componentwise addition,
ordered lexicographically by

(m,n) > 0 or < 0 according as m > 0 or m < 0

and

(0, n) > 0 or < 0 according as n > 0 or n < 0.

For α ∈ D define ω(α) = (p, q) ∈ G, where xqyp is the monomial of
smallest p+ q in the element α. This is a valuation on D whose residue field
D can be identified with the centre F . We now lift the semiordering of the
residue field F to D.

From the proof of Theorem 3.6, we expect the positive cone PD of D to
contain all α such that α+ JD is positive in D = F and α = u a unit in D.
In fact, every α ∈ D, where ω(α) = (p, q), can be written in the form uxqyp
for a unit u in D. Since yx = 2xy, it follows that

x2y2 =

(

1√
2
xy

)2

.

So every α ∈ D can be written as a product of an element of the form u,
ux, uy or uxy (where u is a unit in D) and a non-zero square in D.

Let M = {u, ux, uy : u is a unit in D and u + JD > 0 in D} ∪ {uxy :
u is a unit in D and u + JD < 0 in D}. Take PD = M ∪ MD·2. It is a
routine matter to check that PD is a positive cone of a semiordering of D
which extends the semiordering of F . Clearly, x > 0 and y > 0 but xy < 0
and hence PD is not closed under products, i.e., PD is not an ordering.
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