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SOME REMARKS ON QUASI-COHEN SETS

BY

PASCAL LEFÈVRE and DANIEL LI (Lens)

Abstract. We are interested in Banach space geometry characterizations of quasi-
Cohen sets. For example, it turns out that they are exactly the subsets E of the dual of
an abelian compact group G such that the canonical injection C(G)/CEc (G) →֒ L

2
E(G)

is a 2-summing operator. This easily yields an extension of a result due to S. Kwapień
and A. Pełczyński. We also investigate some properties of translation invariant quotients
of L1 which are isomorphic to subspaces of L1.

0. Introduction. Let G be an infinite metrizable compact abelian
group, equipped with its normalized Haar measure dx, and Γ its dual group
(discrete and countable).

It is well known that subsets Λ of Γ for which CΛ(G) is complemented
in C(G) are those for which there exists a measure µ such that µ̂ = 1 on Λ
and µ̂ = 0 on Γ \ Λ. Due to the characterization of P. Cohen [C] of these
sets, S. Kwapień and A. Pełczyński [K-P] called such sets Cohen sets, and
introduced quasi-Cohen sets as the subsets Λ of Γ for which there exists
a measure µ such that |µ̂| ≥ 1 on Λ and µ̂ = 0 on Γ \ Λ. Every Cohen
set is then a quasi-Cohen set, but S. Drury’s construction [D] shows that
the complement of any Sidon set is a quasi-Cohen set, though it is not
a Cohen set (if this Sidon set is infinite). S. Kwapień and A. Pełczyński
characterized the quasi-Cohen sets Λ by properties of operators acting on
the spaces CΛ(G) or L

p
Λ(G), p = 1 or 2 ([K-P], Th. 2.1, 2.2) and showed

that Λ is a quasi-Cohen set whenever CΛ(G) is a quotient of an L
∞-space

([K-P], Prop. 2.2). It seems that these sets have not been investigated since
then (see [H-M-P], Chap. III, however).

The purpose of this note is to give some new characterizations of quasi-
Cohen sets Λ in terms of factorization properties of the canonical injection
from CΛ(G) into L

1
Λ(G) and of 2-summing properties of the canonical injec-

tion from C(G)/CΛc(G) to L
2
Λ(G).
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1. Notations and definitions. In this paper, G will be an infinite
metrizable compact abelian group and Γ its dual group (discrete and count-
able). In the case of the circle group G = T, Γ is identified with Z by the
map p 7→ ep with ep(x) = e

2iπpx.
M(G) will denote the space of complex regular Borel measures over G,

equipped with the total variation norm. If µ ∈M(G), its Fourier transform
at the point γ is defined by

µ̂(γ) =
\
G

γ(−x) dµ(x).

As usual, the space C(G) and the Lebesgue spaces Lp(G), 1 ≤ p ≤ ∞, re-
lated to the Haar measure, are identified with linear subspaces of M(G) by
the map f 7→ fdx.
For B ⊂M(G) and Λ ⊂ Γ , we set

BΛ = {µ ∈ B | ∀γ 6∈ Λ, µ̂(γ) = 0}.

BΛ is the set of elements of B whose spectrum is contained in Λ.
The complement Γ \ E of any subset of Γ will be denoted by Ec.

If x ∈ X and Y ⊂ X, we denote by ẋ the class of x in the quotient
X/Y .
We recall that a subset Λ of Γ is said to be a Sidon set if there exists

C > 0 such that
∑
γ∈Λ |f̂(γ)| ≤ C‖f‖∞ for all f ∈ CΛ(G).

Definition 1.1. A subset Λ of Γ is said to be a Cohen set if there exists
a measure µ ∈MΛ(G) such that

µ̂(γ) = 1 for every γ ∈ Λ;

or, what is the same, if CΛ(G) is complemented in C(G).

Definition 1.2. A subset Λ of Γ is a quasi-Cohen set if there exists a
measure µ ∈MΛ(G) such that

|µ̂(γ)| ≥ 1 for every γ ∈ Λ.

It should be noticed that we can actually assume that µ̂(γ) ≥ 1 for all
γ ∈ E, by replacing µ by µ ∗ µ̃ (where µ̃(A) = µ(−A)).
It is clear that every Cohen set is a quasi-Cohen set. The converse is false:

it has been observed by I. Glicksberg [G] that S. Drury’s [D] construction
shows that the complement Sc of every Sidon set S is a quasi-Cohen set;
however, it is not a Cohen set (at least if S is infinite), since ℓ1 is not
isomorphic to any complemented subspace of C(G). In fact, it has been
observed by M. Déchamps-Gondim that, as a consequence of the paper of
B. Host and F. Parreau [H-P], any subset Λ of Γ for which both Λ and
Λc are quasi-Cohen sets is actually Cohen (see [K-P], p. 317 or [H-M-P],
Chap. III). S. Kwapień and A. Pełczyński also proved that: E is a Sidon set
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if and only if every subset of E ⊂ Γ is the complement of a quasi-Cohen set
([K-P], Th. 3.2).

We also recall that a bounded operator T from a Banach space X to a
Banach space Y is said to be p-summing if there is a constant C > 0 such
that for any finite family of vectors (xn) in X,

(∑

n

‖T (xn)‖
p
)1/p
≤ C sup

χ∈X∗

‖χ‖=1

(∑

n

|χ(xn)|
p
)1/p
.

We denote by πp(T ) the smallest such constant C.

Definition 1.3. A Banach spaceX is said to be a GT-space if it satisfies
the Grothendieck theorem: every bounded operator from X into a Hilbert
space is 1-summing.

Remark 1.4. It is known (see [P], Prop. 6.2) thatX is a GT-space if and
only if every bounded operator from X∗ into a cotype 2 space is 2-summing.

Definition 1.5. A Banach space X is said to be a GL-space (or to have
the GL property) if it has the Gordon–Lewis property: every 1-summing
operator from X into an arbitrary Banach space factorizes through an L1-
space.

The reader has to watch out for the different terminology on GL-spaces
that can be found in the literature. Here, we adopt the terminology that can
be found in the book of G. Pisier ([P], Def. 8.13).

We introduce the following

Definition 1.6. For Λ ⊂ Γ , the space CΛ(G) will said to be a GL
inv-

space if the canonical injection from CΛ(G) to L
1
Λ(G) factorizes through an

L1-space.

This definition is different from [K-P], Def. 5.1. Notice that a GL-space
is clearly a GLinv-space.

Finally, we introduce the following notion:

Definition 1.7. Let E ⊂ Γ and X be a Banach space. Let ϕ :
C(G)/CEc(G) → X be a bounded operator. We say that the pair (E,X)
is ϕ-admissible if there exists a constant δ > 0 such that for all γ ∈ E,
‖ϕ(γ̇)‖ ≥ δ, where γ̇ is the class of γ in C(G)/CEc(G).

Notation 1.8. We denote by i2,E the projection

C(G)/CEc(G)→ L
2(G), ḟ 7→

∑

γ∈E

f̂(γ)γ.

Remark 1.9. For any E ⊂ Γ , the pair (E,L2(G)) is i2,E-admissible.
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2. Quasi-Cohen sets. The main theorem of this section is the following

Theorem 2.1. Let E ⊂ Γ . The following assertions are equivalent :

(i) E is a quasi-Cohen set.

(ii) The canonical injection from CE(G) to L
1
E(G) factorizes through the

canonical injection from L2(G) to L1(G).

(iii) The canonical injection from CE(G) to L
1
E(G) factorizes through an

operator T : Y → Z, where Z is a GT-space and Y ∗ has cotype 2.

(iv) There exists a Banach space X such that the pair (E,X) is ϕ-
admissible, where ϕ is a 2-summing operator.

As L2 has cotype 2, every operator which is p-summing for some p ≥ 2,
with range in L2, is actually 2-summing; hence an immediate corollary is
the following:

Theorem 2.2. Let E ⊂ Γ . The operator i2,E : C(G)/CEc(G)→ L
2(G)

is p-summing for some p ≥ 2 if and only if E is a quasi-Cohen set.

Proof of Theorem 2.1. (i)⇒(ii). There exists a measure µ ∈ ME(G)
satisfying |µ̂(γ)| ≥ 1 for every γ ∈ E. Setting mγ = µ̂(γ)

−1 for every γ ∈ E,
we have m = (mγ)γ∈E ∈ ℓ

∞(E) with ‖m‖∞ ≤ 1. Thus m defines a bounded

operator Tm : L
2
E(G) → L

2
E(G) with Tm(f) =

∑
γ∈Emγ f̂(γ)γ. Now the

result follows from the factorization

CE(G) →֒ L
2
E(G)

Tm−→ L2E(G) →֒ L
2(G) →֒ L1(G)

∗µ
−→ L1E(G)

where ∗µ is convolution by µ and the unspecified maps are the natural
injections.

(ii)⇒(iii) is trivial since L1 is a GT-space and L2 has cotype 2.

(iii)⇒(iv). By assumption, we have the following factorization for the
canonical injection of CE(G) into L

1
E(G):

CE(G)
α
→ Y

T
→ Z

β
→ L1E(G)

where Y ∗ has cotype 2, Z is a GT-space and T , α, β are bounded operators.

By duality, we get the following factorization for the canonical injection
L∞(G)/L∞Ec(G) into M(G)/MEc(G):

L∞(G)/L∞Ec(G)
β∗

→ Z∗
T ∗
→ Y ∗

α∗
→M(G)/MEc(G).

Thanks to Remark 1.4, the operator T ∗ is 2-summing. Hence, the canon-
ical injection from L∞(G)/L∞Ec(G) to M(G)/MEc(G) is also 2-summing.
A fortiori, the canonical injection from C(G)/CEc(G) to M(G)/MEc(G) is
2-summing. As ‖γ̇‖M(G)/MEc (G) = 1 for any γ ∈ E, we have proved (iv)
with X =M(G)/MEc(G).

(iv)⇒(i). The argument with the Pietsch domination theorem which
simplifies the original one was suggested to us by G. Pisier. There exists a
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probability measure ν on the unit ball of the dual of C(G)/CEc(G), i.e. on
the unit ball of ME(G), such that for any h ∈ C(G)/CEc(G),

‖ϕ(h)‖ ≤ π2(ϕ)
( \
BME(G)

|〈ζ, h〉|2dν(ζ)
)1/2

where 〈 , 〉 denotes the duality bracket. It should be noted that, for conve-
nience, we actually use 〈ζ, f〉 = f ∗ ζ(0) for the duality between ME(G) and
C(G)/CEc(G).
Testing the previous inequality at γ̇, with γ ∈ E, we obtain

0 < δ2 ≤ ‖ϕ(γ̇)‖2 ≤ π2(ϕ)
2

\
BME(G)

|ζ ∗ γ(0)|2 dν(ζ)

= π2(ϕ)
2

\
BME(G)

|ζ̂(γ)|2 dν(ζ).

We then define the measure µ as the integral (in the weak star sense)

µ =
\

BME(G)

(ζ ∗ ζ̃) dν(ζ)

where, as usual, ζ̃(Ω) = ζ(−Ω) for any Borel set Ω ⊂ G. Thus, we have

ζ̃ ∈M(G), ‖ζ̃‖ = ‖ζ‖ and
̂̃
ζ =
¯̂
ζ for any ζ ∈M(G).

The measure µ is in ME(G). Moreover, for any γ ∈ E we have

µ̂(γ) = µ ∗ γ(0) =
\

BME(G)

ζ ∗ ζ̃ ∗ γ(0) dν(ζ) =
\

BME(G)

ζ̂(γ) ·
̂̃
ζ(γ) dν(ζ)

=
\

BME(G)

|ζ̂(γ)|2 dν(ζ).

This leads to π2(ϕ)
2µ̂(γ) ≥ δ2. As the measure π2(ϕ)

2µ is in ME(G),
this exactly means that E is a quasi-Cohen set.

3. GL-spaces and quotients of L∞. Theorem 2.1 allows us to extend
a result on quotients of L∞ contained in [H-M-P] and [K-P], which is linked
to a problem raised by S. Kwapień and A. Pełczyński:

Let E ⊂ Γ be a quasi-Cohen set. Is CE(G) isomorphic to a quotient of
an L∞-space?

Concerning the converse, S. Kwapień and A. Pełczyński noticed that if
there exists a translation invariant surjection from C(G) to CE(G) then E
is a Cohen set [K-P]. This is based on a result of B. Host and F. Parreau on
closed ideals of L1(G). Without the translation invariance assumption, they
proved that E is a quasi-Cohen set if CE(G) is isomorphic to a quotient of
a C(K)-space.
The following result is a corollary of Theorem 2.1.
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Theorem 3.1. Let E⊂Γ . If CE(G) is a GL
inv-space andM(G)/MEc(G)

has cotype 2 then E is a quasi-Cohen set.

Proof. Consider the canonical injection fromCE(G) to L
1
E(G). As CE(G)

is a GLinv-space, it factorizes through an L1-space by an operator A :
CE(G) → L

1. But CE(G)
∗ and L1 have cotype 2 and L1 is a GL-space,

so by a result of G. Pisier ([P], Th. 8.17), A factorizes through an L2-space.
Hence the canonical injection from CE(G) to L

1
E(G) factorizes through an

operator from L2 to L1. By Theorem 2.1(iii), E is a quasi-Cohen set.

Theorem 3.1 leads to recovering some known results:

Corollary 3.2 ([H-M-P], [K-P]). Let E ⊂ Γ . If CE(G) is isomorphic
to a quotient of a C(K)-space then E is a quasi-Cohen set.

Proof. If CE(G) is isomorphic to a quotient of a C(K)-space then CE(G)
is a GL-space and CE(G)

∗ is isomorphic to a subspace of an L1-space, hence
has cotype 2. Theorem 3.1 gives the result.

The second part of the following corollary is well known but usually
proved using the Paley inequality.

Corollary 3.3. The disk algebra is not a GLinv-space, hence is not a
GL-space.

Proof. As the quotient M(T)/H1 has cotype 2 (this is due to J. Bour-
gain, see [P], Th. 6.17), if the disk algebra were a GLinv-space, this would
imply that N is a quasi-Cohen set. This is clearly false by the classical
Riesz theorem: every measure with spectrum contained in N is absolutely
continuous with respect to the Haar–Lebesgue measure, hence its Fourier
coefficients tend to zero at infinity (N is a so-called Rajchman set).

More generally, we notice the following consequence of Theorem 3.1,
which produces examples of spaces without the GL-property:

Corollary 3.4. For any E ⊂ Γ , which is not a quasi-Cohen set , such
that L1(G)/L1Ec(G) has cotype 2, the space CE(G) does not have the GL-
property.

For example, this includes the case of the disk algebra.

Remark 3.5. This also leads to the following examples: if A is a Λ(1)-set
(i.e. L1A is reflexive) but not Sidon, then there exists B ⊂ A such that B

c

is not quasi-Cohen (else A would be Sidon by the result of S. Kwapień and
A. Pełczyński quoted in the introduction). Then L1/L1B has cotype 2 ([P],
p. 78) and fails the GL-property. Moreover, if A is chosen Λ(2) and still not
Sidon then L1B is even isomorphic to a Hilbert space.
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4. Some remarks on quotients of L1 isomorphic to subspaces
of L1-spaces. We are interested in this section in results in the spirit of
3.2 in terms of quotients of L1. There is a characterization (with summing
operators) of the sets Λ ⊂ Γ such that L1(G)/L1Λc(G) is isomorphic to a
subspace of an L1-space:

Theorem 4.1. Let Λ ⊂ Γ . The following assertions are equivalent :

(i) L1(G)/L1Λ(G) is isomorphic to a subspace of an L
1-space.

(ii) The canonical injection from C(G)/CΛ(G) to L
1(G)/L1Λ(G) is

1-summing.

(iii) There is a probability measure ν on the unit ball B of MΛc(G) such
that L1(G)/L1Λ(G) is isomorphic to a subspace of L

1(B×G, ν ⊗ dx). More-
over the isomorphism can be taken as T (f) = F with F (ζ, ·) = f ∗ ζ for all
f ∈ L1(G)/L1Λ(G), ζ ∈ B.

Proof. (i)⇒(ii). Thanks to Theorem 9.12.b of [D-J-T] and as the canon-
ical injection from C(G)/CΛ(G) to L

1(G)/L1Λ(G) has a 1-summing adjoint,
it is itself 1-summing.

(ii)⇒(iii). We use the Pietsch domination theorem: there exists a proba-
bility measure ν on B and a constant C such that for any h ∈ C(G)/CΛ(G),

‖h‖L1/L1
Λ
≤ C

\
B

|ζ ∗ h(0)| dν(ζ).

Applying this inequality to hx for every x ∈ G, where hx(t) = h(x − t)
with additive notation of the group operation on G (notice that ‖hx‖L1/L1

Λ

= ‖h‖L1/L1
Λ
), and integrating over G with respect to the Haar measure, we

obtain

‖h‖L1/L1
Λ
≤ C

\
G

\
B

|ζ ∗ h(x)| dν(ζ) dx = C‖H‖L1(ν⊗dx)

where H(ζ, x) = h ∗ ζ(x).

As obviously ‖H‖L1(ν⊗dx) ≤ ‖h‖L1/L1
Λ
, the quotient L1(G)/L1Λ(G) is

then isomorphic to the space Z = {H ∈ L1(ν ⊗ dx) | ∃h ∈ L1(G)/L1Λ(G),
H(ζ, ·) = h ∗ ζ, ζ ∈ B}.

(iii)⇒(i) is trivial.

Remark 4.2. Suppose that we are in the situation of the preceding the-
orem. Then, by duality, L∞Λc(G) is isomorphic to the quotient L

∞(B×G)/Z⊥

by the map F (ζ, x) ∈ L∞(B × G) 7→
T
B
ζ ∗ Fζ dν(ζ) ∈ L

∞
Λc(G) where

Fζ(x) = F (ζ, x). Hence, by approximation, CΛc(G) is isomorphic to a quo-
tient of C(B ×G).

The following corollary shows the link between this section and quasi-
Cohen sets.



176 P. LEFÈVRE AND D. LI

Corollary 4.3. Suppose that L1(G)/L1Λ(G) is isomorphic to a sub-
space of an L1-space. Then Λc is a quasi-Cohen set.

Proof. The preceding remark and Corollary 3.2 suffice to prove the claim.
Another argument is: the preceding theorem asserts that the canoni-

cal injection from C(G)/CΛ(G) to L
1(G)/L1Λ(G) is 1-summing, hence 2-

summing. Theorem 2.1(iv) then gives the result.

We now state some properties of such sets.

Theorem 4.4. Let Λ ⊂ Γ be such that L1(G)/L1Λ(G) is isomorphic to
a subspace of an L1-space. Then every f ∈ CΛc(G) has a decomposition
f =
∑
j µj ∗ yj , where µj ∈ L

1
Λc(G), yj ∈ C(G) and

∑
j ‖µj‖ · ‖yj‖ < ∞.

Hence, any Fourier multiplier m = (mγ)γ∈Γ from C(G) to C(G)/CΛ(G) is
induced by a measure: there exists a measure µ ∈M(G) such that µ̂(γ) = mγ
for all γ 6∈ Λ.

Proof. First, we can factorize f as f1 ∗ f2 where f1 ∈ L
1(G) and f2 ∈

CΛc(G). By Theorem 4.1(ii), the canonical injection from C(G)/CΛ(G) to
L1(G)/L1Λ(G) is 1-summing, hence its composition T2 with the operator
from L1(G)/L1Λ(G) to C(G) of convolution by f2 is also 1-summing. By
[D-J-T], Th. 5.7, T2 is 1-integral. As the operator T1 from C(G) to C(G) of
convolution by f1 is compact, the composition T = T1 ◦T2 is nuclear. Notice
that T is in fact convolution by f from C(G)/CΛ(G) to C(G).
Therefore, there exists some measure µj ∈ MΛc(G) (the dual space of

C(G)/CΛ(G)) and yj ∈ C(G) such that for every h ∈ C(G)/CΛ(G), T (h) =∑
j µj ∗ h(0)yj , where

∑
j ‖µj‖ · ‖yj‖ <∞. The last condition implies that

σ =
∑
j µj ∗ yj ∈ CΛc(G). Thus, T̂ (γ)(γ) =

∑
j µ̂j(γ)ŷj(γ) = σ̂(γ) for all

γ 6∈ Λ. Hence f = σ.
The second part is standard: for all Fourier multipliers m from C(G) to

C(G)/CΛ(G), f ∗m =
∑
j µj ∗ yj ∗m does define a function in C(G) and

even in CΛc(G). Hence, by duality, m belongs to the dual M(G)/MΛ(G) of
CΛc(G). So it is induced by a measure.

Remark 4.5. By duality, the same conclusion holds in the second part
of the theorem for every Fourier multiplier from MΛc(G) into itself.
Therefore, the Paley projection viewed from H1 (i.e.MN) into itself pro-

duces an immediate example of a multiplier (by the characteristic function
of the set {2n}) which is surely not induced by a measure. This shows the
known fact that L1/H1 is not isomorphic to a subspace of L1.

Remark 4.6. If one showed that L1/L1S is not isomorphic to a subspace
of L1 when S is a Sidon set, it “would suffice”, together with the previous
results, to produce a Fourier multiplier fromMSc(G) into itself which is not
induced by a measure.
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5. Descriptive point of view. The difficulty of the study of classes
of subsets of Γ can be viewed through descriptive set theory (see [K-L], [T],
[Go]). We have

Proposition 5.1. The set QC of all quasi-Cohen subsets of Γ is ana-
lytic in the set P(Γ ) of all subsets of Γ , equipped with the product topology
on {0, 1}Γ .

Proof. Let Λ ∈ QC. This means that there exists µ ∈ MΛ(G) such that
µ̂(γ) ≥ 1 for every γ ∈ Λ. Let us introduce the sets

DK = {(Λ, µ) ∈ P(Γ )×MΛ(G) | ‖µ‖ ≤ K; ∀γ ∈ Λ, µ̂(γ) ≥ 1}

⊂ P(Γ )×M(G).

Bounded subsets of M(G) are w∗-metrizable. We will show that DK is
closed. Indeed, if (Λn, µn) converges to (Λ, µ), then for every γ ∈ Γ , there
exists some nγ such that for all n ≥ nγ , γ ∈ Λ ⇔ γ ∈ Λn. Moreover
µ̂n(γ)→ µ̂(γ) as n→∞; so we conclude that µ ∈MΛ(G).

On the other hand, if γ ∈ Λ, then γ ∈ Λn for all n ≥ nγ , hence µ̂n(γ) ≥ 1.
Letting n tend to infinity gives µ̂(γ) ≥ 1.

We conclude that QC is a projection of the Fσ set
⋃
K≥1DK , hence it is

analytic.

Of course, it would be interesting to know whether or not QC is a Borel
set.
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