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FORCING FOR hLL AND hd

BY
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SAHARON SHELAH (Jerusalem and New Brunswick, NJ)

Abstract. The present paper addresses the problem of attainment of the supremums
in various equivalent definitions of the hereditary density hd and hereditary Lindel6f
degree hL of Boolean algebras. We partially answer two problems of J. Donald Monk [13,
Problems 50, 54], showing consistency of different attainment behaviour and proving that
(for the variants considered) this is the best result we can expect.

0. Introduction. We deal with the attainment problem in various defi-
nitions of two cardinal functions on Boolean algebras: the hereditary density
hd and the hereditary Lindel6f degree hL. These two cardinal functions are
closely related, as is transparent when we pick the right variants of (equiv-
alent) definitions. Also they are both somewhat related to the spread s of
Boolean algebras. So, for a Boolean algebra B, we define

s(B) = sup{k : there is an ideal-independent sequence of length x},

hd(B) = sup{k : there is a left-separated sequence of length x},
hL(B) = sup{x : there is a right-separated sequence of length «}.

Let us recall that a sequence (a¢ : £ < k) of elements of a Boolean algebra is:

e ideal-independent if

ag £ \/ ac for each £ < K and a finite set w C k \ {¢},
Cew

o left-separated if
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ag % \/ ac for each £ < k and a finite set w C k\ (£ + 1),
(ew

e right-separated if

ag % \/ ac  for each £ < k and a finite set w C &.
Cew

The above definitions of the three cardinal functions are of special use
(see e.g. [15, §1]). However, these definitions do not explain the names of the
functions, nor are they good enough justifications for the interest in them.
But all three functions originate in the cardinal functions of the topological
space Ult(B) (of ultrafilters on B). And thus, for a Boolean algebra B, we
may define (or prove that the following equalities hold true):

s(B) = sup{| X| : X C Ult(B) is discrete in the relative topology},
hd(B) = sup{d(X) : X C Ult(B)}, where
d(X) =min{]Y]:Y C X is dense in X},
hd(B) = sup{L(X) : X C Ult(B)}, where
L(X) = min{x : every open cover of X has a subcover of size < x}.

The respective pairs of cardinal numbers are defined using sup, so even if we
know that they are equal we still may expect different attainment properties:
one of the families of cardinals may have the largest member while the other
not. Also we may ask if the sup has to be attained. Situation may seem even
more complicated if one notices that there are more than just two equivalent
definitions of the cardinal functions s, hd, hL: Monk [13] lists six equivalent
definitions for spread (see [13, Theorem 13.1]), nine definitions for hd, and
nine for hL (see [13, Theorems 16.1, 15.1]). Fortunately, there are a number
of dependencies here.

First, all of the equivalents of spread have the same attainment proper-
ties. Moreover, the spread is always attained for singular strong limit cardi-
nals and for singular cardinals of countable cofinality (for these and related
results see Hajnal and Juhdsz [3]-[5], Juhdsz [8], [9], Roitman [14], Kunen
and Roitman [11], Juhdsz and Shelah [10]). Then Shelah [20] proved that
2¢(s(B)) < 5(B) implies that the spread is attained (see 1.3 here). Finally, it
is shown in Shelah [18, §4] that, e.g., if u is a singular strong limit cardinal
such that p < cf(\) < A < 2#, then there is a Boolean algebra B such that
IB| = s(B) = X\ and the spread is not attained. Thus, to some extent, the
problem of attainment for spread is settled.

Many of the results mentioned above can be carried over to (some) vari-
ants of hd and hL.. However, the difference between these two cases and the
case of the spread is that the various equivalent definitions of the relevant
cardinal functions might have different attainment properties.
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Let us introduce some of the equivalents of hL, hd. They will be called
hL(y), hd,), with the integer n referring to the cardinal , as used in the
proofs of [13, 15.1 and 16.1], respectively. Also, we will have hdzrn) and hLz;)
to have proper language to deal with the attainment questions.

Let us start with the hereditary Lindelof degree hL. First, for a topolog-
ical space X we define the Lindeldf degree L(X) of the space X as

L(X) = min{\ : every open cover of X has a subcover of size < \}.

DEFINITION 0.1. Let B be an infinite Boolean algebra. For an ideal I in
a Boolean algebra B we let

cof(I) = min{|A|: AC I and (Vb€ I)(Ja € A)(b < a)}.
Now we define

th)) (B) = sup{L(X)™) : X is a subspace of Ult(B)},

hL{}) (B) = sup{cof (I)*) : T is an ideal of B},

hLE;r)) (B) = sup{/-a(ﬂ : there is a right-separated sequence
(age : € < k) in B}.

The superscript “(4)” in the above definitions means that each of the for-
mulas has two versions: one with “+” and one without it.

The cardinals mentioned in 0.1 are among those listed in [13, Theo-
rem 15.1], and so hLg)(B) = hL()(B) = hL)(B). The attainment prop-
erties can be described using the versions with “+7: hLZ) (B) = hL;(B)

means that the supremum is not attained; hLer.) (B) = hLz;)(IB%) means that
the two definitions of hL. have the same attainment behaviour for B. It is
not difficult to note that

hL’, (B) = hL(7)(B) = hL{

(7) (1y(B) = hL1)(B)

and

hL5)(B) = hLE'['J) (B) is a regular cardinal = hLE"?) (B) = hL7(B)
(and the attainment of hL in senses not listed in 0.1 can be reduced to those
three; see [13, pp. 190, 191] for details). Also, if hL(B) is a strong limit car-
dinal or if it has countable cofinality, then hL ) (B) < hLzr?) (B) (see Juhdasz
[9, 4.2, 4.3)).

In 1.4 we will show that if hL(B) is a singular cardinal such that 2°f(hL(%)
< hL(B), then hL, (B) = hL{},(B) = hL,(B) = (hL(B))*. Thus, e.g., un-
der GCH, the sups in all equivafent definitions of hL. are attained at singular
cardinals. Next, in Section 3, we use forcing to show that, consistently, there
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is a Boolean algebra B such that

hL(7)(B) <hL{)(B) and hL(,
(see 3.7). This still leaves some aspects of [13, Problem 50] open: are there
any implications between attainment in the hL ) and hL;) senses? Between
the hL ) and hL7) senses?

We also carry out the parallel work for the hereditary density. Let us
introduce the relevant definitions. The density d(X) of a topological space
X is defined as the minimal size of a dense subset of X. The topological
density d(B) of a Boolean algebra B is the density of the space Ult(B) of
ultrafilters on B. The algebraic density (sometimes also called the m-weight)
of a Boolean algebra B is

7(B) = min{|A|: A C B\ {0} and (vb € B\ {0})(3a € A)(a < b)}.

(B) = hL1)(B)

DEFINITION 0.2. For an infinite Boolean algebra B we let
hdgg)) (B) = sup{d(X)™) : X is a subspace of Ult(B)},

(+)
hd ;' (

B) (+)
hdH)(IB%) = Sup{w(B*)H) : B* is a homomorphic image of B},
B)

= sup{x'"/ : there is a left-separated sequence of length x},

)

(+)
hd g’ (

(Again, the superscripts “(+)” mean that we have two variants for each
cardinal: with and without “+7.)

= sup{d(B*)*) : B* is a homomorphic image of B}.

As before, the cardinals mentioned in 0.2 correspond to those listed in
[13, Theorem 16.1], and the variants with “+” reflect the attainment prop-
erties. The known dependencies here are

hdt, (B) = hd5)(B) = hd, (B) = hds)(B)

5) )
= hdj, (B) = hd()(B) = hdf

(0) (B) = hd ) (B)

and
— +
hd gy (B) = hd(O)
(and Monk [13, Problem 54] asked for a complete description of dependen-

cies). As for hL, if hd(B) is a strong limit cardinal or if it has countable

cofinality, then hds)(B) < hd?g)(IB%) (see Juhdsz [9, 4.2, 4.3]).

In 1.5 we note that if hd(B) is a singular cardinal such that 2°f(hd(®) <
hd(B), then hd (B) = hd 7 (B) = hd;(B) = hd,(B) = (hd(B))*. Con-
sequently, GCH implies that the sups in all equivaient definitions of hd are

attained at singular cardinals. Then, in Section 4, we show that, consistently,

(B) is a regular cardinal = hd) = hd?:,)) (B)
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there is a Boolean algebra B such that
hd(5)(B) < hd;(B) and hdf (B) = hd(7)(B)

(see 4.5). This still leaves several aspects of [13, Problem 54] open.

Finally, in the last section of the paper we show that (if we start with the
right cardinals p, A, cf ()\) < A), adding a u-Cohen real produces a Boolean
algebra B such that hL(7)( ) = hd?g)( ) = sT(B) = X (put 5.4, 5.6 to-
gether). This result is of interest as it shows how easily we may have algebras
in which the three cardinal functions do not attain their supremums. (But

of course there is the semi-ZFC result of [18, Theorem 4.2].)

NOTATION. Our notation is standard and compatible with that of clas-
sical textbooks on set theory (like Jech [7]) and Boolean algebras (like Monk
[12], [13]). However in forcing considerations we keep the older tradition that

the stronger condition is the greater one.
Let us list some of our notation and conventions.

1. A name for an object in a forcing extension is denoted with a dot
above (like X ) with one exception: the canonical name for a generic filter
in a forcing notion P will be I's. For a P-name X and a P-generic filter G
over V the interpretation of the name X by G is denoted by X&.

.4, 5,a,0,7,0,... will denote ordinals and k,u,A,0 will stand for
(always infinite) cardinals.

3. For a set X and a cardinal \, [X]<* stands for the family of all subsets
of X of size less than A. If X is a set of ordinals then its order type is denoted
by otp(X).

4. Sequences of ordinals will be typically called o, 9,7, v; the length of a
sequence g is lh(g); ¥ < 7 means that the sequence v in an initial segment
of 1. The set of all sequences of length u with values in x will be denoted
by p”. The lexicographic order on sequences of ordinals will be called <jex.

5. In Boolean algebras we use V (and \/), A (and A) and — for the

Boolean operations. If B is a Boolean algebra and z € B then 2° = =z,

! = —z. The Stone space of the algebra B (the space of ultrafilters) is
called Ult(B). When working in the Stone space, we identify the algebra B
with the field of clopen subsets of Ult(B).

6. For a subset Y of an algebra B, the subalgebra of B generated by Y

is denoted by (Y)p and the ideal generated by Y is called idg(Y).

Acknowledgements. We would like to thank the referee for valuable
comments and suggestions.

1. Golden Oldies: the use of [20]. In this section we recall how [20]
applies to the attainment problems. The proofs of 1.2 and 1.3 were presented
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in [20], but we recall them here, as we have an impression that those beautiful
results went somehow unnoticed. Also, as the results of Sections 3 and 4
complement the consequences of [20, Lemma 5.1] presented here, it may be
convenient for the reader to have all the proofs presented as well.

HyPOTHESIS 1.1. Let u, A be cardinals, and Y = (x; : i < cf(\)) be an
increasing sequence of regular cardinals such that
cf(N) < p= 2 <X= sup x; and p < xo.
i<cf(A)
THEOREM 1.2 (see [20, Lemma 5.1]). Let X be a topological space with

a basis B consisting of clopen sets. Suppose that @ is a function assigning
cardinal numbers to subsets of X such that &(X) > X and:

(i) #(A) < P(AUB) < P(A)+D(B) +XNg for A,BC X,
(ii) for each closed set Y C X such that ®(Y) > X and for i < cf(N),
there are (uq : o < )y C B and (yo : a« < p) CY such that:

(a) Yo Eua NY,
(b) (Vv € B)(ya € v=D(vNY) > xi),
(c) (Vg:p— 2B, B < p)(g(e) = 9(B) & ya & up),
(iii) if (An o < p) is a sequence of subsets of X such that P(As) < X
(for a < p) then &, ., Aa) < Xi-
Then there is a sequence (v; : i < cf(\)) C B such that

(Vi < cf(N)) (@(vi VU vj) > X)

J#i
Proof. First, by induction on i < cf(\), we choose families K; of clopen
subsets of X, and sets D; C X such that |K;| = |D;| = u. So suppose that
K, D; have been defined for j < i. For each U € [, K;]<*™) such that
(X \UU) > Apick (4 :a < p) € X\U and (¥ : o < p) C B as
guaranteed by (ii) (for i and Y = X \ |JU). Let D; consist of all y* (for U
as above and a < p); note that |D;| = p. Let K; be a family of clopen sets

such that |K;| = p and for each U as above:

a<p

o v € K; for all a < p,

o if Y € uﬁf\u%, @, 8 < i, then there is u € K; N B such that y¥ € u C
g \ uf,

.ifUEKi thenX\uEK,;.
Let K = U, cpn) K (clearly |[K| = p) and let Z; = {o € X : if {v :
§ <cf(N)} € K and @ € (Ve op(n) Ve then D((Neoep(n) ve) = X}

CLam 1.2.1. If Y C X is a closed set such that ¢(Y) > x;, then
Z;NY #0.
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Proof. Suppose that for each * € Y we have a sequence (vgC
§ < cf(N)) € K such that @ € ¢y ve and P((Neeepn) v€) < Xi- There
are at most p possibilities for such sequences, so we get a set W € [Y]<#

such that
Y C U ﬂ vg.
€W £<cf(N)

Use (iii) to conclude that @(U, ey MNecer(r) v€) < Xi» and next (i) to get a
contradiction with #(Y) > A\. =

For each i < cf()) fix z; € Z,.
Now, by induction on i < cf(\), choose v; € K; and x; € Z; such that:

() z; € vi\Uijj, v; € B,

(ﬁ) ZT; ¢ v; for j <1,

(7) ze & v; for i < e < cf(N).
Suppose that z;,v; have been defined for j < i. Let = {v; : j < i} and
Y = X \JU (so it is a closed subset of X). By (v), for € > i we have z. € Y
and thus @(Y') > x. (just look at the definition of Z.; remember X\ v; € K),
and hence @#(Y) > \. Consequently, we have sequences (y% : o < p) C D;
and (uY : o < p) C K; as chosen before (so they are as in (ii)). Consider a
function g defined on p such that

gla) =N ({ze:e <cfN)}U{z;:j < i}).

So by (ii)(c) we find distinct o, 8 < p such that g(a) = g(3) and y% ¢ u%
Then, by the definition of K, we find v; € K;NB such that y¥% € v; C u%\u%
It follows from (ii)(b) that ¢(v; NY) = @(v; \U;,;vj) = xi. By Claim 1.2.1
we may pick z; € Z; Nv;NY = Z; Nw; \ Uj<i v;. Since, by our choices, v; is
disjoint from {z. : ¢ < cf(\)} U {z; : j < i}, the inductive step is complete.

After the inductive construction is carried out, look at the sequence
(v; + @ < cf(X)). Since z; € Z; Nv; \ U v; we easily conclude that
P(vi\ Uz vj) = xi- =

COROLLARY 1.3 (see [20, 3.3, 5.4]). If B is a Boolean algebra such that
s(B) = A, then sT(B) = A\ ™.

Proof. For each ¢ < cf(\) we may pick a discrete set A; C Ult(B) of
size x;. Let X = Ui<Cf(>\) A; (and the topology of X is the one inherited
from Ult(B)) and let B = {bNX : b € B}. Finally let #(A) = |A| for A C X.
Note that X, B, @ clearly satisfy clauses 1.2(i,iii). Suppose that the demand
in 1.2(ii) fails for ¢ < cf(\) and a closed set Y C X (so |Y| = A). Let

Y ={yeY :(MeB)(ycv=|vNY|>x:)}
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CAsE 1: |Y*| < p. Then |Y\Y;*| = X. For each y € Y \ Y;* pick v¥ € B

such that y € v¥ and [vY NY| < x;. Consider the function
F:Y\Y"—->PY\Y):y—v/NnY\Y .

By the Hajnal Free Set Theorem (see Hajnal [2]) there is an F-free set

S CY\Y" of size \. Then y ¢ F(y') for distinct y,y’ € S, and thus

v/ NS = {y} for y € S. Consequently, S is discrete and s™(B) > \.

CASE 2: |Y;*| > p. Forsome j < cf(X) we have |Y;*NA;| > i, so we may
choose distinct yo € Y;* N A; for o < p. The set {y, : o < p} is discrete (as
so is A;j), so we may pick u, € B such that (Va, 3 < p)(ya € ug < a = f).
Then (Yo, uq : o < ) is as required in 1.2(ii), contradicting our assumption
that this clause fails.

So we may assume that the assumptions of 1.2 are satisfied, and therefore
we may find (v; : ¢ < cf(A)) € B such that |v; \ U;,;v;| = xi for each
i < cf(X). Then, for every i < cf(\), there is £(i) < cf(\) such that

‘Ag(i) Nw; \ U 'Uj‘ > Xi-
J#i

A= U (Aewnvi\Uw).

i<cf(N) i

Clearly |A| = A and A is discrete. m

THEOREM 1.4. If B is a Boolean algebra satisfying hL(B) = X then

+ Tt —hrt _
hL,(B) = hL{},(B) = hL (B) = AT

Proof. If sT(B) > A, that is, if B has an ideal independent sequence of
length A, then clearly all sups in the equivalent definitions of hLL are attained.
So we may assume

(®) sT(B) < X and thus, by 1.3, s7(B) < A\. We may also assume that
sT(B) < xo-

Let X = Ult(B), B=B, and for Y C X let
&(Y) = sup{k : there is a right-separated sequence in Y of length }.

Let

(Recall that in a topological space Y, a sequence (ye : & < k) is right-
separated whenever all initial segments of the sequence are open in the rel-
ative topology.) We are going to apply 1.2 to X, B, @, and for that we
need to check the assumptions there. Clauses (i) and (iii) are obvious; let us
verify 1.2(ii).

Let i < cf(A\) and let Y C Ult(B) be a closed set such that &(Y) = A.
Let (x¢ : € < Xj) C Y be a right-separated sequence, and let b¢ € B be such
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that z¢ € be and ¢ € be for £ < ( < X; - Let
Z={¢<xf cf()=xi & FaeB)(zg€a& d(anY) < x;)}

CLAaM 1.4.1. Z is not stationary in X;'F-

Proof. Assume Z is stationary. For £ € Z pick a¢ € B such that z¢ € a¢
and @(as NY) < x;. Note that then for some ((£) < £ we have

(Ve < &) (ze € ag = ¢ < ((§)).
By the Fodor lemma, for some (* the set Z* = {{ € Z : ((§) = (*} is
stationary. Now look at the set Y* = {z¢: { € Z* & £ > (*}: we have
(V€€ Z"\ (C"+ 1)) ((ag Nbe) NY™ = {ze}).

Consequently, Y* is a discrete set of size x;, contradicting (®). m

Thus we may pick an increasing sequence ({(«) : a < pu) of ordinals
below x; such that cf(¢(a)) = x; and {(a) & Z (for a < p). Let yo = T¢(q)
and uq = bg(q). Then (Yo, uq : a < p) is as required in 1.2(ii) (for Y,7).

Consequently we may apply 1.2 to choose a sequence (v; : i < cf(\)) CB

such that
(Vi < cf(N)) ((ﬁ(vi VU vj) > X)
J#t

For i < cf(\) choose a right-separated sequence (yg D& < xi) C
Vit1 \ Ujpip1 vj- Let I consist of those b € B such that for some finite
set W C cf(A) and a sequence (((i) : i € W) € [[,cy xi we have

(Vi < cf(N)(VE < xi)(ye €b=i € W & & < ((3)).

CLAM 1.4.2. I is an ideal in B and cof(l) = \. Consequently, hL?‘l)(B)
= A1 and hence hL?;) (B) = A\T.

Proof. Plainly, I is an ideal in B. Suppose that A C [ is of size less
than A, and for b € A let Wy, € [cf(N)]<, (((7) : i € W) € [[iew, X
witness b € I. Let ¢ < cf(\) be such that x; > |A| and let sup{¢y(i) :
(Fbe A)(i € W)} < & < ). Take b € B such that yé eband (V¢<xi)(E<(
= y¢ ¢ b). Then

ylebNup = j=ike<g,
so v;41 Ab € I, but it is not included in any member of Z. =
Let Y = {y} i < cf(A) & ¢ < xi}-

Cramm 1.4.3. L(Y) = A, and consequently hLE'['J) (B) = AT
Proof. For i < cf(\) and £ < x5, let U; ¢ be an open subset of v;4; such
that

(V¢ <xi)(y € Uig & ¢ < ).
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Put Uy = {Use : € < xi}, U = U;<p(n) Ui 1t should be clear that if U’ C U;
is of size less than x; then Y N JU' # Y NnUUi. Also yi & UU; C v
for ¢ # j, so we may conclude that no subfamily of U of size less than A
covers Y, showing the claim. m

THEOREM 1.5. If hd(B) =\ then hd},

®)
= hd 7, (B) = hd;,(B) = \T).

Proof. We may argue as in 1.4 and use 1.2 to get our conclusion. How-
ever, an alternative way is to use a result of Shapirovskii that for every
compact space X, hd(X) < s(X)™T (see Shapirovskii [17] or Hodel [6, 7.17]).
Consequently, in our situation, hd(B) = s(B) and by 1.3 we conclude that
sT(B) = A*. But this implies that there is a homomorphic image B* of
B with cellularity ¢(B*) = A (see [13, Theorem 3.25 and p. 175]). Clearly
d(B*) > ¢(B*), so we get our conclusion. m

(B) = A" (and thus also hd ;) (B)

2. Some combinatorics. Arguments based on the A-lemma are very
important in forcing considerations. The result quoted below is a variant of
the A-lemma and in various forms was presented, proved and developed in
21, 56], [19, §6] and [23, §7).

LEMMA 2.1 (see [19, 6.1]). Assume that:

(i) 0,0 are regular cardinals and k is a cardinal,
(i) (Va < o)(lal” <o),
(iii) D is a o-complete filter on 0 containing all co-bounded subsets of 0,

(iv) (B 1 e < k) is a sequence of ordinals (for o < ),
(v) X C 0 is such that X # () mod D.

Then there are a sequence (3% : e < k) and a set w C k such that:

(a) (Ve € \w)(o < cf(B7) <),
(b) the set

B:={ae X :ife cw then B¢ = B,
ife € K\ w then sup{B; : ( <k, B <P} < B <P}
is not ) modulo the filter D,
(c) if BL < BE (for e € K\ w) then
{a€eB: (Ve er\w)(Bl < B%)} # 0 mod D.
The above version of the A-lemma will have multiple use in our proofs in

the next two sections. In particilar, it will be applied to filters given by 2.2,
2.3 below.

LEMMA 2.2. Suppose that B is a Boolean algebra generated by (x¢ :
£ < x). Let I C B be an ideal with cof(I) = X and let Ry < p < A.
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Then there are a regular cardinal 0 € [u, A], a (<0)-complete filter D on 0
and a sequence (ay : o < 0) C I such that:

(*1)  all co-bounded subsets of 6 are in the filter D, and for every b € I,
{a<0:aq <b} =0 modD,

(%2)  for each o < 0, an & idp({ag: B < a}),
(x3)  every ao (for a < ) is of the form

ao = xé((Z’ll)) (where n < w, &(a, 1) < x, tla,l) < 2).

I<n

Proof. 1t is basically like [22, 2.2, 2.3], but for the reader’s convenience
we present the proof fully.

Cram 2.2.1. Assume pg < X. Then there are a regular cardinal
0 € (1o, N and a set Y € [1)? such that

(VZ e [II<) @b e Y)(Va € Z)(b £ a).
Proof. Assume not. By induction on |Y'| we show that then
(®) if Y € [I]* then there is Y* C I such that |Y*| = uo and
(VbeY)3FacY™)(b<a).

If |Y| < po, then there is nothing to do. Suppose now that Y C I and |Y| >
to is a regular cardinal. Then, using the assumption that the claim fails, we
may find a set Z C I such that |Z| < |Y| and (Vb € Y)(Ja € Z)(b < a).
Now apply the induction hypothesis to Z and get a set Z* C I of size pg
such that (Va € Z)(3c € Z*)(a < ¢)—clearly the set Z* works for Y too.

So suppose now that ¥ C I and |Y| is a singular cardinal > pqg.
Let Y = Ugecer(y)) Ye, where |[Ye| < Y] (for £ < cf(]Y])). For each
¢ apply the inductive hypothesis to get Y;* C I such that [Y| = po and
(Vb € Ye)(3a € Y¢) (b < a). Put Y = Ue_g(y|) Y¢" and note that [Y| <
cf(|Y]) - mo < |Y|. Again, apply the inductive hypothesis (®), this time
to YT, to get the corresponding Y* and note that it works for Y too.

To finish the proof of the claim note that the statement in (®) contradicts
the assumption that po < A = cof(l). m

If aset Y C I is given by 2.1.1 for I, ug, 0 then we say that it is tem-
porarily (I, uo,0)-good.

CrAmm 2.2.2. Suppose that Y C I is temporarily (I, p,0)-good, k < |Y|.
Assume Y = U£<KY5. Then for some § < kK the set Y¢ is temporarily
(I, 1, 0)-good.
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Proof. Suppose that no Y¢ is temporarily (1, 1, )-good. For £ < k choose
Ze C I such that |Z¢| < |Y]| =6 and

(Vb eYe)(Fa € Ze)(b < a),

and put Z = Ug<,€ Z¢. Then Z contradicts Y being temporarily (I, p,6)-
good. m

Now, let Y C I be a temporarily (I, u,6)-good set, § = |Y|, and let
Y = {by : @ < 0} be an enumeration. Each b, can be represented as
— t(e,4,0)
b=V N\ T
j<jo¢ I<ng

By 2.2.2 we find n*, j* and A € [0]? such that (Va € A)(jo = 7* & ne = n*)
and the set Y* = {b,, : « € A} is temporarily (I, u,6)-good. For j < j* and
o€ Alet b, = N\, a:?(z]]ll)) and Y7 = {b) : a € A}. We claim that for
some j < j* the set Y7 is temporarily (I, u,6)-good. If not, then we find
Z; C I (for j < j*) such that |Z;| < 6 and (Va € A)(3a € Z;)(V), < a).
Put

7 = {ao\/...\/aj*_l tag € ZOv"'ya'j*—l S Zj*—l}

and note that this set contradicts “Y™* is temporarily (I, u, #)-good”.

So let jo < j* be such that the set Y** := {bJ0 : o € A} is temporarily
(I, p,0)-good and let Y** = {a, : @ < 8} be an enumeration.

Forbe Ilet F, = {a < 0 : a, £ b} and let Dy be the (<f)-complete
filter of subsets of 6 generated by {F}, : b € I}.

First note that if x < 0 and (b¢ : £ < k) C I then (by the choice of Y**)
we may find o < 6 such that (V€ < k)(aa £ be). Consequently, (., Fy, # 0
and we may conclude that Dy is a proper filter on . Since o & F,,_, we see
that Dy extends the filter of co-bounded subsets of 6.

CrAM 2.2.3. The set At :={a < 0:a, €idg({ag: B < a})} does not
belong to the filter Dy.

Proof. Assume toward contradiction that AT € Dy. Thus we have a
sequence (be : & < k) C I, k < 0, such that ﬂ§<ﬁ F,, € AT. It follows
from the choice of Y** that Y** ¢ idg({be : £ < k}). So let a < 6 be the
first such that ao & idp({b¢ : £ < }). This implies that ao € e, Fb,
C A*, and thus a, € idg({ag : 8 < a}). By the minimality of o we have
idg({ag : B < a}) Cidp({be : £ < k}), and we get a contradiction. m

Take the set AT from 2.2.3 and let D = {X \ AT : X € Dy} . Then the

filler D and (an : o € 6\ AT) satisfy the demands (x1)—(*3) (after taking
the increasing enumeration of 6 \ A1). w2

LEMMA 2.3 (see [22,2.2,2.3]). Suppose cf(X) < A, u < A. Assume that B
is a Boolean algebra generated by (z¢ : £ < x) and I C B is an ideal such that
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7(B/I) = A. Then there are a regular cardinal 0 € [u, \], a (<0)-complete
filter D on 0 and a sequence {(aq : o < 6) CB\ I such that:

(®1)  the filter D contains all co-bounded subsets of 6 and for every b €
B\ I,
{a<6:b<a, mod I} =0 modD,
(®2) if B<a<0thenagA (—ay) &1,
(®3)  every ao (for a < 0) is of the form

g = :Ez((zll)) (where n < w, &(a,l) < x, tla,l) < 2).

I<n
Proof. 1t is an easy modification of [22, 2.2, 2.3] (and the proof is fully
parallel to that of Lemma 2.2 here). =

One of the ways of describing Boolean algebras is giving a dense set of
ultrafilters (equivalently: homomorphisms from the algebra into 2). This is
useful when we want to force a Boolean algebra by smaller approximations
(see the forcing notions used in [22], [16]).

DEFINITION 2.4. For a set w and a family F' C 2 we define

(F) = {g € 2" : (Vu € [w]<*)(3f € F)(f1u = glu)}.
Let B, r) be the Boolean algebra generated freely by {z, : & € w} except
that if ug,u1 € [w]<* and there is no f € F such that flug =0, flu; =1

then
/\ To N /\ (—z4) =0.

acul acuo
PROPOSITION 2.5 (see [22, 2.6]). Let F' C 2¥. Then:

(1) each f € F extends (uniquely) to a homomorphism from B, ) to
{0,1} (i.e. it preserves the equalities from the definition of B, r)),

(2) if 7(yo,...,y1) is a Boolean term and ao,...,0q € w are distinct
then

B(va) ‘: T(xao, e ,:L’al) 75 0
if and only if (3f € F)({0,1} = 7(f(a0),- .., flar)) = 1),
(3) if wCw*, F* C 2w and
(VfeF)3ge F')(f Sg) and (Vg€ F)(glw € cl(F))
then By, ) is a subalgebra of By« p-).

REMARK 2.6. Let F' C 2. We will use the same notation for a member
J of F' and the homomorphism from B, r) determined by it. Hence, for a
Boolean term 7, a finite set v C w and f € F, we may write f(7(z, : @ € v))
ete.
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PRrROPOSITION 2.7. Let B be a Boolean algebra.
(1) A sequence @ = (aq : o < k) of elements of B is:

e ideal-independent if and only if for each a < k there is a homo-
morphism fo : B — {0,1} such that

falaa) =1 and (V6 < k) # B = falap) = 0);

e left-separated if and only if for each a < k there is a homomorphism
fa : B —{0,1} such that

falan) =1 and (V8 <k)(a<f = falag)=0);

e right-separated if and only if for each a < K there is a homomor-
phism fo : B — {0,1} such that

falaa) =1 and (VB < a)(fa(ag) =0).

(2) If the algebra B is generated by a sequence (x¢ : € < ), and there is
an ideal-independent (left-separated, right-separated, respectively) sequence
of elements of B of length k, then there is such a sequence with terms of

the form
- t(ak)
aa= /\ Tean)
k<kq
and where (k) < x, t(a, k) € {0,1} and &(a, k) # &(a, k') whenever
<k <kq.

3. Forcing for hL. In this section we show that consistently there is a
Boolean algebra B of size A in which there is a strictly increasing A-sequence
of ideals but every ideal in B is generated by less than A elements. This
answers [12, Problem 43] (and thus part of [13, Problem 50]). The problem
if the relevant example can be constructed just from cardinal arithmetic
assumptions remains open.

DEFINITION 3.1. (1) A good parameter is a tuple S = (u, A,Y) such that
1, A are cardinals satisfying

p=put<cf(A) <X and (Va < cf(N)(VE < p)(a < cf(N),

and X = (x; : @ < cf(\)) is a strictly increasing sequence of regular cardinals
such that cf(\) < xi < A, (Vi < cf(\))(x;" = xi) and X = SUP; <cf(x) Xi-
(2) A good parameter S = (u, A,X) is a convenient parameter if addi-

tionally cf(\) = u™.

DEFINITION 3.2. Let S = (u, A, X) be a convenient parameter and let
the set

Xg = {(Z,f) 1< Cf()\) & €< Xi}
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be equipped with the lexicographic order <g (i.e., (i,§) <s (¢,¢) if and
only if either ¢ <4/, or i =1 and £ < ¢’).

(1) We define a forcing notion Qg as follows.
A condition is a tuple p = (w?, uP, (f{, : (i,£) € u?)) such that:

(a) w € [ef(A)]=H, uP € [Xs]=H,
(b) (Vi € wP)((4,0) € wP) and if (i,£) € uP then i € w?,
(c) for (i,€) € uP, fl'; : uP — 2 is a function such that

(J, )Eup&(J Q) =s (1,§) = [f7:(,¢) =0,

and f ( €)=
the order is given by: p < ¢ if and only if:

() wP Cw?, uP C ul,
(8) (V(i,€) € uP)(ffe € file),
(7) for each (i,&) € u? one of the following occurs:
either fiq5 [uP = Oy,
or i € w? and for some (, e < x; we have (i,() € uP and fi [u? =
(f¢)es where (ff:)e : uP — 2 is defined by
0 ifj=1¢,v<e¢
D . _ ) )
(fie)e(:7) = { Lc(j,7) otherwise,
ori ¢ w” and f [uP = (f7)e for some (j,¢) € u? and (e < x,
where (f7)e is deﬁned as above
(2) We say that conditions p,q € Qg are isomorphic if the linear orders
(uP, <sluf) and (u?,<glu?)
are isomorphic, and if H : u? — u? is the <g-isomorphism then:
() H(i,&) = (4,0) if and only if £ = 0,
(8) fle = e o H (for (i,€) € uP).
In this situation we may call H an isomorphism from p to q.
REMARK 3.3. (1) Of course, <g is a well ordering of Xs in the order
type A.
(2) The forcing notion Qg is a relative of the one used in [16, §7].
(3) There are p isomorphism types of conditions in Qg (remember

p<* = p). A condition p € Qg is determined by its isomorphism type
and the set uP.

PROPOSITION 3.4. Let S = (u, A\, X) be a convenient parameter. Then
Qs is a (<p)-complete p-cc forcing notion.
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Proof. First we should check that Qg is really a partial order and for
this we have to verify the transitivity of <. So suppose that p < gand ¢ <r
and let us justify that p < r. The only perhaps unclear demand is clause
3.2(1)(v). Assume that (i,€) € u" and f];[u” # Oy and consider two cases.

CASE 1: i € wP. Then i € w? and, by the definition of < (clause (7)),
we may pick ¢ < e < x; such that (4,¢) € u? and f] [u? = (fi({g)g. Again
by clause (), for some (’,&’ we have (i,¢') € uP and f;{ [uP = (ffg,)gf.
Now look at the definition of the operation (-).—it should be clear that

Lelu? = (f}¢)en for some €.

Case 2: i ¢ wP. If i € w? then for some (,e we have f/ Ju? = (f;{()f
and fl-[uP = (f].)e for some j,(’,e’. Now, since i ¢ wP” we may write
Telu? = (fi)eluP = (f])er and we are done. Suppose now that i ¢ we.
Then ff¢lu? = (f] ) (for some j,(,¢) and we ask if j € wP. If so, then
for some (', " we have fI .[uP = (f] . )e and hence fl[uP = (f} ) (for
some ¢”). If not (i.e 1f J ¢ wP) then as before we easﬂy conclude that
feluf = (qu,g)srup 3, CW’ = (f] 74’)6/ (for some j', ', ).

Thus Qg is a forcing notion. To check that it is (<u)-complete suppose

that v < g and (p, : @ < ) C Qg is an increasing sequence of conditions.
Put w? =, ., wPe, uP = UcK7 uPe and for (i,§) € uP let

a7y
1£_U{ (e Eupa7a<’y}

Plainly, (wP, u?, (f/'; : (i,£) € uP)) € Qs is an upper bound for (p, : @ < 7).
Now assume that A C Qg is of size . Since p=# = p and cf(\) = put we
may use the A-lemma and “standard cleaning” and find conditions p,q € A
such that:
(i) p, q are isomorphic (and let H : u? — u4 be the isomorphism),
(ii) H[(uP Nu?) is the identity on u? Nu?,
(iii) sup(w? Nw?) < min(w? \ w?) < sup(w? \ w?) < min(w? \ wP).
Now we are going to define an upper bound r for p,q. To this end we put
wh = wP Uw!, u" = uP Uu? and for (i,§) € u" we define fJ, : u" — 2 as
follows:
o if (4,§) € uP, i € wP Nw? then f], = p (fIq{(z 5))5,
o if (4,€) € u?, i € wP Nw? then f/, = (fH L(i.6))€ U fie,
o if (i,&) € uP, i € wP \ w? then fzf&—fi’ fH(ig)’
o if (i,§) € ud, i € w?\ w? then fl; = 0ur U f,.
It should be clear that in all cases the functions f;', are well defined and
that they satisfy the demand 3.2(1)(c). Hence r=(w", u", (fi¢ : (i,§) Cnu"))
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€ Qs and one easily checks that it is a condition stronger than both p and gq.
So we may conclude that Qg satisfies the p-chain condition. m

For a condition p € Qg let F? = {04 } U{(f¢)¢c : & ¢ < xiy (4,€) € uP},
where (f¢)¢ : u? — 2 is defined as in 3.2(1 )(7):

. 0 ifj=1d,v<(
P _ ? )
(fie)e (i) = {ffg(j,'y) otherwise.

Further, let B, be the Boolean algebra B(,» r»y (as defined in 2.4). Note
that p < ¢ implies that B, is a subalgebra of B, (remember 2.5). Let IE%% be
a Qg-name such that IFg, “BY = (J{B, : p € Iys}” and for (i,&) € Xg let
f',-75 be a Qg-name such that

Fos “fre = e - (1.€) € P, pe Ty ).

PROPOSITION 3.5. Assume that S = (u, A\, X) is a convenient parameter.
Then in Vs:

(1) fie : Xs — 2 (for (i,€) € Xs) is such that fi¢(i,€) =1 and
(¥(5,€) € X5)((4:¢) < (i,8) = fie(5,Q) = 0).
(2) BY is the Boolean algebra By py (see 2.4), where

F={(fie)c: (i.€) € Xs, £ <C <}
and (fi)e : Xs — 2 is such that

Gk ={ % () imtae ~ Uor (i) € 2s).

(3) The sequence (x;¢ : (i,£) € Xs) is right-separated in B (when we
consider Xs with the well ordering <g).

Proof. Should be clear (for the third clause remember that each fzg
extends to a homomorphism from B to {0,1}, see 2.5; remember 2.7). m

THEOREM 3.6. Assume S = (u, \,X) is a convenient parameter. Then

lFgs “there is no ideal I C BY such that cof(I) = X ”.

Proof. Let I be a Qg-name for an ideal in IB%S, p € Qg, and suppose that
p lkge cof (I) = A. Fix i < cf()\) for a moment.
It follows from 2.2 that we may choose p;, 6;, n;, D;, é; and t; such that:

(a) pi € Qg is a condition stronger than p, 6; is a regular cardinal,
Xi < 0; <Xandn; € w,
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(B) D; is a Qg-name for a (<6;)-complete filter on 6; extending the filter
of co- bounded subsets of 6,

()”_Qs 9XnZ—>XSandi ani—>2”;fora<9¢1etafxbea
Qs-name for an element of IB%% such that

st ii(avl) 9
lFog “ag, = /\ Tead)
l<ni
(8) pilFgs “al, € I” for each o < 6,
(¢) pi lkgs “if b € I then {a < 6; : 4}, < b} = O mod D; and a;, ¢
idB%({d% : B < a}) for each a < 6;7.

For each a0 < 6; choose an antichain {p’(")é’C : ¢ < p} of conditions stronger
than p;, maximal above p;, and such that each pfx,c decides the values of
éi(Oé, -), Lii(Oé, ) Let

Phe IFgs “éila,l) = ef (o, 1) & ii(a,l) = t5(a, )" (for | < ny).
Plainly, we may demand that i € wP~¢ and e (1) € uPa ¢ (for o < 6;,
C<p,l< le)

Suppose now that G C Qg is a generic filter (over V) such that p; € G

and work in V[G] for a while. Since the filter D is (<6;)-complete we find
ordinals ¥ < 6; and (¢ < u such that the set

G.={B3<6;:4° <3 and pi.G ¢G7p/i3,g'.G € G and W' <E = fBcE

the conditions p G éo pz (o are isomorphic, and

if H:u WG S upg* ¢f is the isomorphism then

(< m)(H (e (56,0) = e (8,1)

&t (80 = 67 (8,0)

and if j <1, (j,&) € Xs then

(7:€) € w4 & (1,6) € uP4E)
is not § modulo DF (remember that in V[G] we still have cf(/\)<” = cf(\)
and X" =x;). Let 6¢ =otp(u” <s) and for v € XE let (527 : & < 6F)

be the <g-increasing enumeration of u Paf Apply Lemma 2.1 to u™, 6;,
6G, DE and (s*' : & < §Y) here standing for o, 6, k, D and (8 : € < k)
(respectwely) there (Remember <g is a well ordering of Xs in the order
type X.) So we find a sequence (s*' : & < 6%) C Xg and a set ¥ C 6 such
that:
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(i) (Ve € 69\ &) (ut < cf({s € Xg : 5 <5 s}, <5) < 0;),
(ii) the set

G.={pe X ifecof then s»" = 57 and
if e € 68\ 0F then
sup<s{52’i 1 ¢ < 8¢, sZ’i <5 801} <5 870 <g 527}
is not () modulo the filter DF,
(iii) if s/ <g s*7 for e € 6%\ ©¢ then
{Be B : (Ve € 69\ v9)(s. <5 s2)} # ) mod DF.

As there was no special role assigned to 4 (other than determining the
order type of a condition) we may assume that "in € BZG .

Now we go back to V and we choose a condition ¢; € Qg, ordinals Yis
Ci, 0i, a set v; and a sequence (s : ¢ < §;) C Xg such that ¢; > P, ¢, and
q; forces that these objects have the properties listed in (i)—(iii) above. Note
that if some condition stronger than ¢; forces that § € B;, then so does any
condition stronger than both ¢; and pfg ¢;- Then the conditions pﬁ ¢, and

p7 ¢, are isomorphic and the isomorphism is the identity on uPii N up VirCi,

and it preserves e5*, 5. Also then wPii = wPes and uPe N NH{it xx;) =

177
wPrisi N N ({3} x x;) for j <. In this situation we will use (s> : ¢ < §;) to
denote the <g-increasing enumeratlon of uPB.< (and so s2% = 53 for ¢ € v,
and sup_ {s." 1 ¢ < 0y, 57" <5 82'} <5 sBi <5 st for e € (5\1}1)

CLaM 3.6.1. If j <i<cf(N), I <n; and €5 (v;,1) = (j,€) (for some )
then t5 (v;,1) = 1.
Pmof Suppose that the claim fails for some jg <7, g9 < xj, and lp < n;

(ie., 15 (yi,lo) = 0 and € (v;,10) = (jo,0)). Choose a with v; < a < 6
such that7 letting 1 = p’, ., 72 = pg, ¢,» We have:

e the condltlons r1, 7o are isomorphic and if H is the isomorphism from
71 to ry then H(e$ (vi,1)) = €5 (a, 1) and 5 (7;,1) = 5 (a, 1) (for | < n;),

o W' = W' and the isomorphism H is the identity on u™ Nwu"2,

* (j,§) <s H(j,§) for (j,§) € u™ \u,

o if j <i, (j,§) € X then (j,§) € u™ & (j,§) € u™.

Why is the choice possible? Let G C Qg be generic over V such that
¢ € G. Tt follows from clauses (ii), (iii) that we may find a € BS \ (v; + 1)
such that (Ve € §; \ v;)(s2"* <5 s2*). Then the two ordinals ~;, @ have the
required properties in V[G], and hence clearly in V too.

Next we let w" = w"™ = w"™, u" = u" Uu" and for (j,£) € u” we define

Tﬁ u" — 2 as follows:
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o if (j,§) €u™ Nu" then fI. = fL U fi%
o if (4,£) € u™ \ u" then fr f UfH(] £)
o if (j,€) € u™ \ u™ then f], = (fH 1(.e))E U fi%.
Check that the functions f/. are well defined and that
r=(w"u", (fje: (5,§) €u”)) € Qs
is a condition stronger than r1,75. Let
_ 85 (iol) _ NCH)
T = /\ T i (e ) and T = /\ xefi(a,l)'
Suppose that (7,§) € u" and £ < ¢ < x;. If j < i then ({j} x x;) N
u™ = ({j} x x;) Nu" and therefore (f;)c(m1) = (f]¢)¢(m2). If j > i then
necessarily (f7¢)¢(jo, &) = 0, so ( T g)C( ) (ff¢)c(m2) = 0. Consequently,

B, = 71 = 72 and hence r I- @, = ag, contradicting clause (¢) (and so
finishing the proof of the claim). m

Take n < w, 6 < p, v C ¢ and an unbounded set Y C cf(\) such that for
1, €Y

ar

en;=n,0;=0,v; =0,

e the conditions pg i pfy c, are isomorphic, and the isomorphism maps
egi (74, -) and tgi (74, ) onto e 7(v;,-) and t]gj (74, ), respectively.

Now apply Lemma 2.1 to find a sequence (s, . : € < d) C XsgU{(cf()),0)}
and a set v* C § such that:

(a) (Ve €\ v")(cf({s € X5 : s <5 51}, <5) = p7),
(b) the set
C:={ieY :ife € v" then sZ’i =S4, and
ife €6\ v* then
sup<s{s*7< 1( <9, Sic =S Sie) <s sj’i <8 Sxe}
is unbounded in cf(\),
(c) if sL <g 84 for e € 6\ v*, then the set
{ieC:(Veed\v*) (sl <s s}
is unbounded in cf(\).
[So 0,0,k, D and ({2 :e < K) :a <0)in 2.1 correspond to cf(\) = u™,
0* and the filter of co-bounded subsets of cf(\) and ((s** : e < §) : i < cf(A))
here.|
Next we use clauses (c), (a) and (iii), (i) to choose inductively a set

C* C C of size cf(\) and ordinals a; < 6; (for i € CT) such that for every
ieCt:
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(d) if e € 6 \ v* then for all j € CT Ni and ¢ < & we have

*,7 *,J *,1 aj,j aj,j *,4
5¢7 =5 Sxe = 8.7 <587, sc’ <8 Sx e = sc’ <g 8.,

() some condition stronger than ¢; forces that a; € B; (see clause (ii)
earlier),
(f) if e € 6\ v then for all j € C* N and ¢ < § we have

sz’j <5 55 = sz’j <g 82, s?j’j <g st = s?j’j <g 82,
(g) if e € v*, sy c = (4,¢) then j < min(C™).
Note that then
i,j€Ct &C,E<6&3?j’j =52 = e=(cvno*.
So ((s&i 1 e < §) :i € CF) is a A-system of sequences with heart (s, : ¢ €
vNv*). Let u* = {sy . :e €vnNo*} and w* = {j < cf(N) : (4,0) € u*}.
Pick i* € CT such that |C* Ni*| = pu.

CLAIM 3.6.2.
qix “_QS “ (VCV S Bi*)(ajl,jg S Cﬂ(a& < dZvljl V C'L{fh & PjisPjs € FQS)”'

Proof. We are going to show that for every condition ¢ > ¢;+ and an
ordinal @ < #;+ such that g IF o € B;«, there are a condition r > ¢ and
ordinals ji, jo € CT such that

riF“ay <all o Val & pj,pj € Ios .
So suppose q > g;~ an.d qlFa € Bz We may assume that pioicl_* < q (see
the definition of X;«, B;+). Choose j; € CT Ni* and jo € C1\ (i* + 1) such
that
pj1 pjz pjz
wl N @it =wf Ny 2% =u*,  sup(w?) < min(w" *2°%2 \ w*).
i

(Remember that {u”*i% : j € Ct} forms a A-system with heart u* and

i
hence {w"*i% : j € C*} forms a A-system with heart w*.) '

To make the notation somewhat simpler let ¢° = p- ., ¢' = p’* .

) avC'L* Qjy 7(]1
and ¢% = pﬁsz iy Note that the conditions ¢°, ¢*, ¢ are pairwise isomorphic,
and the isomorphisms are the identity on the u* (which is the common part
of any two uqk’s). Put

Cy* ik
t22 (anl) iy (agy,h)
0= [\ T . , TR = ko (for k =1,2).
l/<\n et (a,l) l/<\n ej;k (ajk,l)

Thus 73 is an element of the algebra B». Clearly, for k, k" < 3, the isomor-
phism H*F from q* to qk, carries 7y to Tgs.
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Now we are going to define a condition r € Qg stronger than ¢, ¢! and ¢2.
. 1 2 1 2
For this we put w"™ = wiUw? Uw?, uv" =u?Uu? Uu? and we define
functions f/¢ : u" — 2 considering several cases.

. 1 . * ro_ 1 2
1. If (4,§) € u? and i € w* then we put f/, = fIq—ILO(i,g) U fie Uflq_p,z(i’g)
(note that this includes the case (,§) € u*).
2.If (4,6) € uql, i ¢ w* then we put f/; = 0ys U fiq; Uo,,:2.
3. 1f (i,€) € u?\ u* then we look at ff[u?. If it is 0,0 then we let
Te = fgg U0, U0, 2. Otherwise we find (4,() € u? and ¢ <e < xj such
that 1 [u? = (f7,). and if i € w?" then i = j, and we define:
() if j € w*, j <i < sup(w*) then

Fie = fie U (Fhoao)xs Y (Froago)

(B) ifi = j € w* then fz:£ = Zf U (fglovl(j,C))E* U (f[q{O,Z(j7C))6*7 where
e* = max{e, £},
o . - - 1 2

(7) lf] cw,1<y then fi,g = iq,g U (fgjo,l(j7<))5 U (f[q_lo,z(j7c))87

(0) if either ¢ > sup(w*) or j ¢ w* then we first choose j' € w9 and

2

¢ <& < xp such that (j,¢') € uf and (f§ o )er(57,6") = 0

whenever (j7,¢") € u”, j" € w’, and (f{.¢.)or(r2) = 1 if possible

2
(under our conditions); next we let fi'c = f. U0, U(f] )
4.1 (i,€) € u? \ u*, i € w* then we let
1 2
e = (fgIlO(i,g))ﬁ U (fl?ﬂvl(i,g))ﬁ U fz‘q,g‘

5.1f (3,6) € uq2, i ¢ w* then we put f/c = 0ys U0, U ff,z.
It should be routine to check that in all cases the function f/. is well
defined and that r = (w",u",(fl; : (,§) € u")) € Qs is a condition
stronger than ¢, ¢',¢*> (and thus stronger than p; ,pj,). [Remember that
w* C min(CT), so for j € w* we have (4,§) € ut’ & (7,€) € uPoir ¢ and
hence, when checking clause 3.2(1)(c) in Case 1, we may use clauses (d),
(f) of the choice of the set C*. They imply that if (i,€) € u?', i € w* then
(i,€) =g HMO(i,€) =5 HY2(i,€). In Case 3(8) with j & w*, use the fact that
min(w? \ w*) > sup(w*) (it follows from our choices). Similarly in Case 2
remember min(wq1 \ w*) > sup(w*).]

We claim that B, = 79 < 71 V 72 and for this we have to show that there
is no function f € F" with f(79) = 1 and f(71) = f(72) = 0 (see 2.5). So
suppose toward contradiction that f € F" is such a function. Note that f
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cannot be 0,- as then the values given to all the terms would be the same
(remember they are isomorphic). So for some (i,£) € " and £ < e < x;
we have f = ( Ii 6)5‘ Let us look at all the cases appearing in the definition
of the functions f})c’s (we keep labeling as there so we do not repeat the
descriptions of the cases).

Caske 1: Clearly fi¢(m0) = fl¢(71). It follows from the demands (d),
(f) of the choice of C* that if i € w*, (i,¢) € u?, (i',¢') = H"'(i,(),
then 7 = 7 and (' < (. Consequently, we may use 3.6.1 to conclude that
(fie)e(10) < (fi¢)e(m1), which contradicts the choice of f.

CASE 2: Plainly ( ;5)5(7'0) = (fifg)g(Tz).
Case 3(a): Note that fl.(10) = f]¢(m1) and, as j < i < sup(w”),
necessarily i ¢ w? Uw? . Hence clearly ( Te)e(10) = (fig)e (1)

Cases 3(8),(7), 41 As in Cases 1, 3(a) we conclude (f/¢)e(70) <
(f{;);:)E(Tl)'

Cask 3(0): It follows from the choice of (’,&’, j there that f.(10) <

Le(me). If i & w? then (as also i ¢ wqi) we have f(ro) = f]¢(70) and
f(12) = fl¢(72), so we are done. If i € w? then i = j and we easily finish
by the choice of (', &, 5.

Cask 5: Clearly (f/¢)c(70) = (f{¢)e(m1), a contradiction.

1

Thus we may conclude that r IF “a?, < dg}jl \Y% d{fh ”, finishing the proof
of the claim. m

Now we may easily finish the proof of the theorem: take a generic filter
G C Qg over V such that ¢;- € G and work in V[G]. Since the filter DY is
(<B;+)-complete and cf(\) < 6+, we find j1,jo € Ct such that pj,,pj, € G
and
3G . (£ \G < (n71 G\ (2 \C el
{ae Bl : (ag )™ < (aX, )™ Vv (aZ )7} # 0 mod Dy

(remember B # () mod D& by (ii)). But then also (d{;}h )¢V (d{fh)c € I%,
so we get a contradiction to clause (¢). m3g

CONCLUSION 3.7. It is consistent that there is a Boolean algebra B of
size X such that there is a right-separated sequence of length A in B (so
hLt, (B) = A1), but there is no ideal I C B with generating number X\ (and

(7)
thus hL{}, (B) = hLy)(B) = A).

&

PROBLEM 3.8. Does there exist a Boolean algebra B as in 3.7 in semi-
ZFC? That is, can one construct such an algebra for A from cardinal arith-
metic assumptions?
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4. Forcing for hd. Here we deal with a problem parallel to the one
from the previous section and related to the attainment question for hd.
We introduce a forcing notion Pg complementary to Qg and we use it to
show that, consistently, there is a Boolean algebra B of size A in which
there is a strictly decreasing A-sequence of ideals but every homomorphic
image of B has algebraic density less than A. This gives a partial answer

o [13, Problem 54]. Again, we do not know if an example like that can be
constructed from cardinal arithmetic assumptions.

DEFINITION 4.1. Let S = (i, A, X) be a good parameter (see 3.1) and let
Xs,<g be as defined in 3.2.

(1) We define a forcing notion Pg as follows.
A condition is a tuple p = (w?, uP, (f{, : (i,£) € u?)) such that:
() wP € [cE(V]<H, P € [Xg]<,
(b) (Vi € wP)((i,0) € uP) and if (¢,€) € uP then i € w?,
c) for (i,€) € uP, fP, : uP — 2 is a function such that
( ) &
(4:¢) € uP & (4,€) =5 (4,¢) = fle(4,¢) =0,
43
and f2,(i,€) = 1
the order is given by: p < ¢ if and only if:
(o) wP Cw?, uP Cul,
(B) (V(i,€) € uP)(ffe € fie),
(7) for each (7,€) € u? one of the following occurs:
either f/ [u? = 0y»,
ori € wP and for some (, e < x; we have (7,() € u? and fq [uP =
(f0)°, where (ff:)° : uP — 2 is defined by
: 0 ifj=i¢e<v<x,
P \e _
(foe) G = { +c(4,7) otherwise,
or i ¢ wP and either fl.[uP = (fj:)° (defined above) for some
(4,0) € uP, e < xj or fiJuP = (f}); for some (j,() € uP and
j" < j, where (f7); : uP — 2 is defined by
, 0 if j < j*
¥4 ., * * — ) — Y
(f5.0)i(G777) { JP,CU*”V*) otherwise.
2) Conditions p, q € Pg are said to be isomorphic if the well orderings
(
(uP, <gluP) and (u?,<glu?)
are isomorphic, and if H : u? — u? is the <g-isomorphism then:
(o) H(i,€) = (5,0) if and only if £ =0,
(B) fizjg = f}f[(,-@ o H (for (4,&) € uP).
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PROPOSITION 4.2. Let S = (u, A\, X) be a good parameter. Then Pg is a
(<u)-complete u™-cc forcing notion.

Proof. Plainly Pg is a (<u)-complete forcing notion (compare the proof
of 3.4). To verify the chain condition suppose that A C Pg, |A| = put. Ap-
ply the A-lemma and “standard cleaning” to choose isomorphic conditions
p,q € A such that if H : u? — u? is the isomorphism from p to ¢ then
H[(u? Nu?) is the identity on v Nu?. Put w" = w? Uw?, v = vw? Uu? and

for (i,€) € u" define a function f], : u” — 2 as follows:

o if (i,§) € uP, i € wP Nw? then f{, = f{ U (fgl(i@)g“,
o if (i,§) € u?, i € wP Nw? then f/, = (]‘"Ip{_l(i’@)@r:l U fie,
o if (i,€) € uP, i € wP \w? then fI. = f{. U (fgl(i,g))iv
o if (4,§) € u?, i € w?\ wP then f], = (fzfl(i,g))i U file-
It is routine to check that the functions f;, are well defined and that they

5

satisfy the demand 4.1(1)(c). Hence 7 = (w",u", (f{¢ : (4,§) € u")) € Ps
and one easily checks that it is an upper bound for both p and ¢. =

For a condition p € Pg let
FP ={(ffe)% (fle)i (i,8) €uPy e <xu, j < i},
where (f7¢), (fl¢); : uP — 2 are defined as in 4.1(1)(y):
0 ifi=d,e<{
D \e(;! AN 9 —= )
(fie) (. ¢) = { 1e(i',¢")  otherwise,
0 if j <4’
PN\ (5 A =t
(fle)i(' () = { ?(i',')  otherwise.
As in the previous section, B, is the Boolean algebra B,» r) (see 2.4) (note

that p < ¢ implies that B, is a subalgebra of B,). Let Bls be a Pg-name such
that

Fpg “BY = U{]Bp ip€Tp}7,
and for s € Xg let fs be a Pg-name such that
”_IPS “f‘s — U{ff s € Up, P c FIPS}”.

PROPOSITION 4.3. Assume that S = (u, A\, X) is a good parameter. Then
in VFs:

(1) For s € Xs, fs: Xg — 2 is such that fi(s) =1 and
(Vs' € Xs)(s =g s' = fs(s') = 0).
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(2) BY is the Boolean algebra B xg py (see 2.4), where

F={(fie) (fie); : (i,6) € Xs, e < x4, j < i},
and (f;i,g)s, (fzg)j : Xg — 2 are such that
0 ifi=i, e<(,
fi,g(i’, ¢')  otherwise,
0 if j<i',
fi,g(i’, ¢')  otherwise.

Ghertic) ={
et ¢ ={

(3) The sequence (x4 : s € Xs) is left-separated in B (when we consider
Xs with the well ordering <g).

THEOREM 4.4. Assume S = (u, \,X) is a good parameter. Then
lFpg “there is no ideal I C BY such that w(B5/I) = X ”.

Proof. Not surprisingly, the proof is similar to the one of 3.6. Let I be a
Pg-name for an ideal in BY, p € Pg, and suppose that p lbp, “m(BL/I) = \7.
Fix i < cf()\). Use 2.3 to choose p;, 0;, n;, D;, é; and i; such that:
(a) p; € Pg is a condition stronger than p, 6; is a regular cardinal,
XQL <6; <Xand n; € w,
(8) D; is a Pg-name for a (<0;)-complete filter on 6; extending the filter
of co-bounded subsets of 6,,
(7) IFps “€i : 0; x nj — X and ti:0; xn; —27; for a < 0; let !, be a
Pg-name for an element of BY such that
X t; a,l) 5
lFpg “ay, = /\ :céi((a’l)) ,
l<n;
(8) pilFps“al, € BL\ 17 for each a < 6,
(¢) pilFpg“if b€ BL\ I then {a<b;:b< al, mod I} = 0 mod D; and
(Va < 0;)(VB < a)(ag A (—ag) € 1)7. |
For each o < 0; choose a maximal above p; antichain {pa’C : ¢ < p} such
that each pfx’q > p; decides the values of é;(a, -), t;(a, ). Let

Phc IFes “éia,l) = ef (1) & ii(a,l) = t5(a,l)”  (for L < my),
and we may assume that (i,0), €5 (o, 1) € uPec for o < 03, 1 < m; and ¢ < pu.

Take a generic filter G C Pg such that p; € G and work in V[G]. Choose
ordinals 4 < 6; and ¢ < p such that the set
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7= {B<0;: % < 3 and p G i psz € G and w €< = ncE

the conditions p‘vﬁ (o p%y (o are isomorphic, and

if H : up;ic < up;"ic; is the isomorphism then
o

(v < m)(H( ; (57.0) =" (6,0)

and if j <1, (7, §) € Xg then

(Jé)EU”G (15) uﬁcc}

is not § modulo DE. Let §¢ = otp(u’7¢<F | <g) and for o € XE let (s

e < (5ZG> be the <gs-increasing enumeration of u Dot . Apply Lemma 2.1 to
find a sequence (5% : ¢ < §F) C X5 and a set ©F C §¢ such that:

(1) (Ve € 67\ o) (x{ < cf({s € Xs : s <5 527}, <s) < 6)),

(ii) the set

9= {Be X ife v then sP" = s and
if e € 6¢ \ v then
sup<s{sz ¢ <08, s¢" <o 5P} =g 8P <5 557}

is not () modulo the filter DF,
(iii) if s <g 52 for € € 6¢ \ ©F then

{B e BY: (Ve €69\ 05)(s. <g s7)} # 0 mod DE.

We may assume that 4 € BE.

Now, in V we choose a condition ¢; € Pg, ordinals ~;, {;, d;, a set v; and
a sequence (s¥':e < §;) C Xg such that ¢; > pv ¢;oand ¢; forces that these
objects are as described above. If some condition stronger than ¢; forces
that a € B;, then we will use (s®% 1 e < §;) to denote the <g-increasing
enumeration of uPe <.

Next, as in the proof of 3.6, we pick an unbounded set Y C cf(A) and
n<w,d < pu, v C4dsuch that for 4,5 € Y:

en;=n, 0 =20, v;, =v, and
e the conditions p@_ oo p]W ; are isomorphic, and the isomorphism maps
C‘ (74, ) and tf (74, ) onto eCJ (74, ) and tc’ (74, ), respectively.

Now use Lemma 2.1 to find a sequence (s, : e < ) C XsU{(cf(A),0)}
and a set v* C § such that:
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(a) (Ve e d\v*)(cf({s € Xs: 5 <g Swc},<s) = cf(N)),
(b) the set
C:={ieY :ife € v* then sZ’i = Sie, and
ife €6\ v* then
SUP_  {8x,¢c 1 € <0, 8¢ <5 Sxc} <5 sj’i <9 Sxe}
is unbounded in cf(\),
(c) if sL <g 84 for e € 6\ v*, then the set
{icC:(Veeds\v*) (sl <g 52}
is unbounded in cf(\).

Next choose a set O+ € [C]fN) and ordinals o;; < §; < 6; (for i € CT)
such that for every i € C*:

(d) if e € § \ v* then for all j € CT Ni and ¢ < § we have
sz’j <3 Sy = SZ’j ~<g 85,

?]
CJ <3 Sx,e = S¢

Bj.d Bj.d
sCJ <8 S = sCJ

_]?] *,7
<g 8.’

<s S:’Z
(e) some condition stronger than ¢; forces that oy, 3; € B;,
(f) if e €  \ v and = € {a, 3}, then for all j € CT Ni and ¢ < § we

have
(&7} 7j

sZ’j ~<g 85t = SZ’j <g 90, @5l 4 & = s’ =g sl
5ga] ~<s S*,z — S?]?] < 8;:,1” ?z,z ~g 8:’ = S?'L:Z < s£i7i7
(g) 1f€ € v*, = (4,¢) then j < min(C™).

Then ({52! 55“ ie < d) i€ CT) forms a A-system of sequences
with heart (s*,8 € € vNw*); but note that s = 5% for ¢ € v. Let
u* = {s.c:e€vnNou*}and w* = {j <cf(N):(4,0) € u*}.

CLAIM 4.4.1. For each ig € CT,
o IFpg “(Ya € By, )(3i* € C)(ah., A(—al.) < a0 & p- € Ip,)”
(where By, was defined in (ii)).

Proof. Let ig € CT. We will show that for every condition ¢ > ¢;, and
an ordinal o < 6;, such that ¢ |- « € B;,, there are i* € C* and a condition
r stronger than both ¢ and p;«, and such that r I+ ¢ df;i* A (—dgi*) <aw?.

So suppose ¢ > ¢; and ¢ IF o € Bio. We may assume that pi‘j}cio <q.
Choose i* € CT \ (ig + 1) such that

i* i*
ud N uPorSor =4 N uPPirtix = ¢* and w? C i*.
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Let Y, =" D, . = 4" Dh. . = % and
1500 (al) 5 (e ) £5 (B )
"o l/<\n xef%“(al)’ o l/<\n xefi* (cvix,l) B /\ esi (Bi= 1)
(so q0 g qand 79 € Byo C By, 71 € By1, 72 € By2). Note that the conditions
q°, q*, ¢* are pairwise isomorphic and the isomorphism HbF from q* to qk/
carries Ty to 7. Moreover, H*: " is the identity on ud" ﬂuq . Also note that
wl = wp%* G = T and, as w? C i*, our choices imply H*(i, &) <g (i, &)
for k=1,2, (i,§) € ut”.
Now we define a condition r stronger than ¢, ¢*, ¢*. We put w” = quwa,
u" =u?Uu? Uu? and we define functions fig¢u" — 2 as follows.

1 If (4,€) € u? Nu?, i € w? then we let f, = Finoge U fzg U fzé
[Note that by (d)+(ii) we have (i,0) <g H°(i,£) <5 (i,€).]

2.1f (4,¢) € ud Nud’ i ¢ w? then we first choose €* such that, if possible,

0 " 1 2
(fg[m(i,g))s (70) = 1, and then we let f/'; = (f/.. oe)S U fle U fle. [N(late
that HY0(i,€) <s (i,€), and thus if HY0(4,£) = (4,¢) then j < i, j € w9 ]

3.IF (i,€) € u?” \ ud’ (so i > 1* > sup(w?)) then we first choose * such
that, if possible, (ff-, o, E)) "(10) = 1, and then we let fle= (fg[zyo(i’&))g* U
fHQvl(i,f) U f@{ [1\10116 that H2’0(i7£) <s (270) <s H2’1(i71£) <s (275)7 re-
member w? = w? . Also, if H*°(i,£) = (j,¢), then j & w9 ]

A Tf (i,€) € ud’ \uq2 then, as above, we choose €* such that if possible

0 . . 1

then (ffr.0¢)° (70) = 1, and next we put fe = (fi104¢)° U iU

q £+1
(le’g(ivg)) ) o
5.1f (i,€) € u?\ u? then we look at f [u?. If it is 0 .0 then we let
i = I ¢ U0, U0, 2. Otherwise, we consider the following three cases.

(o) Suppose i € w? . Then for some & < ¢ < Xi, € <&+ 1 we have

0
9 Jut’ = ( +0)° and we let:

€
olequ thenf E_fzfu(fH()l(lC))E (fHOQ(lC))
oifi&{wq then fl?:§ - (fHo 1(10)1 (fHOQ(ZC))

[Note that if i € w' then (z’,C) =g HOL(i,¢) = H*2(i,¢) <g (i+1,0),

and if i ¢ w? then (j,0) =5 H(i,¢) =5 H*2(i,¢) <s (j + 1,0) for

some j > i.]

(8) Suppose i & w?’ (soi & w?') and file lut’ = ( 52/)5/, (i, ¢) e ut’,
e < ¢ <xir-
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o If i’ € w? and i’ < 1, then put

/ 2
i .5 (fHo A ,¢ )) U (fglo,z(i/7g/))€
o If i’ € w? and i < ', then we put
2
15 (fHo (4! )) (fg[o,z(,;/7§/))i-
2
o If 7/ € 'Z,Uql, then let fz:-f = f,Z£ U (fglovl(i’,gl))i U (f[q{0,2(i/7c/))i.

i 0 0 0 . . .. .
(7) Suppose i # wt” and fleu’ = (7o) ' < mingi, 7}, (7,¢)
)
€ u. Let fle = file U (Fioaqw.cn)ir Y Thoai o))

Verifying that the functions f/', are well defined and that r = (w",u",
(fie: (i,§) € u")) € Ps is a condition stronger than g, g%, 2 is left to the
reader. Let us argue that B, = 7 A (—72) < 79. If not then we have a
function f € F" such that f(79) = f(72) = 0 and f(r;) = 1. Clearly f
cannot be 0y, so it is either (f/¢)° or (f]);. Let us look at the definition
of the functions fT‘E and con51der each case there separately.

CASEs 1, 5(a),(06),(y ) Plamly frg(n) = fivg(Tg) and also (fg:g)j(ﬁ) =
(fi¢)i(72) (remember w? =w?). As far as the operation (-)° is concerned,
note that ({i} x x;) Nu? = ({i} x xi) Nu?, so (in these cases) we easily
get (fi¢)*(m1) = (f]¢)°(72), a contradiction.

Case 2: Again, fie(ri) = fie(r) and (fi¢);j(n1) = (fig)i(m) (for
each j). So suppose that f = (f/.)° for some ¢, and look at the choice

of £* in the current case. Since 1 = (f];)*(m1) = ( Z»5) (1), we conclude

that 1 = (fglol,o(i 5))5*(7'0) = f;:'s(T()) = (f7¢)*(10), a contradiction.

CASE 3: Note that fT£<7'1) ( ») (and also (fg”,g)j(ﬁ) = (fz?:g)j(’]'g)).
Now, if for some ¢ we have (f] ) (1) = 1, then look at the choice of
e*—mecessarily (f/'¢)*(70) = z£(7'0) = 1 (remember (i,0) <s H*!(i,§)
<s (275))

CASE 4: As above: if for some € we have (f];)(71) = 1, then necessarily
fie(m0) = (f]¢)*(10) = 1. Moreover, (fi¢);(11) = (f]¢); (r2) for all j < .

In all cases we get a contradiction showing that B, = 7 A (—72) < 70,
and hence r I “ éLZZ* A (—a;;) < a7, finishing the proof of the claim. m

Finally we note that 4.4.1 and clauses (), (¢) give an immediate con-
tradiction, showing the theorem. m4 4

CONCLUSION 4.5. It is consistent that there is a Boolean algebra B of
size X such that there is a left-separated sequence of length A in B (and
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thus hdz%)(]B%) = A1), but there is no ideal I C B with m(B/I) = X\ (so
hd?;) (B) = hd(7)(B) = A).

PROBLEM 4.6. Can one construct a Boolean algebra B as in 4.5 for A
from any cardinal arithmetic assumptions?

5. More on the attainment problem. In this section we will assume
the following:

HYPOTHESIS 5.1. S = (u, A\, X) is such that u, A are cardinals satisfying
p=p<t <cf(N) < A< 2K
and X = (xi : i < cf(N)) is a strictly increasing continuous sequence of

cardinals such that

xo=0, cf(A) <xi1, cf(xit1) = X1, sup xi = A
1<cf(A)

For a < X let j(a) < cf(A) be such that Xja) < o < Xj(a)+1-
DEFINITION 5.2. (1) A pair (77, A) is a base for S = (i, A, X) if:
(a) AC p~t = (na:a<X)Cp,

(b) if a < B <A, j(a)=j(B) then na Nng & A,
(c) if Y € [A\]* then there are distinct o, 8 € Y such that n,N7ng € A.

(2) (17, A) is called a base™ for S if it satisfies demands (a), (b) (stated
above) and

(ct) if Y € [\]* and t € {0,1}, then there are o, 3 € Y such that
a<fB, naNng€A, nu<iexng iff t=0.

For a topological space X, a (Ko, k1)-Lusin set in X is a set L C X such
that |L| = ko and for every meager subset Z of X the intersection Z N L
is of size less than k1. (See, e.g., Cichon [1] for a discussion of sets of this
type.) Below, the space p# is equipped with the topology generated by sets
of the form

o] ={nep":o0<n}
for o € p=<*.

PROPOSITION 5.3. Assume that for some i* < cf(\) there is a (A, xi+)-
Lusin set L in u*. Then there is a base™ for S.

Proof. Choose sequences (v; : i < cf(\)) C p* and (g, : @ < ) C L,
both with no repetitions. For av < A let n, € p* be defined by

Na(2-€) = j(a)(g) and  74(2-§+1) = 0a(§)
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(for & < p), and let A = U§<#,u2'5. We claim that ((n, : o < A),A4)
is a base™ for S. The conditions 5.2(1)(a,b) should be clear. Let us ver-
ify 5.2(2)(cT). So suppose that Y € [A\]* and t € {0,1}. Choose sequences
(Vi :i < cf(N) and (j; : i < cf(\)) such that:

oY, CY, (Va € Y;)(j(a) = ji), and |Y;]| = x4» (so {0a : @ € Y;} is not
meager),

e the sequence (j; : ¢ < cf(\)) is strictly increasing.

For each i < cf()\) pick o; € u<# such that

(Vo € p~*)(o; < o= [o]N{oa:a €Y} #0).
We may pick ig < i3 < cf(\) such that
Oiy = 0iy =0, Vi <lex Vj;, it £ =0.

(Remember that, under the assumptions of 5.1, (u*, <jex) contains no mono-
tonic sequences of length cf()).) Let £ = lh(v;, Nvj, ) and take o' € p<#
such that o* < ¢" and £ < 1h(¢”). Now pick o € Y;, and oy € Y;, such that
0’ < 0ay N 0a, (there are such ag, @y by the choice of 0;, = 0;, = 0*). Note
that then necessarily ag < a1, Ih(na, N7a,) = 2+ & (S0 Nay NNa, € A) and
Nae <lex Mo, fft =0. m

PROPOSITION 5.4. Let P = (2<F,<) be the u-Cohen forcing notion.
Then

lFp “there is a base™ for S (and S is still as in 5.1) .

Proof. Pick sequences (v; : i < cf()\)) and (0o : @ < M) of pairwise
distinct elements of p*. Let A* be a P-name for the generic subset of u
(added by P) and let A be a P-name such that

Fp “A={vep<*:1h(v) e A*}”.
For a < A, let 9, be a P-name for a function in p* such that
IFp (V€ € A*) (110 (€) = Vi) (otp(A" NE)) &
(¥ € 1\ A")(1a(6) = a(0tp(€ \ A7))).
We claim that
IFp “((Na : @ < A), A) is a base™t for S”.

Clauses 5.2(1)(a,b) should be clear, so let us prove 5.2(2)(ct) only. Let
(Gy 1y < A) be a P-name for an increasing A-sequence of elements of A, and
let t € {0,1}, p € P. For each v < A pick a condition p, > p and an ordinal
., such that p, IF &, = .. Necessarily, there are X € [A\]* and p* € P such
that p* = p, for v € X. Then also o, < a., for v9 <~ from X. Shrinking
X a little we may also demand that for some sequences o; € pib(p™)+2
(for j < cf(N)) we have
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veEX & jlay)=j = 0j <0a,-
Now pick 79 < 71 from X such that letting jo = j(.,) and j1 = j(a,,) we
have
j0<j1, Tjo = 04y, Vig <lex Vj, ifft=0.
Let a condition ¢ > p* be such that lh(g) = Ih(p*) + Ih(v;, Nv;,) + 2 and
q(&) =1 for all £ € lh(q) \ Ih(p*). It should be clear that ., < c,, and
ql-* ﬁawo N ﬁawl € A and 7'70“/0 <Yex 7'70“/1 ift=0". n

DEFINITION 5.5. Let b = (77, A) be a base for S, 7 = (1, : a < ). We
define the Boolean algebra BP determined by b. First, functions fP : A — 2
(for @ < \) are such that

fb(ﬁ):{l ifa=Fora#B&n.Nng €A &N, <iex 13,
* 0 otherwise.

Next, we let FP? = {f?: o < A} and B® = B, pv) (see 2.4).

THEOREM 5.6. If b is a base for S = (u, A\, X), then
hL(BP) = hd(BP) = s*(BP) = \.

If additionally b is a base® for S then also

hL ) (BP) = hd(5, (BP) = A.

Proof. Let b= (7, A), 1 = (Na : @ < \). Clearly |BP| = \.

CLAIM 5.6.1. hL(BP) = hd(BP) = s(BP) = \.

Proof. By 5.2(1)(b), fP(8) = 0 whenever a # 3 and j(a) = j(3). There-

fore, by 2.7(1), the sequence (x, : x;i < @ < X;4+1) is ideal-independent
(for each i < cf(\)). m

The main part is to show that s (BP)

assumption, that hLz;)( b) = hd(+5)
following technical claim.

= A (and/or under the additional
(BP) = \), and for this we will need the

CLAIM 5.6.2. Suppose that k*,I* < w, ag,oqr < A (for k < k*, 1 <1¥)
and oq,...,05_1 € u~* are such that

(a) 00,...,08—1 are pairwise incomparable,
(B) ok A Nays Ok <My, (for I <%, k < k),
(v) for each k < k* one of the following occurs:

(i) ax = ay i for some I <I*, or
(ii) there are ly,la,l3 < 1* such that
® Ny, N Mayy e <L N M Ny e <L Mo N Nag s

b TIOAk N nallykanak N nalz,k € A’
L4 T]Oéll’k <lex nak <lex 770127]€'
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Let t(k) € {0,1} for k < k*. Then

B° = A\ 2P < \/ A =i

k<k* I<l* k<k*

Proof. We are going to show that, under our assumptions, for each f €
FP there is | < I* such that (Vk < k*)(f(cx) = f(cux))- So fix B < ), and
consider fg;’. First note that

(Xg)  if ox is not an initial segment of 7g, then fg(ak) = fg(oal,k) for all
< I*.

[Why? Suppose o, 4 ng. Then clearly ax # 5 # a; (for I <1*) and

ULT N N3 = Nay N 13, Noy, <lex 13 < Mok <lex 78-

Now look at the definition of fg ]

If no oy, is an initial segment of 7, then (by (K}.)) we conclude f§ () =
fé’(alvk) for all I < I*, k < k*. So suppose that o, < ng, m < k*. Then
for all kK < k*, k # m, we have o, 4 nz and thus fg(ak) = fé’(al,k) (for
all I < [*). Thus it is enough to find [ < [* such that fg(am) = fg(&um)-
If oy, = v, for some [ < I*, then this [ works. So suppose a,, # a; , for
all [ < I*. Then clause (y)(ii) holds true for m, and let [y, 3,3 be as there.
If Na,, NNg < Nay, N Nay,.,., then clearly fg(am) = fg(al&m). Otherwise

Now N Ny I Nay, N 7, and fé’(all,m) # fé’(al%m), so either [; or Iy
works. m

CLAIM 5.6.3. sT(BP) = \.

Proof. Suppose that (ag : £ < A) is an ideal-independent sequence in BP.

We may assume that as = /\k<k£ xg(ékk)) and a(&, k) # a(&, k') whenever
k < k' < k¢ (remember 2.7(2)). Also we may assume that ke = k* for all
€< (as cf(N) > w).

Fix ¢ < cf(\) for a moment.

After possibly renumbering the sequences («a(&, k) : k < k*), we may find
a set S; C [xi, Xi+1), an ordinal €] < pu, a sequence (v}, : k < k*) of pairwise
distinct elements of xi, and ¢}, € {0,1} and jj < cf(\) (for k < k*) such
that:

(i) S; is unbounded in x;41,

(ii) (f k) =t: and j(a(&, k) = ji for all € € S; and k < k*,

(iii) v, < Na(er) for k < k* and € € 5;,

(iv) ((a(&,k) - k< k") : £ € 5;) is a A-system of sequences with heart
<

(@
(), + k < k(i)),
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(v) the sequence (a(§, k) : & € S;) is strictly increasing for k(i) <
k < k*,
(vi) ji > i for k(i) < k < k* (this follows from (ii)+(iv)).
Next pick a set S C [cf(A)]'™) such that (possibly after renumberings)
(vii) k(i) = kT, ti =tg, ef =e* and vl = v} for k < k*,i €S,
(viii) ({(af : k < kT) : i € S) is a A-system of sequences with heart
(g o k< E**),
(ix) ((ji : k < k*) : i € S) is a A-system of sequences with heart
(Jk = k € wy, w C k*.

Note that then £** C w C k*. Also, possibly further shrinking S and
the S;’s (for i € S), we may demand that

(x) if iy < iy, i1,49 € S, then j;' < iq (for k < k*),
(xi) if 41,12 € S are distinct, & € S5, and & € S;,, then
{a(&1, k) -k <k }yn{a(le, k) k <k} ={ar : k <Kk}

Let S* = J,.qS;. For e < pand k* < k < k* let

iesS
Sk ={¢€ 5% : (V¢ € 5)(e > Ih(Na(e,k) N Ma(e,k)) OF

Na(e,k) N Ma(c,k) € A O Na(e k) Slex Na(c,k)) s
ka ={£e€ 5" : (V¢ e S")(e >1h(Na(e,k) NNa(c,k)) OF

Nae,k) NVa(e.k) & A OF Na(¢,k) Stex Na(er) -
We claim that both ]Sng| < A and |S§k| < A. Why? Assume, e.g.,
[SL,] = A Note that, by (v)+(vi)+(x), a(€,k) < a(¢, k) for € < ¢ from S°.
Pick v € pf and a set X € [SL]* such that (V& € X)(v < 7a(en)-

By 5.2(1)(c), there are distinct §,¢ € X such that nqe k) N Nac,r) € A
Clearly 1h(na(e,x) N Nac,k)) = € and we easily get a contradiction with

&, C e SEL’,C. Similarly for Sgk.
For kt <k < k* let
SZ ={¢€ S*:forall e < p there is ( € S* such that 7, 1) <tex Ma(c.k)s
& <1 (Na(e,m) N a(ck))s Mok Nlack) € A, and
for all € < p there is ( € S* such that 7q(¢ k) <iex Na(e,k)>
& < Th(a(e,m) N acky) a0d Nae k) N ager) € Al

Note that S* \ S¥ = | S&_L,,f U Sgk), and hence |S* \ S| < A for each
ke [kt k*).

€<u(
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Fix distinct £*,&, € 7 SZ such that j(£*) = j(&). For each k €
[k, k*) pick &F, &5, €5 € §*\ {¢, &} such that

Vi Dater k) Vageh k) < Nate k) Vaies k) < Maer k) N Nael ):
Naer k) N (el k> Taer k) O Na(el k) € 4,
Mael k) lex Na(g= k) lex Na(gl k)
Now look: letting ayy = a(€*, k), {eu 1 : | < 1*} be the suitable enumeration

of {a(€¥ k) kt <K < k* & n € {1,2,3}} U{a(, k)}, and o), = v}, we
find that clauses (a)—(7y) of 5.6.2 are satisfied. Hence

3 k*-—1
ae = N\ wlen s N atenVV VN e
k<k* k<k* n=1k/'=k+ k<k*
k*—1
=a¢, V \/ \/ azgk/-
n=1k'=

Since clearly &* & {&,YU{F kT < K < k*, n = 1,2,3}, we get a
contradiction. m

CLAIM 5.6.4. If b is a base™ then also hL}t

(n(B®) =hd (B") = X,

Proof. 1t is similar to 5.6.3. Suppose that (a¢ : £ < \) is a right-separated
sequence in BP. As before we may assume that ag = A,_j. xg(ékk)) and

a(& k) # a(é, k') whenever k < k' < k*. Next we apply the same “cleaning
procedure” as in 5.6.3 to get S, S;, €%, v}, Ly, ji etc. such that clauses (i)—(xi)
are satisfied. We let S* = UieS S; and for ¢ < pand kT < k < k* we define
S:k ={£€ 8" : (V¢S NE (e > 1h(Naer) NNa(c,k)) OF

Nate,k) N Na(ck) A O Nae k) Stex Na(ck)) s

Sa_,k = {f cS*: (VC cS* ﬂf)(&“ > lh(na(§7k) ﬂna(gk)) or
Na(e,k) N Na(c,k) E A O Nac k) Slex Na(e,k)) )

Then both ]S+k| < Aand [S_ ;| < A. [Just as before: assume, e.g., |SE wl = A
Pick v € p° and a set X € [Sjk] such that (V& € X)(v <0 nae,r))- Note
that a((, k) < a(&, k) for ¢ < € from S*. Use 5.2(2)(ct) to find ¢ < &,
both from X, such that 1, k) NNa(e,r) € A and Na e r) <lex Na(e,k)- A clear
contradiction. |

Next for kT < k < k* we let Sp = S*\U€<M(S;kUS;k). Choose &, < £*

from ("2, S such that j(€*) = j(€.). And next for each k € [kT, k*) pick
¢r eb ek € S*N¢* like those in the proof of 5.6.3. Finish in the same way. m
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