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EULER CHARACTERISTIC OF THE

CONFIGURATION SPACE OF A COMPLEX

BY

ŚWIATOSŁAW R. GAL (Wrocław)

Abstract. A closed form formula (generating function) for the Euler characteristic
of the configuration space of n particles in a simplicial complex is given.

Introduction. The Euler characteristic, being independent of the struc-
ture of a simplicial complex on a topological space, may be computed in
terms of zeroth order data, i.e. the number of cells of each dimension. We
prove that the Euler characteristics of configuration spaces may be com-
puted in terms of first order data of the underlying space, i.e. the Euler
characteristics of links of cells.
When computing the Euler characteristic of the configuration space on

n (ordered) particles in a simplicial complex X we mimic the inductive
approach which gives the desired formula in the case of manifolds. Consider
the projection Cn(X) → X onto the first particle. Even though this map
is not in general a fibration, we can relate the Euler characteristics of the
base, the total space and the fibers of this map. A major feature here is a
very interesting measure on X.
Next we restate the formula as a differential equation for the exponential

generating function, which is then solved explicitly.
The result (and overall strategy) generalizes a similar result for the case

of graphs, which was known to M. W. Davis, H. Glover, T. Januszkiewicz
and J. Świątkowski around 1997.

0. Definitions and conventions. For any topological space X define
the configuration space of n (ordered) particles in X as Cn(X) := Xn −
{ξ : ξi = ξj for some i 6= j}; ξi will be referred to as the ith particle of the
configuration ξ. Define χn(X) := χCn(X) to be the Euler characteristic of
Cn(X).
A subspace S ⊂ X is collared if there is a tubular neighborhood V ≃

S × (−1, 1) of S in X.
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We say that a complex Y is obtained by C(ut)&P(aste) surgery from a
complex X if one can find a collared subcomplex S ⊂ X (one may think
that X is a barycentric subdivision of some complex Z and S is transversal
to Z, i.e. when restricted to any cell of Z it has codimension 1) such that Y
can be obtained from X by cutting along S and then gluing again by some
cellular automorphism of S. We define the C&P equivalence relation on the
category of finite complexes as the equivalence relation generated by C&P
surgery and subdivision. By CP we denote the Grothendieck ring generated
by C&P classes of finite complexes with disjoint union as sum and with
Cartesian product as multiplication (the class of X will be denoted [X]).
Similarly, in the topological category we define t(opological)C&P surgery,

and the (topological) tCP ring.

Fact. The Euler characteristic is tC&P invariant and may be regarded
as a ring homomorphism χ : tCP→ Z.

Proof. From the exact sequence of a pair it follows that χ(X) = χ(V )−
χ(X,V ) and from the excision lemma χ(X,V ) = χ(X − S, V − S). Since
the pairs (X −S, V −S) and (Y −S, V −S) are homeomorphic the proof is
complete.

We will often use a special surgery (called an amputation): let A ⊂ Z
be an open subset with collared boundary; take X = Z ⊔ (I × ∂A), S =
∂A⊔({1/2}×∂A) and let the automorphism interchange both copies of ∂A;
then Y = (Z −A) ⊔A, therefore [Z] = [Z −A] + [A]− [I × ∂A].

1. The integral formula. From now on, letX denote a finite simplicial
complex. Let CX denote the cone over X. If σ is a cell of X, define:

• dσ to be the dimension of σ,
• Lσ to be the normal link of σ,
• 〈σ〉 to be a sufficiently small contractible (open) neighborhood of the

center of σ.

Theorem 1. Let µ be the measure (1) on X given by µ(σ) = 1 − χLσ
for any cell σ. Then

(∗) χn(X) =
\
X

χn−1(X − 〈σ〉)µ(σ).

Remark. The above formula is obvious when X is a manifold, since
then π is a bundle and the Euler characteristic of the total space is the

(1) One should take the σ-algebra generated by the cells of X; on the other hand µ
may be understood as a functional on the space of functions which are constant on each
open cell.
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product of the Euler characteristics of the fiber and the base. In this special
case (∗) reads: χn(X) = χn−1(X − U)χ(X), where U is a small open ball.
In the general case the fiber of π changes when ξ1 approaches faces

of non-zero codimension. The idea of the proof is to write a deformation
retraction that corrects the picture at the vertices, use amputation surgery,
and continue inductively.

Proof of Theorem 1. Consider on X an auxiliary metric d compatible
with the simplicial structure, such that each cell is a regular simplex with a
side of length 8. Let Bδ(x) and Bδ(A) denote the open metric balls of radius
δ around x ∈ X and A ⊂ X respectively.
We will denote by π : Cn(X)→ X the projection onto the first factor.
Let us define a projection pk onto the k skeleton X(k) (it is defined only

for some x from X, namely for those which are close to X(k), and far from
X(k−1)). We set pk(x) to be the point of X(k) nearest to x.
Put ε := 1/8; define inductively sequences of spaces:

(1) Ak ⊂ Cn(X) consists of the configurations such that

dist(ξ1, X(l)) ≥ εl for l < k

(roughly speaking ξ1 is far from X(k−1)).
(2)Dk ⊂ Ak consists of the configurations such that if dist(ξ1, X(k)) < εk

then ξ1 is the only particle in Bεk(pk(ξ1)).

For any σ such that dσ = k put Nσ = Bεk/2(σ) ∩ π(Dk) (Nσ is homeo-
morphic to σ × CLσ, its boundary in π(Dk) is homeomorphic to σ × Lσ).
Then π−1(Nσ) ∩Dk is homeomorphic to the product Nσ × Cn−1(X − 〈σ〉).
Amputating all the Nσ’s we write

[Dk] = [Ek] +
∑

σ: dσ=k

[σ]([CLσ]− [Lσ × I])[Cn−1(X − 〈σ〉)],

and thus
χDk = χEk +

∑

σ: dσ=k

(1− χLσ)χn−1(X − 〈σ〉),

where Ek = π−1(X −
⋃

Nσ) ∩Dk.
We will complete the proof when we show that χDk = χEk−1. This will

be done in two steps.
By polar coordinates on CY = [0, δ]×Y/{0}×Y (we will also denote the

class of {0}×Y by 0) we mean a pair of functions: the modulus | · | : CY →
[0, t], and the argument Arg : (CY − 0)→ Y which are the projections onto
factors.

Step 1. Dk is a deformation retract of Ak (thus χAk = χDk).
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We can assume that ξ1 ∈ Bεk(σ). Note that Bεk(pk(ξ1)) is a cone over
its boundary (in X). Consider polar coordinates on it.
For configuration ξ define ̺ := min{d(ξi, pk(ξ1)) : i > 1}. Both ξ1 and

some other particle are in Bεk(pk(ξ1)) iff ̺ < εk. If this is the case (if not,
then ξ ∈ Dk) define r := max(̺, d(ξ1, pk(ξ1))).
We need a continuous function n : [0, 2εk] × (0, εk] → [0, 2εk] such that

n(·, R) is a homeomorphism (preserving endpoints) of [0, 2εk] for any R,
n(R,R) = εk, and n(·, εk) = id. An example of such a function is

n(t, R) :=
2ε2k −R2

R(2εk −R)
t+

R− εk

R(2εk −R)
t2.

Define

λξ,θ(y) :=
{

n(|y|, (1− θ)r + θεk)Arg(y) if y ∈ Bεk(pk(ξ1)),
y otherwise.

For each θ this is a homeomorphism of X continuously depending on ξ.
The desired deformation retraction is now given by the formula

Λθ(ξ1, . . . , ξn) := (λξ,θ(ξ1), . . . , λξ,θ(ξn)).

Step 2. Ak+1 is a deformation retract of Ek (thus χEk = χAk+1).

For simplicity of notation we will assume thatB2εk(σ) is a metric product
(σ ∩ π(Dk)) × CLσ (to do this one has to change the metric a bit in the
neighborhood of σ). Consider polar coordinates on CLσ.
We need a continuous function n : [εk, 2εk] × [0, εk/2) → [εk, 2εk] such

that n(·, R) is an embedding of [εk, 2εk] into itself, n(2εk, ·) = 2εk, if R > 0
then n(·, R) > εk, and n(·, 0) = id. An example of such a function is

n(t, R) :=
εk −R

εk
t+
2R
εk
.

Define

λξ,θ(y) :=
{

(pk(y), n(|y|, θ(εk − |ξ1|))Arg(y)) if y ∈ B2εk(σ),
y otherwise,

and
ζθ := (pk(ξ1), (|ξ1|+ θ(εk − |ξ1|))Arg(ξ1)).

The desired deformation retraction is now given by the formula

Λθ(ξ1, . . . , ξn) := (ζθ, λξ,θ(ξ2), . . . , λξ,θ(ξn)).

2. Generating function

Definition. Let euX(t) :=
∑

χn(X)tn/n!.

We use this particular generating function since it satisfies an interesting
differential equation. Namely, it is clear that Theorem 1 can be restated as
the differential equation
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(⋆) eu′X =
\
X

euX−〈σ〉µ(σ).

A preliminary step to solve (⋆) is

Proposition 1. eu is a group homomorphism of the additive group of

CP to the group of units Z[[t]]×.

Proof. First we prove that this is a homomorphism. For any configura-
tion of n particles in X ⊔Y there is a partition I ⊔ J = {1, . . . , n} such that
xi ∈ X for i ∈ I and xj ∈ Y for j ∈ J , i.e.

Cn(X ⊔ Y ) ≃
⊔

I⊔J={1,...,n}

C#I(X)C#J(Y ).

Therefore
χn(X ⊔ Y )
n!

=
1
n!

∑

k

(

n

k

)

χk(X)χn−k(Y ) =
∑

k

χk(X)
k!
·
χn−k(Y )
(n− k)!

.

We prove inductively that χn is C&P invariant. Let Y be obtained from
X by C&P surgery along S. To show that χn(X) = χn(Y ) using (⋆), it is
sufficient to check that for any simplex σ its measure in X and Y is the
same, and X − 〈σ〉 and Y − 〈σ〉 are C&P related. This is obvious when σ
is not in S. If σ does belong to S then its link in X is the same as a link
in Y (it is the suspension of a link in S), the second statement follows from
the fact that a neighborhood of S is isomorphic to S × (0, 1), and 〈σ〉 can
be pushed away from S by some automorphism of S × (0, 1) which is the
identity near the ends of the interval. Then we can apply C&P surgery along
S and eventually move 〈σ〉 back.

3. Explicit formula for eu

Proposition 2.
euCX(t)
euX×I(t)

= 1 + (1− χX)t.

Remark. The results of the previous sections are still valid if we assume
that cells of X are products of simplices. Therefore we can put a product
structure on X × I. The cells of CX are cones of cells of X and their sides.

Proof of Proposition 2. Let ̺ be a cell of CX different from the vertex
of the cone. Then

[CX − 〈̺〉] = [CX] + [X × I − 〈̺〉]− [X × I],

i.e.
euCX−〈̺〉 =

euCX

euX×I
euX×I−〈̺〉.
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If ̺ is a vertex of a cone then CX − 〈̺〉 = X × I. Combining the above
equalities with (⋆) we obtain

eu′CX = (1− χX)euX×I +
\

X×[0,1)

euCX

euX×I
euX×I−〈̺〉µ(̺)

= (1− χX)euX×I +
euCXeu′X×I

euX×I
.

The last equality follows since µ(σ × {1}) = 0 (the link is a cone) and the
integral may be taken over X × I. Eventually we obtain

(

euCX

euX×I

)′

= 1− χX.

Theorem 2. Let X be a complex. For any cell σ let dσ and vσ denote
respectively the dimension of σ and the Euler characteristic of the normal
link Lσ of σ. Then

(1) euX(t) =
∏

σ

(1 + (−1)dσ(1− vσ)t)(−1)
dσ

.

Proof. Apply eu to the equality [X −〈σ〉] = [X] + [∂〈σ〉× I]− [〈σ〉], and
integrate it over X to obtain

eu′X = euX

\
X

eu∂〈σ〉×I

eu〈σ〉
µ(σ).

Since 〈σ〉 = C∂〈σ〉, we apply Proposition 2:

(log euX)′(t) =
\
X

1
1 + (1− χ∂〈σ〉)t

µ(σ)(2)

=
\
X

d
dt log(1 + (1− χ∂〈σ〉)t)

1− χ∂〈σ〉
µ(σ).

Also ∂〈σ〉 is the dσ-fold suspension of Lσ, so 1 − χ∂〈σ〉 = (−1)dσ(1 − vσ).
Therefore, rewriting the right hand side we have

(log euX)′(t) =
∑

σ

(−1)dσ
d

dt
log(1 + (−1)dσ(1− vσ)t),

which proves the theorem.

Note. When χ∂〈σ〉 = 1, the corresponding summand in (2) is 0 and
the factor in (1) is 1.
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