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Abstract. We consider abstract parabolic problems in ordered Banach spaces and
give conditions under which they have global attractors. Our approach is via comparison
of solutions. Within this approach abstract comparison principles are obtained and bounds
on the attractors are given by order intervals in Banach spaces. These results are applied
to ordinary differential equations and to parabolic equations for which the main part is
given by a sum of fractional powers of sectorial operators having increasing resolvents and
integral operators having positive kernels.

1. Introduction. Let X be a Banach space and A : D(A) ⊂ X → X
be a sectorial operator. Choose λ0 ∈ R such that Reσ(A) > λ0, that is,
Reλ > λ0 for all λ ∈ σ(A) (σ(A) is the spectrum of A). As usual X

α ([13,
p. 29]) denote the fractional power spaces associated with A. Assume that
f : Xα → X is Lipschitz continuous in bounded subsets of Xα and consider
the following abstract parabolic initial value problem:

u̇+Au = f(u), u(0) = u0 ∈ X
α.(1)

Under these assumptions the problem (1) is locally well posed in Xα (see
[13], Theorem 3.3.4), the solution u(t, u0) of (1) is defined in a maximal inter-
val of existence [0, τu0) and either τu0 =∞ or lim supt→τ−u0

‖u(t, u0)‖Xα =∞.

When X is a Hilbert space, to ensure that the problem (1) is globally well
posed, the usual approach is to obtain some energy estimates for the so-
lutions. We are interested in the case when X is not a Hilbert space and
in that case different tools to obtain bounds on the solutions are needed.
The tools we use are abstract comparison results. For that we need some
additional structure to the abstract problem. We start with the following
definitions.
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Definition 1. An ordered Banach space is a pair (X,≤), where X is a
Banach space and ≤ is an ordering relation in X satisfying

1) x ≤ y implies x+ z ≤ y + z, x, y, z ∈ X,
2) x ≤ y implies λx ≤ λy, x, y ∈ X, and 0 ≤ λ ∈ R,
3) the positive cone C = {x ∈ X : x ≥ 0} is closed in X (where x ≥ y

means y ≤ x).

Definition 2. Let (X,≤X) and (Y,≤Y ) be ordered Banach spaces. A
function T : X → Y is increasing if x1 ≤X x2 implies T (x1) ≤Y T (x2), and
it is positive if x ≥X 0 implies T (x) ≥Y 0.

Note that the two notions in Definition 2 coincide when the map T is
linear.

Definition 3. Let X be an ordered Banach space. A vector ξ ∈ X is
said to be an upper bound for B ⊂ X if b ≤ ξ for any b ∈ B. In an ordered
Banach space, if a ≤ b, the set [a, b] = {x ∈ X : a ≤ x ≤ b} is called an
order interval.

For the rest of this section we assume that X is an ordered Banach space.
Assume that (λ + A)−1 is increasing for all R ∋ λ > λ0. Assume also that
there are numbers c+1 , c

−
1 ∈ R and vectors X ∋ c+2 ,−c

−
2 ≥ 0 such that the

map f satisfies
f(u) ≤ c+1 u+ c

+
2 , u ≥ 0,

f(u) ≥ c−1 u+ c
−
2 , u ≤ 0.

(2)

Under these assumptions and some regularity we prove that the solutions of
(1) are globally defined. If in addition we assume that Reσ(A − c±1 I) > 0,
then (1) has a global attractor.
This paper is organized as follows. In Section 2 we give introductory

results concerning positivity and comparison, which will be of help when
proving the desired result on the asymptotics of (1). In Section 3 we prove
existence of global attractors. In Section 4 we give several examples of equa-
tions to which the abstract results developed in Section 3 apply, including
ordinary differential equations, parabolic equations with pseudodifferential
operators and integral-pseudodifferential equations. Finally, in the Appendix
we state several results which enable us to state that a given operator has
increasing resolvent as well as to produce new operators with increasing
resolvent starting from operators for which this property is known.
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2. Abstract monotonicity and comparison. In this section we fol-
low [6] to establish abstract comparison results for parabolic problems of
the form (1), assuming that the base space X is an ordered Banach space
and that the resolvent of A is increasing, i.e. (λ+A)−1 is increasing for all
λ > λ0.

2.1. Nonlinear perturbations of increasing resolvent operators. We start
from positivity and comparison results for nonlinear equations

u̇+Au = f(t, u), u(t0) = u0 ∈ X
α,(3)

where f : [t0, t1) × X
α → X is locally Hölder in t, locally Lipschitz in u

and 0 ≤ α < 1. The unique solution of (3) (see [13], [18]) is denoted by
uf (t, u0). All the initial value problems studied below will be such that the
nonlinearity satisfies the above condition.

Concerning positivity, we have

Theorem 1. Let (X,≤) be an ordered Banach space and A a sectorial
operator in X with increasing resolvent. Assume that for every r > 0 there
exists a constant β = β(r) > 0 such that f(t, ·) + βI is positive for each
t ∈ [t0, t1) in the ball of radius r in X

α. If u0 ≥ 0, then uf (t, u0) is positive
as long as it exists.

Concerning comparison, we have

Theorem 2. Let (X,≤) be an ordered Banach space, and A be a secto-
rial operator with increasing resolvent.

(i) If for every r > 0 there exists β = β(r) > 0 such that for t ∈ [t0, t1),
f(t, ·) + βI is increasing in a ball of radius r in Xα, then u0 ≥ u1 implies
uf (t, u0) ≥ uf (t, u1) as long as both solutions exist.

(ii) If f(t, ·) ≥ g(t, ·) for every t and if for each r > 0 there is β(r) > 0
such that f(t, ·) + βI is increasing in a ball of radius r in Xα (or g has the
latter property), then uf (t, u0) ≥ ug(t, u0) as long as both solutions exist.

(iii) If for every r > 0 there exists β(r) > 0 and an increasing function
h(t, ·) such that f(t, ·)+βI ≥ h(t, ·) ≥ g(t, ·)+βI in a ball of radius r, then
u0 ≥ u1 implies uf (t, u0) ≥ ug(t, u1) as long as both solutions exist.

The proofs of the above results are based on the study of successive
approximations (see [6]).

2.2. Quasi-monotone maps and increasing resolvent matrices. In what
follows we mention how Theorem 2 relates to the classical results concerning
ordinary differential equations in R

n having the form

d

dt
~z = F (~z ), ~z(0) = ~z0.(4)
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We aim to give conditions on the vector field F implying that the solution
operator for (4) is increasing with respect to initial conditions. The approach
is the one taken by J. Szarski in [19] (see also [17, 22]).
Let ~x = (x1, . . . , xn) and ~y = (y1, . . . , yn) be vectors in R

n. We write

~x ≤ ~y if xj ≤ yj , j = 1, . . . , n,

and

~x
i
≤ ~y if xj ≤ yj , j = 1, . . . , n, and xi = yi.

We say that F : Rn → R
n is quasi-monotone increasing if

~x
i
≤ ~y ⇒ Fi(~x) ≤ Fi(~y ), i = 1, . . . , n.

Theorem 3. If F is a locally Lipschitz function which is quasi-mono-
tone increasing , ~x0 ≤ ~y0 ∈ R

n, ~x(t, ~x0) and ~y(t, ~y0) are the solutions of (4)
starting at ~x0 and ~y0 respectively , then

~x(t, ~x0) ≤ ~y(t, ~y0)

for as long as both solutions exist.

Proof. Since for any bounded set B there is a constant LB > 0 such that
F + LBI is increasing in B, the result follows from Theorem 2.

If F (~x) = A~x with A being an n × n matrix, then requiring that F
is quasi-monotone increasing is equivalent to requiring that all off-diagonal
terms of A are nonnegative. Hence we have

Corollary 1. Let A be an n× n matrix with nonnegative off-diagonal
entries. Then eAt ≥ 0, t ≥ 0.

This enables us to construct many examples of finite-dimensional oper-
ators with increasing resolvent.

3. Order and attractors. With the aid of the considerations of Sec-
tion 2 we now prove the results stated in the introduction.

3.1. Basic estimates. We start with simple lemmas from the theory of
semigroups.

Lemma 1. Let A be a sectorial operator in a Banach space X and , for
c1 ∈ R, consider the linear problem

u̇+Au− c1u = 0, u(0) = u0.

For every T > 0 there exists M =M(T, c1) such that if u0 ∈ X
β and α ≥ β

then

‖u(t)‖Xα ≤Mt
−(α−β)‖u0‖Xβ

for every t ∈ (0, T ]. Moreover , if Reσ(A− c1I) > µ1 > 0, then we can take
T =∞ and replace M by M0e

−µ1t.
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Lemma 2. Suppose that A and X are as in Lemma 1, Reσ(A− c1I) >
µ1 > 0 and consider the equation

ẇ +Aw = c1w + c2, w(0) = w0.(5)

Let φ = (A− c1)
−1c2 and assume that Y is a Banach space,

• φ ∈ Y ,
• there is α0 > 0 (which may be greater than 1) such that

‖x‖Y ≤ cY ‖x‖Xα0 , x ∈ Xα0 .

If w(t, w0) denotes the solution of (5), then there are positive constants M
and K such that

‖w(t, w0)‖Y ≤Mt
−α0‖w0 − φ‖X +K, t > 0.(6)

Proof. Consider the change of variables w = v+φ where φ is the solution
of

Aφ− c1φ− c2 = 0.

Then v satisfies

v̇ +Av = c1v, v(0) = w0 − φ.

From Lemma 1 and the embedding of Xα0 into Y we have

‖w(t, w0)‖Y ≤ cYM0t
−α0‖w0 − φ‖X + ‖φ‖Y , t > 0.(7)

3.2. B-monotone maps. In Subsection 2.1 we mentioned the maps f
with the property that given a bounded set B in the domain of f , there is
a constant βB > 0 such that f +βBI is increasing in B. These maps will be
called B-monotone maps.
We start by studying the behavior of solutions of parabolic problems of

the form

u̇+Au = f(u), u(0) = u0,(8)

where (X,≥) is an ordered Banach space, A is a sectorial operator with
increasing resolvent and f : Xα → X is Lipschitz continuous on bounded
sets for some α ∈ [0, 1).
Consider the following auxiliary problem:

u̇+Au = f+(u),(9)

where f+ is Lipschitz continuous in bounded subsets of Xα satisfying

f(u) ≤ f+(u), u ∈ Xα.(10)

Under these assumptions, Theorem 2 immediately yields

Lemma 3. If either f or f+ is B-monotone and u0 ≤ u1, then

uf (t, u0) ≤ uf+(t, u1)(11)

for as long as uf (t, u0) and uf+(t, u1) exist.
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3.3. Attractors and bounds. We are now prepared to prove existence of
attractors for (1) and obtain bounds for them.
Assume that A is a sectorial operator in an ordered Banach space X

and, for some α ∈ [0, 1), f : Xα → X is Lipschitz continuous in bounded
sets and B-monotone. Assume also that (2) holds and for any u0 ∈ X

α there
are u+0 , u

−
0 ∈ X

α satisfying u−0 ≤ u0 ≤ u
+
0 and u

+
0 ≥ 0,−u

−
0 ≥ 0.

Consider the problem (8) and a pair of auxiliary problems

u̇+ +Au+ = c+1 u
+ + c+2 , u+(0) = u+0 ,(12)

u̇− +Au− = c−1 u
− + c−2 , u−(0) = u−0 .(13)

Let u(t, u0), u
+(t, u+0 ) and u

−(t, u−0 ) denote the solutions of (8), (12) and
(13) respectively. Since u+(t, u+0 ) ≥ 0 from Lemma 3, we have

u(t, u0) ≤ u
+(t, u+0 )

for as long as u(t, u0) exists. Proceeding similarly in the case of u
−, we get

u−(t, u−0 ) ≤ u(t, u0) ≤ u
+(t, u+0 )(14)

for as long as u(t, u0) exist. Since u
+(t, u+0 ) and u

−(t, u−0 ) exist for all t ≥ 0,
we would like to establish that the same happens for u(t, u0). This is going
to be the case in a number of applications. Meanwhile, remaining abstract,
we state the following result.

Theorem 4. Assume that A has compact resolvent and Reσ(A−c±1 )>0.

(i) If u(t, u0) exists for all t ≥ 0 and remains bounded in X
α, then

ω(u0) 6= ∅ and

(A− c+1 )
−1c+2 = Φ

+ ≥ φ ≥ Φ− = (A− c−1 )
−1c−2 , φ ∈ ω(u0).

(ii) If (8) has a global attractor A, then

Φ+ ≥ φ ≥ Φ−, φ ∈ A.

In both cases the above results say that the order interval {φ ∈ Xα : Φ+ ≥
φ ≥ Φ−} contains the asymptotic dynamics of (8).

The proof of Theorem 4 follows immediately from the fact that Φ+

(or Φ−) is a global attractor for (12) (or (13)), from the definition of at-
tractor and from (14).
Next we work towards obtaining the existence of global attractors for

the problem (1). For that we need to introduce some additional structure.
We have already checked, in Lemma 2 and in (14), that if Xα0 ⊂ Y for some
α0 > 0 and (2) holds, then (8) has the following property:

(H) Given a solution u(t, u0) of (8) in X
α on its maximal interval of

existence [0, τu0), there are continuous functions η
+, η− : (0,∞)→ Y

with lim supt→∞ ‖η
±(t)‖Y ≤ K such that η

+(t) ≥ u(t, u0) ≥ η
−(t),

t ∈ (0, τu0).
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Assumption 1. Assume (H) implies that u(t, u0) is globally defined ,
u(t, u0) ∈ Y for t > 0 and

lim sup
t→∞

‖u(t, u0)‖Y ≤ K.

Assume also that ‖f(u)‖X ≤ Nη whenever ‖u‖Y ≤ K + η, η > 0.

Assumption 1 asserts that we are able to strengthen a global-in-time a
priori estimate of u(t, u0) in X (expressed as η

+(t) ≥ u(t, u0) ≥ η
−(t)) to

its global estimate in the Xα norm. Such a property of solutions is usually a
consequence of the structure of the nonlinear term and the smoothing action
of the solutions to (8).

Corollary 2. Assume that f : Xα → X is Lipschitz continuous in
bounded sets and B-monotone, (2) holds, Reσ(A − c±1 ) > µ1 > 0, A has
compact resolvent and Assumption 1 is satisfied. Then the semigroup corre-
sponding to (8) in Xα has a global attractor.

Proof. To prove this we proceed as follows. For t ≥ t0 ≥ 0 we write

u(t, u0) = e
−A(t−t0)u(t0, u0) +

t\
t0

e−A(t−s)f(u(s, u0)) ds.

We now take t0 large enough such that ‖u(s, u0)‖Y ≤ K + η for s ≥ t0,
which gives

‖u(t, u0)‖Xα ≤M0e
−µ1(t−t0)(t− t0)

−α‖u(t0, u0)‖Xα

+M0

t\
t0

e−µ1(t−s)(t− s)−αNη ds

with Nη = sup‖s‖Y ≤K+η ‖f(s)‖X . Since

lim sup
t→∞

‖u(t, u0)‖Xα ≤M0

∞\
0

e−µ1zz−αNη dz =M0Nη
Γ (1− α)

µ1−α1

and η > 0 is arbitrary, we conclude that

lim sup
t→∞

‖u(t, u0)‖Xα ≤M0N0
Γ (1− α)

µ1−α1
.

This shows point dissipativeness and, since the semigroup e−At is compact,
we conclude that (8) has a global attractor (see [12], Theorem 4.2.4).

4. Applications

4.1. Ordinary differential equations. In this section we consider com-
parison results and existence of global attractors for systems of ordinary
differential equations.
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Let F+, F− : R
n → R

n be locally Lipschitz functions. Consider the
initial value problems

d

dt
~x = F+(~x), ~x(0) = ~x0,(15)

d

dt
~y = F−(~y), ~y(0) = ~y0.(16)

Denote by ~x(t, ~x0) and ~y(t, ~y0) the solutions of (15) and (16), respectively.

Theorem 5. Assume that F+ ≥ F− and either F+ or F− is quasi-
monotone increasing (as in Subsection 2.2). If ~x0 ≥ ~y0, then ~x(t, ~x0) ≥
~y(t, ~y0) as long as both solutions exist.

Proof. Note that, for a fixed bounded set B, either F++βBI or F
−+βBI

is increasing in B for some βB ∈ R; therefore either F+ or F− is B-
monotone. Since F+ ≥ F−, the theorem follows from the results in Sub-
section 2.1.

This comparison result has the following consequence concerning the
problem (4).

Theorem 6. Let F+, F−, F : R
n → R

n be locally Lipschitz functions.

Assume that either F+ and F− are quasi-monotone or F is quasi-monotone
and F+ ≥ F ≥ F−. Under these assumptions:

(i) If x0 ≥ z0 ≥ y0 and the solutions ~x(t, ~x0) of (15) and ~y(t, ~y0) of
(16) are globally defined , then the solution ~z(t, ~z0) of (4) is globally defined.
(ii) If ~x0 ≥ ~z0 ≥ ~y0 and ~x(t, ~x0) and ~y(t, ~y0) are globally bounded , then

so is ~z(t, ~z0), and ω(~y0) ≥ ω(~z0) ≥ ω(~x0), that is, for any a ∈ ω(~z0) there
are a+ ∈ ω(~x0) and a

− ∈ ω(~y0) such that a
+ ≥ a ≥ a−.

(iii) If the problems (15) and (16) have global attractors A+ and A−,
then (4) has a global attractor A satisfying A+ ≥ A ≥ A−, that is, for any
a ∈ A there are a+ ∈ A+ and a− ∈ A− such that a+ ≥ a ≥ a−.

This result follows from the results in Subsections 2.2, 2.1 and properties
of global attractors.

4.2. Systems of pseudodifferential equations. As a second application we
study global solvability and asymptotics of the problem

ut + (−∆N )
αu = f(u), t > 0, x ∈ Ω,

u(0, x) = u0(x), x ∈ Ω,
(17)

where 0 < α ≤ 1 and ∆N denotes the Laplace operator with Neumann
boundary conditions in a bounded smooth domain Ω ⊂ R

n. This kind of
problems have been studied recently in [7] and [8] in the case of Ω = R

n and
in [10] for bounded Ω with Dirichlet boundary condition. Here we obtain the
existence of a global attractor as a consequence of the comparison technique
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developed in the previous sections. The results in this subsection remain
true for the case α = 1, treated in [6]. Thus, we concentrate our attention
on the case α ∈ (0, 1).
In what follows, Xθp , 0 ≤ θ ≤ 1, denote the fractional power spaces

associated with −∆N in L
p(Ω,Rm). In particular X1p = {u ∈W

2,p(Ω,Rm) :

∂u/∂n = 0, x ∈ ∂Ω}, and X0p = Xp = L
p(Ω,Rm). For local well posedness

of (17) in Xβp with β < α, we assume that f is locally Lipschitz and either
2β > n/p or

(18) |f(u)− f(v)| ≤ c|u− v|(|u|̺−1 + |v|̺−1 + 1),

u, v ∈ R
m, 1 ≤ ̺ ≤

n

n− 2βp
.

The order relation inX is induced by the usual order in R
m. From Propo-

sition 4 (see Appendix) the resolvent of −∆N is increasing in L
2(Ω,Rm).

This property extends immediately to all Lp(Ω,Rm) with p ∈ (1,∞) by the
usual density argument (see also [11], Theorem 1.3.9). As a consequence of
formula (27) the resolvent of (−∆N )

α remains increasing for all α ∈ (0, 1).
Next we summarize the comparison results for (17). Assume that f+, f− :

R
m → R

m are locally Lipschitz continuous and consider the problems

u+t + (−∆N )
αu+ = f+(u+), t > 0, x ∈ Ω,

u+(0) = u+0 ∈ X
β
p ,

(19)

and

u−t + (−∆N )
αu− = f−(u−), t > 0, x ∈ Ω,

u−(0) = u−0 ∈ X
β
p .

(20)

Corollary 3. Assume that 2βp > n, f+ ≥ f−, and either f+ or f− is
quasi-monotone increasing. If u+(t, u+0 ), u

−(t, u−0 ) denote the solutions of
(19) and (20) respectively and u+0 ≥ u

−
0 , then u

+(t, u+0 ) ≥ u
−(t, u−0 ) for as

long as both solutions exist.

Proof. Since Xβp →֒ L∞(Ω,Rm) and either f+ or f− is quasi-monotone
increasing, we find that the Nemytskĭı operator associated with one of these
functions is B-monotone in Xβp . Therefore, the comparison for initial data

in Xβp follows from Lemma 3.

The remaining results in this section have much simpler proofs in the
case 2βp > n. Hence, we concentrate on the case 2βp ≤ n. Assume that f
satisfies (18) and is quasi-monotone increasing.

Remark 1. A density argument may allow an extension of the above
corollary to Xβp , 2βp ≤ n, but we will not use this extension in what follows.
Instead, we use regularity properties of the solution.
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For existence of attractors we assume that the following dissipativeness
condition is satisfied:

lim sup
|uj |→∞

fj(u)/uj < 0, j = 1, . . . ,m.(21)

For the long time behavior of the solutions it is important to obtain
some a priori bounds. This is often obtained with the aid of an energy
functional. This idea may not be easily applicable for systems of equations
where usually more delicate estimates are needed. This is why we are going
to use comparison techniques to get the required bounds.
From (21) the condition (2) is satisfied with c±1 negative.

Observe that if u0 ∈ X
β
p then u(t, u0) ∈ X

α
p for t > 0. Since from

Remark 2,

Xαp →֒ X
β
q , p ≤ q < p1 =

np

n− 2(α− β)p
,

we have u(t, u0) ∈ X
β
q , p ≤ q < p1. Repeating this argument with an

initial data in Xβq , q < p1, we deduce that the solution enters X
β
q , p ≤

q < p2 = np1/(n− 2(α− β)p1). Inductively, u(t, u0) enters X
β
q , p ≤ q <

pj = npj−1/(n− 2(α− β)pj−1) for any j ∈ N. The sequence pj is in-
creasing and may not be bounded. If it were, its limit r would satisfy
r = nr/(n− 2(α− β)r). This however would lead to the equality α = β

contradicting our hypothesis. Hence u(t, u0) ∈ X
β
q for any q ≥ p. In partic-

ular, given u0 ∈ X
β
p , u(t, u0) ∈ X

β
q for t > 0 and 2βq > n.

Using any upper (resp. lower) bound w+0 ∈ C∩X
β
q (resp. −w

−
0 ∈ C∩X

β
q )

for u(t0, u0), t0 ∈ [0, τu0) fixed, we find as in Lemma 2 that

‖u(t, u(t0, u0))‖L∞(Ω,Rm) ≤M(u0)t
−β +K,(22)

where

K = max{‖((−∆N )
α−c+1 )

−1c+2 ‖L∞(Ω,Rm), ‖((−∆N )
α−c−1 )

−1c−2 ‖L∞(Ω,Rm)}.

Since the solution does not blow up in the uniform norm, it must exist for
all t ≥ 0 and Assumption 1 is satisfied.
Corollary 2 now holds true and (17) has a global attractor A. Addition-

ally, (22) yields
lim sup
t→∞

‖u(t, u0)‖L∞(Ω,Rm) ≤ K.

Remark 2. Note that [Lp(Ω,Rm), D(−∆N)]θ = H
2θ
p,N except for 2θ =

1+1/p (see [3], page 35), where [·, ·]θ denotes the complex interpolation func-
tor of exponent θ ∈ (0, 1) (see [20]). From embeddings for Bessel potential
spaces and embeddings I.2.9.6 and I.2.5.2 in [4] we obtain

Xαp →֒ [L
p(Ω,Rm), D(−∆N)]α− →֒ [L

q(Ω,Rm), D(−∆N)]β+ →֒ X
β
q ,

for β < β+ < α− < α and 1 < p ≤ q < np/(n− 2(α− − β+)p).
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Remark 3. The above considerations remain unchanged if instead of
−∆N we consider any second order uniformly strongly elliptic operator in
divergence form. Also the boundary condition can be changed to a more
general form b∂u/∂ν = au provided that a, b ≥ 0 and a2 + b2 6= 0.

Consider now the fractional powers of a second order uniformly strongly
elliptic operator which is not in divergence form. Let aij , bi, 1 ≤ i, j ≤ n, Ω
be sufficiently regular and L be the second order partial differential operator

−Lu =
n
∑

i,j=1

aij(x)
∂2u

∂xi∂xj
+

n
∑

i=1

bi(x)
∂u

∂xi
.

As a consequence of a well known comparison result for parabolic equations
(see [22], page 187), the analytic semigroup e−Lt generated by the opera-
tor −L with Dirichlet boundary condition is increasing. Therefore we can
replace (−∆N )

α in (17) by a finite sum of fractional powers of L.

4.3. Integral-pseudodifferential equations. Consider equations of the type

ut(t, x) + (−∆N )
αu(t, x) =

\
Ω

G(x, y)u(t, y) dy + f(u).(23)

As before ∆N denotes the Neumann Laplacian in L
p(Ω,Rm), p ∈ (1,∞),

α ∈ (0, 1], Ω is a bounded smooth domain in R
n, u ∈ R

m, G : Ω ×Ω → R,
G ≥ 0, and f : Rm → R

m is quasi-monotone increasing.
For local well posedness of (23) in Xβp with β < α (and Xθp , 0 ≤ θ ≤ 1,

as in Section 4.2) we assume that f is locally Lipschitz and either 2β > n/p
or (18) is satisfied. Let A = (−∆N )

α and assume that G is such that the
operator

v
B
7→
\
Ω

G(·, y)v(y) dy

is bounded in Xp (for these conditions on G and estimates on ‖B‖L(Xp) in
terms of G see [14], page 134).
The order relation in Xp is induced by the usual order in R

m. We need
first justify that the semigroup generated by −A+B is increasing. Indeed,
−A generates an analytic, increasing semigroup of contractions on Xp. Since
the integral kernel is nonnegative, eBt is increasing and the assumptions of
Proposition 2 (see Appendix) are satisfied. Therefore, e(−A+B)t is increasing.
Also, since B is bounded, A−B is sectorial and the fractional power spaces
corresponding to A− B coincide with the fractional power spaces Xαp of A
(see [13], page 29).
Next we summarize the comparison results for (23). Assume that f+, f− :

R
m → R

m are locally Lipschitz continuous and consider the problems

u+t + (−∆N )
αu+ −Bu+ = f+(u+), t > 0, x ∈ Ω,

u+(0) = u+0 ∈ X
β
p ,

(24)
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and
u−t + (−∆N )

αu− −Bu− = f−(u−), t > 0, x ∈ Ω,

u−(0) = u−0 ∈ X
β
p .

(25)

As in Corollary 3 we have:

Corollary 4. Assume that 2βp > n, f+ ≥ f−, and either f+ or f−

is quasi-monotone increasing. If u+(t, u+0 ), u
−(t, u−0 ) denote the solutions of

(24) and (25) respectively and u+0 ≥ u
−
0 , then u

+(t, u+0 ) ≥ u
−(t, u−0 ) for as

long as both solutions exist.

Concentrating as before on the case 2βp ≤ n assume G is such that
B ∈ L(Xq) for p ≤ q ≤ q1 with q1 > n/(2β), f satisfies (18) and is quasi-
monotone increasing.
For existence of an attractor we assume that the following dissipativeness

condition is satisfied:

lim sup
|uj |→∞

fj(u)/uj < −‖B‖.(26)

From (26) the condition (2) is satisfied with c±1 < −‖B‖.
Now, for a result similar to Lemma 2, we proceed exactly as in Subsec-

tion 4.2 using the constant K = max{‖((−∆n)
α − B − c+1 )

−1c+2 ‖L∞(Ω,Rm),

‖((−∆n)
α −B − c−1 )

−1c−2 ‖L∞(Ω,Rm)}.
Corollary 4 now implies that the semigroup associated with (23) has a

global attractor A and

lim sup
t→∞

‖u(t, u0)‖L∞(Ω,Rm) ≤ K.

5. Appendix. Here we give conditions enabling us to obtain many op-
erators with increasing resolvent starting from known increasing resolvent
operators. In particular we need to know in which cases the sum of increasing
resolvent operators has increasing resolvent and that a root of an increasing
resolvent operator has increasing resolvent.

5.1. Operators with increasing resolvent and increasing semigroups. The
following well known result establishes the equivalence between the mono-
tonicity of the resolvent of the generator of a C0-semigroup and the mono-
tonicity of the semigroup itself.

Proposition 1. Let (X,≤) be an ordered Banach space, and let A be a
sectorial operator. Assume that there exists a λ0 ∈ R such that Reσ(A)>λ0.
Then e−At : X → X is increasing for all t ≥ 0 if and only if (A + λ)−1 is
increasing for every λ > λ0.

The corollary below plays an important role in the proof of most com-
parison results presented in the paper.
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Corollary 5. Let (X,≤) be an ordered Banach space, and let A be a
sectorial operator. Assume that for every λ > λ0, (A + λ)

−1 is increasing.

Let uη(t, u0) denote the solution of

u̇+Au = ηu, u(0) = u0.

If 0 ≤ u1 ≤ u2 and λ < µ, then uλ(t, u1) ≤ uλ(t, u2) ≤ uµ(t, u2) for every
t ≥ 0.

Our next result provides conditions under which the sum of operators
with increasing resolvent is an operator with increasing resolvent.

Theorem 7. Assume that −A and −B are generators of bounded C0-
semigroups, A and B commute, A + B is closed and densely defined with
domain D(A) ∩D(B), and λ ∈ ̺(−A − B) for some λ > 0. Then −A− B
generates a bounded C0-semigroup satisfying e

−(A+B)t = e−Ate−Bt.

Proof. For a moment let us change the norm in the Banach space X in
such a way that −A generates a C0-semigroup of contractions. Let −Aλ =
−λA(λ+A)−1 and −Bλ = −λB(λ+B)

−1. Then ‖e−Aλt‖ ≤ 1 for all λ > 0
and since e−Aλtx → e−Atx and e−Bλsx → e−Bsx for all x ∈ X, s, t ≥ 0, we
have

lim
λ→∞
e−Aλt−Bλsx = lim

λ→∞
e−Aλte−Bλsx = e−Ate−Bsx.

Of course the above remains true in the original norm. Also, from a similar
argument, we have

lim
λ→∞
e−Bλt−Aλsx = lim

λ→∞
e−Bλse−Aλsx = e−Bse−Atx,

showing that e−Ate−Bs = e−Bse−At.
Let us now show that T (t) = e−Ate−Bt is a bounded C0-semigroup with

generator −(A + B). First we observe that strong continuity at t = 0 and
boundedness are clear and from
T (t+ s) = e−A(t+s)e−B(t+s) = e−Ate−Ase−Bte−Bs = e−Ate−Bte−Ase−Bs

= T (t)T (s)

we see that T (t) is a semigroup. It remains to show that −(A + B) is the
generator of T (t).
If x ∈ D(A) ∩D(B) = D(A+B), then

T (t)x− x = lim
λ→∞
(e−tAλe−tBλx− x)

= lim
λ→∞
(e−Aλte−Bλtx− e−Bλtx+ e−Bλtx− x)

= lim
λ→∞

t\
0

e−Aλse−Bλt(−Aλx) ds+ lim
λ→∞

t\
0

e−Bλs(−Bλx) ds

=

t\
0

e−Ase−Bt(−Ax) ds+
t\
0

T (s)(−Bx) ds.
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Now

1

t
(T (t)x− x) =

t\
0

e−Ase−Bt(−Ax) ds+
t\
0

T (s)(−Bx) ds

→ −(A+B)x as t→ 0+,

for any x ∈ D(A)∩D(B) = D(A+B). Therefore the generator −C of T (t)
must be an extension of −(A+B). Let λ be a real number in the resolvent
of A+B and in the resolvent of the generator of T (t). Then

X = (λ+ (A+B))D(A+B) = (λ+ C)D(C),

hence A+B = C and the proof is complete.

Corollary 6. If −A, −B, −(A+B) are generators of C0-semigroups,
A and B commute and have increasing resolvents, then −(A + B) has in-
creasing resolvent.

The above results are closely related to the following results (see [21, 9]).

Proposition 2. Assume that −A and −B are generators of C0-semi-
groups, D(A) ∩D(B) is dense in X and

‖(e−Ate−Bt)n‖ ≤Meωnt, n = 1, 2, . . . ,

for some constants M ≥ 1 and ω ≥ 0. If for some λ with Reλ > ω the range
of λI +A+B is dense in X, then the closure of −(A+B) is the generator
of a C0-semigroup T (t) satisfying ‖T (t)‖ ≤Me

ωt, t ≥ 0. Furthermore,

T (t)x = lim
n→∞
(e−A(t/n)e−B(t/n))nx, x ∈ X,

uniformly on bounded subsets of R
+.

Proposition 3. If −A, −B, and −(A + B) generate C0-semigroups,
‖e−(A+B)t‖ ≤Meωt, t ≥ 0, and

‖[(I + tA)−1(I + tB)−1]n‖ ≤Meωnt, n = 1, 2, . . . ,

then

e−(A+B)tx = lim
n→∞

[(

I +
t

n
A

)−1(

I +
t

n
B

)−1]n

x, x ∈ X.

Corollary 7. If either the assumptions of Proposition 2 or the as-
sumptions of Proposition 3 are satisfied , then

e−(A+B)t ≥ 0, t ≥ 0,

or , equivalently , (λ+A+B)−1 is increasing for λ > ω.

For a proof of Propositions 2 and 3 see [18], §3.5. Corollary 7 provides
tools to show that the resolvent of a sum of increasing resolvent operators
is increasing, without the hypothesis that the operators commute. These
will deal well with the case when the operators involved are dissipative. For
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some cases when the operators are not dissipative it may be more suitable
to use Theorem 7.
The increasing resolvent property is preserved when we change the norm

of the space to an equivalent one. This leads us to infer that it may be useful
to know when one can change the norm of the space to an equivalent one
in such a way as to make A and B simultaneously dissipative. For this we
refer to [18], §1.5. The conditions on A and B that enable us to make such
a change of norm are similar to the conditions in Propositions 2 and 3.
These results should contribute to enlarge the class of increasing resol-

vent operators. Our next result, which is a slight extension of Theorem 1.3.2
of [11], aims at simplifying the verification that some operators have increas-
ing resolvents.

Proposition 4. Let H be an ordered Hilbert space and C its positive
cone. Let A : D(A) ⊂ H → H be a self-adjoint positive semi-definite op-
erator , that is, 〈Au, u〉 ≥ 0 for all u ∈ D(A). Assume that H has a dense
subset D such that :

• (A+ α)−1D ⊂ D,
• for each d ∈ D we can define |d| = sup{d,−d} ∈ D ∩ C such that

‖d‖ = ‖ |d| ‖ (then d ∈ D is in C if and only if d = |d|),
• 〈|d|, g〉 ≥ |〈d, g〉| for all d ∈ D and g ∈ C.

Consider the following assertions:

(i) If u ∈ D(A1/2) then |u| ∈ D(A1/2) and

〈A1/2|u|, A1/2|u|〉 ≤ 〈A1/2u,A1/2u〉.

(ii) (A+ λ)−1 is increasing for all λ > 0.

Then (i) implies (ii).

5.2. Fractional powers and operators with increasing resolvent. Probably
the most complete description of fractional powers of positive operators was
given by H. Komatsu in a number of papers written in the middle 60’s. In
particular in [15] we find the following definition of an operator A of type
(ω,M(θ)), 0 ≤ ω ≤ π:

Definition 4. A densely defined closed linear operator A such that the
resolvent of −A contains the sector |arg λ| < π − ω and

sup
|arg λ|=θ

‖λ(λ+A)−1‖ ≤M(θ) <∞

for 0 ≤ θ < π − ω is called an operator of type (ω,M(θ)).

When ω < π/2 the above notion coincides with that of a positive sectorial
operator as in [13]. Further in [15, p. 319], we find a formula describing the
resolvent of fractional powers of A through the resolvent of A. Namely, if A
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is of type (ω,M(θ)) and 0 < α < π/ω, then every λ > 0 is in the resolvent
set ̺((−A)α), and for α ∈ (0, 1),

(λI + (−A)α)−1 =
sinπα

π

∞\
0

τα

λ2 + 2λτα cosπα+ τ2α
(τI +A)−1 dτ.(27)

From the above formula it is evident that the resolvent of (−A)α is increasing
for positive λ whenever so is the resolvent of A.
This result has been used in [10], when −A is the Dirichlet Laplacian in

a bounded smooth domain, to obtain an “integration by parts formula” for
fractional powers of operators. This formula was important to obtain energy
estimates that ensured the existence of attractors. Here instead of energy
estimates we have used comparison results.

5.3. Consistence of orderings in fractional power spaces. Finally we de-
fine an ordering in fractional power spaces of an ordered Banach space and
state a result that shows the consistence of this ordering relation (see [6]).
Let (X,≤) be an ordered Banach space and A be a sectorial operator in

X. In Xα, for α > 0, we consider the ordering induced by X. The positive
cone in Xα is denoted by Cα.

Proposition 5. With the ordering induced by X, Xα is an ordered Ba-
nach space for any α ≥ 0. If α > β ≥ 0, then the inclusion iα,β : X

α → Xβ

is increasing. Moreover , Cα ⊂ Cβ, Cβ ∩X
α = Cα and C

Xβ

α = Cβ.

This shows the consistence of “f ≥ 0”, independently of the space Xα

in which f lies. Therefore, we do not need to distinguish them.
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asymptotics for Lévy conservation laws, in preparation.

[9] P. Chernoff, Note on product formulas for operator semi-groups, J. Funct. Anal. 2
(1968), 238–242.

[10] J. W. Cholewa, T. Dlotko and A. W. Turski, Asymptotics of pseudodifferential
parabolic equations, Demonstratio Math. 35 (2002), to appear.

[11] E. B. Davies, Heat Kernels and Spectral Theory, Cambridge Univ. Press, Cambridge,
1989.

[12] J. K. Hale, Asymptotic Behavior of Dissipative Systems, Math. Surveys Monographs
25, Amer. Math. Soc., Providence, RI, 1988.

[13] D. Henry, Geometric Theory of Semilinear Parabolic Problems, Lecture Notes in
Math. 840, Springer, Berlin, 1981.

[14] L. V. Kantorovich and G. P. Akilov, Functional Analysis, Pergamon Press, New
York, 1982.

[15] H. Komatsu, Fractional powers of operators, Pacific J. Math. 19 (1966), 285–346.
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