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ON THE NEUMANN PROBLEM FOR AN ELLIPTIC SYSTEM OF

EQUATIONS INVOLVING THE CRITICAL SOBOLEV EXPONENT

BY

J. CHABROWSKI (St. Lucia) and JIANFU YANG (Campinas)

Abstract. We consider the Neumann problem for an elliptic system of two equations
involving the critical Sobolev nonlinearity. Our main objective is to study the effect of the
coefficient of the critical Sobolev nonlinearity on the existence and nonexistence of least
energy solutions. As a by-product we obtain a new weighted Sobolev inequality.

1. Introduction. The main purpose of this work is to study the exis-
tence of a solution to the following problem:

(1Λ)





−∆u+ λ1u =
α

2⋆
Q(x)|u|α−2u|v|β,

−∆v + λ2v =
β

2⋆
Q(x)|u|α|v|β−2v in Ω,

∂u

∂ν
=
∂u

∂ν
= 0 on ∂Ω, u, v > 0 on Ω,

where λ1, λ2 > 0 are parameters, α, β > 1 and α+β = 2
⋆, where 2⋆ denotes

the critical Sobolev exponent, that is, 2⋆ = 2N/(N − 2), N ≥ 3. ν is the
unit outward normal at the boundary ∂Ω. We assume that Ω ⊂ R

N is a
bounded domain with a smooth boundary ∂Ω. The coefficient Q is Hölder
continuous on Ω and Q(x) > 0 for x ∈ Ω. Further conditions guaranteeing
the solvability of problem (1Λ) will be formulated later. Systems (1Λ) appear
in biological pattern formation theory (see [13], [15], [12]).

In this paper we establish the existence of least energy solutions. We also
examine the concentration phenomena of these solutions when λ1 →∞ and
λ2 →∞. We use a variational approach to problem (1Λ) based on a version
of P.-L. Lions’ concentration-compactness principle [14] which is suitable for
the Neumann problem. To study the concentration phenomena of the least
energy solutions we adopt the technique from the paper [4].

2. Concentration-compactness principle. We commence by ex-
tending P.-L. Lions’ concentration-compactness principle toH1(Ω)×H1(Ω),
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where by H1(Ω) we denote the usual Sobolev space equipped with the norm

‖u‖2 =
\
Ω

(|∇u|2 + u2) dx.

Let

Sα,β = inf
u,v∈H10 (Ω), u,v 6=0

T
Ω(|∇u|

2 + |∇v|2) dx

(
T
Ω |u|

α|v|β dx)2/2
⋆ .(1)

It is known that

Sα,β =
[
(α/β)β/2

⋆

+ (α/β)−α/2
⋆
]
S,(2)

where S is the best Sobolev constant (see Theorem 5 in [7]). For the future
use we set

Aα,β = (α/β)
β/2⋆ + (α/β)−α/2

⋆

.

We recall that the best Sobolev constant is defined by

S = inf
{ \

RN

|∇u|2 dx; u ∈ D1,2(RN ),
\

RN

|u|2
⋆

dx = 1
}
,

where D1,2(RN ) is the space obtained as the completion of C∞0 (R
N ) with

respect to the norm

‖u‖2D1,2 =
\

RN

|∇u|2 dx.

The best Sobolev constant is achieved by

U(x) =

[
N(N − 2)

N(N − 2) + |x|2

](N−2)/2
.

The function U , called an instanton, satisfies the equation

−∆U = U2
⋆−1 in R

N .

We also have \
RN

|∇U |2 dx =
\

RN

U2
⋆

dx = SN/2.

We set

Uε,y(x) = ε
−(N−2)/2U

(
x− y

ε

)

for y ∈ R
N , ε > 0. If y = 0, we write Uε = Uε,0.

We denote strong convergence in H1(Ω) by “→” and weak convergence
by “⇀”.
We need the following lemmas:

Lemma 2.1. Let un ⇀ u and vn ⇀ v in H
1(Ω). Then

lim
n→∞

\
Ω

|un|
α|vn|

β dx = lim
n→∞

\
Ω

|un − u|
α|vn − v|

β dx+
\
Ω

|u|α|v|β dx.
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Proof. By Sobolev’s embedding theorem we may assume that un → u
and vn → v in L

p(Ω) for 1 ≤ p < 2⋆. We write\
Ω

|un|
α|vn|

β dx−
\
Ω

|un − u|
α|vn − v|

β dx

=
\
Ω

(|un|
α(|vn|

β − |vn − v|
β) + |vn − v|

β(|un|
α − |un − u|

α)) dx

= −
\
Ω

|un|
α
1\
0

d

dt
|vn − tv|

β dt dx−
\
Ω

|vn − v|
β
1\
0

d

dt
|un − tu|

α dt dx

= β
\
Ω

1\
0

|un|
α|vn − tv|

β−2(vn − tv)v dt dx

+ α
\
Ω

1\
0

|vn − v|
β|un − tu|

α−2(un − tu)u dt dx.

Since

β lim
n→∞

\
Ω

1\
0

|un|
α|vn − tv|

β−2(vn − tv)v dt dx =
\
Ω

|u|α|v|β dx

and

lim
n→∞

\
Ω

1\
0

|vn − v|
β|un − tu|

α−2(un − tu)u dt dx = 0,

the result readily follows.

Proposition 2.2. Let un ⇀ u and vn ⇀ v in H
1(Ω). Suppose that

(i) |∇un|
2 + |∇vn|

2 ⇀ µ weakly in the sense of measures,
(ii) |un|

α|vn|
β ⇀ ν weakly in the sense of measures.

Then there exists an at most countable index set J and sequences {xj} ⊂ R
N ,

{µj}, {νj} ⊂ (0,∞) such that

ν = |u|α|v|β +
∑

j∈J

νjδxj , µ ≥ |∇u|2 + |∇v|2 +
∑

j∈J

µjδxj

and

(iii) Sα,βν
2/2⋆

j ≤ µj if xj ∈ Ω,

(iv) (Sα,β/2
2/N)ν

2/2⋆

j ≤ µj if xj ∈ ∂Ω.

Proof. This is a modification of P.-L. Lions’ [14] concentration-compact-
ness principle. We only sketch the proof. First, we prove the result assuming
that u = v = 0 on ∂Ω. Then (iii) is a consequence of (1). To obtain (iv) we
need the following modification of the result due to X. J. Wang [16]:
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Let B̃ = B(0, 1) ∩ {xN > h(x
′)}, where B(0, 1) is the unit ball in R

N ,
h(x′) is a C1-function defined on {x′ ∈ R

N−1; |x′| < 1} with h,Dh vanishing
at 0. Then for every u, v ∈ H1(B(0, 1)) with supp u, supp v ⊂ B we have:

(A) if h ≡ 0, then (see [7])\̃
B

(|∇u|2 + |∇v|2) dx ≥ 2−2/NSα,β

(\̃
B

|u|α|v|β dx
)2/2⋆
,

(B) for every ε > 0 there exists a δ > 0 depending only on ε such that if
|∇h| ≤ δ, then\̃

B

(|∇u|2 + |∇v|2) dx ≥

(
Sα,β

22/N
− ε

)(\̃
B

|u|α|v|β dx
)2/2⋆
.

Using this result we deduce (iv). The general case u 6≡ 0 and v 6≡ 0
can be reduced to the above case through the substitution u1n = un − u,
v1n = vn − v and Lemma 2.1 (see [18]).

3. Existence results. We formulate the existence results for a slightly
more general system

(1A)





−∆u+ au+ bv =
α

2⋆
Q(x)|u|α−2u|v|β,

−∆v + bu+ cv =
β

2⋆
Q(x)|u|α|v|β−2v in Ω,

∂u

∂n
=
∂v

∂n
= 0 on ∂Ω.

We assume that the matrix of coefficients A =
(
a b
b c

)
is positive definite.

We write

Qm = max
x∈∂Ω
Q(x), QM = max

x∈Ω
Q(x).

For u, v ∈ H1(Ω) we set

JA(u, v) =
\
Ω

(|∇u|2 + |∇v|2 + (AV, V )) dx,

where U =
(
u
v

)
.

Solutions to problem (1A) will be obtained as minimizers of the con-
strained variational problem

SA = inf
{
JA(u, v); (u, v) ∈ H

1(Ω)×H1(Ω),
\
Ω

Q(x)|u|α|vβ dx = 1
}

= inf

{
JA(u, v)

(
T
Ω Q(x)|u|

α|v|β dx)2/2
⋆ ; (u, v) ∈ H

1(Ω)×H1(Ω), u, v 6≡ 0

}
.
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A minimizer (u, v) for SA satisfies the system

−∆u+ au+ bv =
αSA
2⋆
Q(x)|u|α−2u|v|β,

−∆v + bu+ cv =
βSA
2⋆
Q(x)|u|α|v|β−2v.

Hence a rescaled minimizer (u/S
1/(2⋆−2)
A , v/S

1/(2⋆−2)
A ) is a solution of the

system (1A).

Theorem 3.1. If

QM ≤ 2
2/(N−2)Qm(3)

and

SA <
Sα,β

22/NQ
(N−2)/N
m

,(4)

then there exists a minimizer for SA.

Proof. Let {um, vm} be a minimizing sequence for SA. Since (AU,U) ≥
µ1(u

2 + v2) for some constant µ1 > 0, we may assume that {um, vm} is
bounded in H1(Ω)×H1(Ω). Therefore, up to a subsequence we can assume
that um ⇀ u and vm ⇀ v in H

1(Ω). By Proposition 2.2 we have

1 =
\
Ω

Q(x)|u|α|v|β +
∑

j∈J

νjQ(xj)(5)

and

SA ≥
\
Ω

(|∇u|2 + |∇v|2 + (AU,U)) dx+
∑

j∈J

µj

≥ SA

(\
Ω

Q(x)|u|α|v|β dx
)2/2⋆

+
∑

xj∈∂Ω

µj +
∑

xj∈Ω

µj

≥ SA

(\
Ω

Q(x)|u|α|v|β dx
)2/2⋆
+
∑

xj∈∂Ω

Sα,β

22/NQ(xj)(N−2)/N
(Q(xj)νj)

(N−2)/N

+
∑

xj∈Ω

Sα,β

Q(xj)(N−2)/N
(Q(xj)νj)

(N−2)/N

≥ SA

(\
Ω

Q(x)|u|α|v|β dx
)2/2⋆

+
∑

xj∈∂Ω

Sα,β

22/NQ
(N−2)/N
m

(Q(xj)νj)
(N−2)/N

+
∑

xj∈Ω

Sα,β

Q
(N−2)/N
M

(Q(xj)νj)
(N−2)/N

≥ SA

(\
Ω

Q(x)|u|α|v|β dx
)2/2⋆

+
∑

j∈J

Sα,β

22/NQ
(N−2)/N
m

(Q(xj)νj)
(N−2)/N .
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This combined with (4) implies that νj = 0 for all j ∈ J . Hence\
Ω

Q(x)|u|α|v|β dx = 1

and by the lower semicontinuity of JA with respect to the weak convergence
we have \

Ω

(|∇u|2 + |∇v|2 + (AU,U)) dx ≤ SA.

This means that (u, v) is a minimizer for SA. Since (un, vn) can be replaced
by (|un|, |vn|) we may assume that u, v ≥ 0 on Ω. By the strong maximum
principle we have u, v > 0 on Ω.

In a similar manner we can prove

Theorem 3.2. Let

QM > 2
2/(N−2)Qm.(6)

If

SA <
Sα,β

Q
(N−2)/N
M

,(7)

then there exists a minimizer for SA.

We now formulate conditions guaranteeing that (4) holds. We need an
additional assumption:

(H) there exists a point y ∈ ∂Ω such that Qm = Q(y) and H(y) > 0 and
moreover

|Q(x)−Q(y)| = o(|x− y|) for x near y.

Here H(y) denotes the mean curvature of ∂Ω at y ∈ ∂Ω with respect to
the inner normal to ∂Ω at y. It is also known that (see [1], [2], [17])T

Ω |∇Uε,y|
2 dx

(
T
Ω U
2⋆
ε,y dx)

2/2⋆
= 2−2/NS −





ANH(y)ε log(1/ε) +O(ε), N = 3,

ANH(y)ε+O(ε
2 log(1/ε)), N = 4,

ANH(y)ε+O(ε
2), N ≥ 5,

where AN > 0 is a constant depending on N . Let s, t > 0. Then

JA

(
sUε,y, tUε,y

(
T
Ω s
αtβQU2⋆ε,y dx)

1/2⋆

)
=
s2 + t2

(sαtβ)2/2⋆
·

T
Ω |∇Uε,y|

2 dx

(
T
Ω QU

2⋆
ε,y dx)

2/2⋆
+ ̺(ε),

where

̺(ε) =





O(ε), N = 3,

ε2 log(1/ε), N = 4,

ε2, N ≥ 5.
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We now set s/t =
√
β/α. Using (H) we see that

JA

(
sUε,y, tUε,y

(sαtβ
T
Ω QU

2⋆
ε,y)
1/2⋆

)
<

SAα,β

22/NQ
N−2/N
m

for sufficiently small ε > 0. The condition (7), under assumption (6), cer-
tainly holds for any positive definite matrix A with sufficiently small coeffi-
cients a, b and c.

4. System (1Λ). First we rescale a solution (u, v) of (1Λ) in the follow-
ing way. We set u1 = su, v1 = tv to get

−∆u1 + λ1u1 =
α

2⋆
s−(α−2)t−βQuα−11 v

β
1 ,

−∆v1 + λ2v1 =
β

2⋆
s−αt−(β−2)Quα1 v

β−1
1 .

Choosing s and t so that

α

2⋆
s−(α−2)t−β = 1 and

β

2⋆
s−αt−(β−2) = 1,(8)

that is, β/α = s2/t2, we see that (1Λ) is reduced to the system

(1Λ∗)





−∆u1 + λ1u1 = Qu
α−1
1 v

β
1 ,

−∆v1 + λ2v1 = Qu
α
1 v
β−1
1 inΩ,

∂u1/∂ν = ∂v1/∂ν = 0 on ∂Ω.

For the future use we note the formula

t2 + s2

t2s2
= A

N/2
α,β .(9)

Indeed, solving the equations (8) we get

s =

[
2⋆

α

(
β

α

)α/2−1]1/(2−(α+β))(β
α

)1/2
, t =

[
2⋆

α

(
β

α

)α/2−1]1/(2−(α+β))
.

Then

t2 + s2

t2s2
=

1 + βα[
2⋆

α

(β
α

)α/2−1]2/(2−(α+β)) β
α

=
α+ β

β

[(
β

α

)(α−2)/2
+

(
β

α

)α/2]N/2−1

=
α+ β

β

[(
β

α

)α/2(α
β
+ 1

)]N/2−1
=

(
β

α

)α(N/2−1)/2(α+ β
β

)N/2
.

By easy computations we get

A
N/2
α,β =

[(
α

β

)β/(α+β)
+

(
α

β

)−α/(α+β)]N/2
=

[(
α

β

)β/(α+β)(
1 +
β

α

)]N/2
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=

(
β

α

)Nα/(2(α+β))(α+ β
β

)N/2
=

(
β

α

)α(N/2−1)/2(α+ β
β

)N/2

and the formula (9) follows.

Proposition 4.1. (i) Suppose that λ1 = λ2. If (u, v) is a positive solu-
tion of (1Λ), then u = s

−1w and v = t−1w, where s, t are positive constants
satisfying (8) and w is a positive solution of the problem

{
−∆w + λ1w = Q(x)w

2⋆−1 in Ω,

∂w/∂ν = 0 on ∂Ω.
(10)

(ii) Suppose that λ1 > λ2. If (u, v) is a positive solution of (1Λ), then

su ≤ tv on Ω

where s, t > 0 are constants satisfying (8).

Proof. (i) The rescaled functions u1 = su and v1 = tv satisfy (1Λ∗).
From this we deduce that{

−∆(u1 − v1) + [λ1 +Qu
α−1
1 v

β−1
1 ](u1 − v1) = 0 in Ω,

∂(u1 − v1)/∂ν = 0 on ∂Ω.

By the maximum principle we have u1 = v1 on Ω. Setting u1 = v1 = w, we
see that w satisfies (10) and the result follows.

(ii) The difference u1 − v1 satisfies

−∆(u1− v1) + λ1(u1− v1) + (λ1− λ2)v1 +Qu
α−1
1 v

β−1
1 (u1 − v1) = 0 in Ω.

Hence

−∆(u1 − v1) + [λ1 +Qu
α−1
1 v

β−1
1 ](u1 − v1) ≤ 0 in Ω,

∂(u1 − v1)

∂ν
= 0 on ∂Ω.

By the maximum principle we get u1 ≤ v1 on Ω.

In what follows, we study the behaviour of the least energy solutions of
(1Λ) as λ1, λ2 → ∞. According to the previous section, these solutions are
minimizers of the problem

SΛ = inf
{ \
Ω

(|∇u|2 + λ1u
2 + |∇v|2 + λ2v

2) dx;

u, v ∈ H1(Ω),
\
Ω

Q|u|α|v|β dx = 1
}
.

Theorem 4.2. Let QM < 2
2/(N−2)Qm. Suppose that λ1 = λ2 + m,

m > 0. Let u1λ = suλ and v
1
λ = tvλ be a rescaled least energy solution for

(1Λ), where s and t satisfy the equations (8). If Mλ = maxx∈Ω v
1
λ(x) =
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v1λ(xλ), xλ ∈ Ω, then u
1
λ ≤ Mλ, Mλ → ∞ and xλ → x◦ ∈ ∂Ω with

Q(x◦) = Qm as λ2 →∞. Moreover ,

lim
λ2→∞

\
Ω

|∇(suλ − Uελ,xλ(Bx))|
2 dx = 0,

lim
λ2→∞

\
Ω

|∇(tvλ − Uελ,xλ(Bx))|
2 dx = 0,

where B = Q
1/N
M A

1/2
α,βS

1/2.

Proof. We commence by showing that Mλ →∞ as λ2 →∞. Indeed, we
have \

Ω

(|∇v1λ|
2 + λ2(v

1
λ)
2) dx =

\
Ω

Q(u1λ)
α(v1λ)

β dx

and by Proposition 4.1(ii),\
Ω

Q(v1λ)
2((v1λ)

2⋆−2 − λ2) dx ≥ 0.

Hence Q(v1λ)
2⋆−2 ≥ λ2 somewhere in Ω. This means that M

4/(N−2)
λ ≥

λ2/QM and our claim follows. We now define

ũ1λ(x) = ε
(N−2)/2
λ u1λ(ελx+ xλ) and ṽ

1
λ(x) = ε

(N−2)/2
λ v1λ(ελx+ xλ)

for x ∈ Ωελ = (Ω − xλ)/ελ, where ελ = 1/M
2/(N−2)
λ . The functions ũ1λ and

ṽ1λ are solutions of the problem



−∆ũ1λ + λ1ε
2
λũ
1
λ = SΛQ(ελx+ xλ)(ũ

1
λ)
α−1(ṽ1λ)

β,

−∆ṽ1λ + λ2ε
2
λṽ
1
λ = SΛQ(ελx+ xλ)(ũ

1
λ)
α(ṽ1λ)

β−1 in Ωελ ,

∂ṽ1λ/∂ν = ∂ũ
1
λ/∂ν = 0 on ∂Ωελ .

(11)

Since M
4/(N−2)
λ ≥ λ2/QM and λ1 = λ2 +m, we see that ε

2
λλ1 and ε

2
λλ2 are

bounded as λ2 →∞. The elliptic regularity theory implies that ũ
1
λ → ũ and

ṽ1λ → ṽ in C
2
loc(R

N ). We may also assume that xλ → x◦, ε
2
λλ1 → a1 and

ε2λλ2 → a2 as λ2 →∞, where 0 ≤ a1, a2 <∞. We also observe that

lim
λ2→∞

SΛ =
Aα,βS

22/NQ
(N−2)/N
m

=: SΛ∞ .

This can be easily established using the concentration-compactness prin-
ciple. Hence (ũ, ṽ) is a solution of the problem





−∆ũ+ a1ũ = SΛ∞Q(x◦)ũ
α−1ṽβ,

−∆ṽ + a2ṽ = SΛ∞Q(x◦)ũ
αṽβ−1 in Ω∞,

∂ũ/∂ν = ∂ṽ/∂ν = 0 on ∂Ω∞,

(12)
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where Ωελ → Ω∞ as λ2 → ∞. Since ṽ
1
λ(0) = 1 we see that ṽ 6≡ 0. We now

show that ũ 6≡ 0. (As we will see later, Ω∞ is either R
N or a half-space in

R
N
+ .) By the Fatou lemma\

Ω∞

(|∇ũ|2 +mũ2 + |∇ṽ|2 +mṽ2) dx ≤ lim
λ2→∞

SΛ <∞,

therefore ũ, ṽ ∈ H1(Ω∞). If ũ ≡ 0 on Ω∞, then

−∆ṽ + a2ṽ = 0 in Ω∞,
∂ṽ

∂n
= 0 on ∂Ω∞.

Hence ṽ ≡ 0 on Ω∞ in both cases Ω∞ = R
N and Ω∞ = R

N
+ , which is

a contradiction. By Pokhozhaev’s identity (see Appendix) a1 = a2 = 0.
Therefore the system (12) is reduced to





−∆ũ = SΛ∞Q(x◦)ũ
α−1ṽβ,

−∆ṽ = Sλ∞Q(x◦)ũ
αṽβ−1 in Ω∞,

∂ũ/∂ν = ∂ṽ/∂ν = 0 on ∂Ω∞.

(13)

By Proposition 4.1(i), we see that ũ = ṽ on Ω∞. We now distinguish two
cases:

(a) dist(xλ, ∂Ω)/ελ →∞ or

(b) dist(xλ, ∂Ω)/ελ is bounded as λ2 →∞.

In the first case we have

ũ = ṽ = U(S
1/2
Λ∞
Q(x◦)

1/2x) and Ω∞ = R
N .

Let b = S
1/2
Λ∞
Q(x◦)

1/2. Then by Fatou’s lemma

(14)
s2 + t2

s2t2
b2−N

\
RN

|∇U |2 dx =
s2 + t2

s2t2
b2−NSN/2

≤ lim
λ2→∞

\
Ω

(|∇uλ|
2 + |∇vλ|

2) dx ≤
Sα,β

22/NQ
(N−2)/2
m

.

Here we have used the fact that limλ2→∞ λ1
T
Ω u
2
λ dx = limλ2→∞ λ2

T
Ω v
2
λ dx

= 0. From the above inequality and (9) we deduce that

A
N/2
α,β Q(x◦)

1−N/2
A
1−N/2
α,β S1−N/2SN/2

2(2/N)(1−N/2)Q
((N−2)/N)(1−N/2)
m

≤ Aαβ
S

22/NQ
(N−2)/N
m

,

which is equivalent to 2Q
(N−2)/2
M ≤ Q(x◦)

(N−2)/2. Hence 22/(N−2)Qm ≤ QM,
which is impossible. Therefore case (b) prevails and x◦ ∈ ∂Ω. In this case
we may assume that Ω∞ = R

N
+ and estimate (14) takes the form
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s2 + t2

s2t2
b2−N

\
R
N
+

|∇U |2 dx =
s2 + t2

s2t2
b2−N

SN/2

2

≤ lim
λ2→∞

\
Ω

(|∇uλ|
2 + |∇vλ|

2) dx =
Sα,β

22/NQ
(N−2)/N
m

.

From this we deduce that Q(x◦) ≥ Qm and hence Q(x◦) = Qm. Therefore,
the above inequality becomes, in fact, equality. On the other hand, by the
Fatou lemma and the fact that ũ1λ → U(bx) and ṽ

1
λ → U(bx) in C

2
loc(R

N ),
we get

b2−N
\

R
N
+

|∇U |2 dx ≤ lim
λ2→∞

\
Ω

|∇u1λ|
2 dx = lim

λ2→∞

\
Ωελ

|∇ũ1λ|
2 dx

and

b2−N
\

R
N
+

|∇U |2 dx ≤ lim
λ2→∞

\
Ω

|∇v1λ| dx = lim
λ2→∞

\
Ωελ

|∇ṽ1λ|
2 dx.

From this we deduce that

lim
λ2→∞

\
Ωελ

|∇ũ1λ|
2 dx = lim

λ2→∞

\
Ωελ

|∇ṽ1λ|
2 dx = b2−N

\
R
N
+

|∇U |2 dx

and the result readily follows.

5. The case QM > Sα,β/Q
(N−2)/N
m . As in the previous section the

parameters λ1, λ2 satisfy λ1 = λ2 +m, where m > 0 is fixed. In Theorem
5.3 below we show that least energy solutions exist for λ2 ∈ (0, λ) for some
λ > 0 and there are no solutions for λ2 > λ. This means that

Sλ =
SAα,β

Q
(N−2)/N
M

for λ2 > λ.

We need the following lemmas:

Lemma 5.1 ([17], Lemma 4.7). Assume N ≥ 5. Let λn > 0 and λn →
∞, σn → ∞, σn > 0, Pn ∈ Ω, Pn → P◦ with P◦ ∈ Ω and vn ∈ H

1(Ω),
vn ≥ 0, vn ⇀ v in H

1(Ω) be such that

lim
n→∞

∥∥∥∥∇vn −∇
(

Uσn,Pn
‖Uσn,Pn‖L2⋆(Ω)

)∥∥∥∥
L2(Ω)

= 0.

If
T
Ω(|∇vn|

2 + λnv
2
n) dx < S for large n, then there exist sequences {δn},

δn > 0, and {yn} ⊂ Ω such that , modulo a subsequence, δn/σn → 1, yn → P◦
and\
Ω

(|∇vn|
2 + λnv

2
n) dx ≥

T
Ω(|∇Uδn,yn |

2 + λnU
2
δn,yn
) dx

‖Uδn,yn‖
2
L2
⋆
(Ω)

+O(δ2n) + o(λnδ
2
n)

and o(λnδ
2
n) = O(δ

2
n).
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Lemma 5.2 (see [9]). Suppose that N ≥ 5. Let y be an interior point of
Ω. Then there exists a constant bN > 0, depending only on N , such thatT

Ω(|∇Uδ,y|
2 + λU2δ,y) dx

(
T
Ω U
2⋆
δ,y dx)

2/2⋆
= S + bnλδ

2 +O(δ2) + o(λδ2),

O(·) and o(·) are uniform in λ and y as δ → 0 for λ > 1 and for y in
compact subsets of Ω.

Theorem 5.3. Suppose that N ≥ 5. Let QM > Sα,β/Q
(N−2)/N
m and λ1 =

λ2 +m. Then there exists λ > 0 such that least energy solutions exist only
for λ2 ∈ (0, λ).

Proof. We argue indirectly. Assume that there exists a least energy so-
lution (uλ, vλ) for (1Λ) for each λ2 > 0. Set u

1
λ = suλ, v

1
λ = tvλ with s, t > 0

satisfying (8) andMλ = supx∈Ω vλ(x) = vλ(xλ). As in the proof of Theorem
4.2 we show that Mλ → ∞ as λ2 → ∞ and also u

1
λ ≤ v

1
λ on Ω. We now

apply the blow-up technique to the rescaled solutions

(ũ1λ(x), ṽ
1
λ(x)) = (ε

(N−2)/2
λ u1λ(ελx+ xλ), ε

(N−2)/2v1λ(ελx+ xλ)).

Obviously we have ũ1λ → ũ and ṽ
1
λ → ṽ in C

2
loc(R

N ) and ũ and ṽ satisfy the

system (13) with SΛ∞ replaced by Aα,βS/Q
(N−2)/N
M . We now consider the

cases (a) and (b) from the proof of Theorem 4.2. Due to the assumption
QM > 2

2/(N−2)Qm, the case (b) does not hold. Therefore (a) occurs. In this
case we have

ũ = ṽ = U(S
1/2

Λ̃∞
Q(x◦)

1/2x),

where SΛ̃∞ = Aα,βS/Q
(N−2)/N
M . By the Fatou lemma we have

t2 + s2

s2t2
Q(x◦)

1−N/2S
1−N/2

Λ̃∞
SN/2 ≤

Aα,βS

Q
(N−2)/N
M

,

from which we deduce, using formula (9), that Q(x◦) ≥ QM and necessarily
Q(x◦) = QM. We now observe that by the above argument we also have

lim
λ2→∞

λ1
\
Ω

u2λ dx = lim
λ2→∞

λ2
\
Ω

v2λ dx = 0.

Therefore

lim
λ2→∞

\
Ω

(|∇uλ|
2 + |∇vλ|

2) dx =
Aα,βS

Q
(N−2)/N
M

.(15)

As in the proof of Theorem 4.2 we show that\
RN

|∇U(Bx)|2 dx = lim
λ2→∞

\
Ω

|∇u1λ|
2 dx = lim

λ2→∞

\
Ωελ

|∇ũ1λ|
2 dx,(16)
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RN

|∇U(Bx)|2 dx = lim
λ2→∞

\
Ω

|∇v1λ|
2 dx = lim

λ2→∞

\
Ωελ

|∇ṽ1λ|
2 dx,(17)

where B = S
1/2

Λ̃∞
Q
1/2
M . Since

s2 + t2

s2t2
B2−NSN/2 =

Aα,βS

Q
(N−2)/N
M

,

we may assume that along a subsequence λn2 →∞ we have\
Ωελn

|∇ũ1λn |
2 dx <

Aα,βS

Q
(N−2)/N
M

.

Then by (16),

lim
λn2→∞

\
Ω

|∇u1λn |
2 dx = lim

λn2→∞

\
Ωελn

|∇ũ1λn |
2 dx =

Aα,βS

Q
(N−2)/N
M

.(18)

We now set

wλn =
Q
(N−2)/(2N)
M

A
1/2
α,β

ũ1λn .

Then \
Ω

|∇wλn |
2 dx =

s2Q
(N−2)/N
M

Aα,β

\
Ω

|∇uλn |
2 dx < S

and ∥∥∥∥∇wλn − ε
−(N−2)/4S−(N−2)/4∇U

(
x− xλn
ελn

)∥∥∥∥
L2(Ω)

→ 0

as n→∞, where

ελn =
ελn

S1/2Q
1/2
M A

1/2
α,β

.

Using Lemma 5.1 with Pn = xλn , we get sequences {yn} such that, modulo
a subsequence, ελn/σn → 1, yn → x◦ and moreover\

Ω

(|∇wn|
2 + λn1w

2
n) dx ≥

T
Ω |∇Uσn,yn |

2 dx

(
T
Ω U
2⋆
σn,yn dx)

1/2⋆
+O(σ2n) + o(λnσ

2
n).

Lemma 5.2 implies that
T
Ω(|∇wn|

2 + λnw
2
n) dx > S for large n. This con-

tradiction completes the proof.

We now define λ = inf{λ2; (1Λ) has no least energy solution}. It is clear

that SΛ = Aα,βS/Q
(N−2)/N
M for λ2 ≥ λ.

Remark 5.4. Theorem 4.2 remains true for QM = 2
2/(N−2)Qm.

Indeed, in this case the concentration can only occur on the boundary
or at an interior point of Ω. The concentration at an interior point can
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be excluded as in the proof of Theorem 4.2. Therefore, (uλ, vλ) can only
concentrate at a boundary point and the assertion of Theorem 4.2 remains
true in this case.

Theorem 5.5. Let N ≥ 5 and suppose that QM > 2
2/(N−2)Qm. Then

there exists a least energy solution of (1Λ) for λ2 = λ.

Proof. Let λn2 ∈ (0, λ) and λ
n
2 → λ. By Theorem 5.3 for each λ

n
2 there

exists a least energy solution (uλn2 , vλn2 ). Let Mλn2 = maxx∈Ω vλn2 (x). We
show that {Mλn2 } is a bounded sequence. In the contrary case Mλn2 → ∞.
Then we can repeat the final part of the proof of Theorem 5.3, which gives
a contradiction. Since uλn2 ≤ vλn2 on Ω we see that both sequences uλn2 and
vλn2 are bounded. By the Sobolev embedding theorem we may assume that

uλn2 ⇀ uλ̄ and vλ2n ⇀ vλ̄ in H
1(Ω) and also uλn2 → uλ and vλn2 → vλ̄ a.e. on

Ω. It then follows from the Lebesgue dominated convergence theorem that

1 = lim
n→∞

\
Ω

Q(x)uαλn2 v
β
λn2
dx =

\
Ω

Q(x)uαλ̄v
β

λ̄
dx

and on the other hand, by the lower semicontinuity of the norm with respect
to the weak convergence, we get\

Ω

(|∇uλ̄|
2 + |∇vλ̄|

2 + (λ+m)u2λ̄ + λv
2
λ̄) dx ≤

Aα,βS

Q
(N−2)/N
M

and the result follows.

6. Remark on a weighted Sobolev inequality. As a by-product of
Theorem 5.5 we obtain the following inequality:

Theorem 6.1. Let N ≥ 5 and suppose that QM > 2
2/(N−2)Qm. Then

there exists a constant K = K(Ω) such that
(\
Ω

Q(x)|u|α|v|β dx

)2/2⋆
≤
Q
(N−2)/N
M

Aα,βS

\
Ω

(|∇u|2+ |∇v|2) dx+K
\
Ω

(u2+ v2) dx

for all u, v ∈ H1(Ω).

7. Appendix. We extend the Pokhozhaev identity to a system of two
equations.

Proposition 7.1. Let (u, v) ∈ H1(RN ) × H1(RN ) be a solution of the
system 




−∆u+ λ1u =
2α

α+ β
|u|α−2u|v|β,

−∆v + λ2v =
2β

α+ β
|u|α|v|β−2v,

(19)
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in R
N . Then

N − 2

2

\
RN

(|∇u|2+ |∇v|2) dx =
2N

α+ β

\
RN

|u|α|v|β dx−
N

2

\
RN

(λ1u
2+λ2v

2) dx.

Proof. We follow the argument from Proposition 1 in [8] (p. 320). It
follows from the first equation that\

RN

(−∆u+ λ1u)(x · ∇u) dx =
2α

α+ β

\
RN

|u|α−2u|v|β(x · ∇u) dx.

We also have \
RN

(−∆u)(x · ∇u) dx =
2−N

2

\
RN

|∇u|2 dx.

Hence

2α

α+ β

\
RN

|u|α−2u|v|β(x · ∇u) dx

=
2

α+ β

\
RN

(|u|α)xj |v|
βxj dx

= −
2N

α+ β

\
RN

|u|α|v|β dx−
2β

α+ β

\
RN

|u|α|v|β−2vvxjxj dx

= −
2N

α+ β

\
RN

|u|α|v|β dx−
\

RN

(−∆v + λ2v)(x · ∇v) dx

= −
2N

α+ β

\
RN

|u|α|v|β dx−
2−N

2

\
RN

|∇v|2 dx− λ2
\

RN

v(x · ∇v) dx.

We now observe that

λ1
\

RN

u(x · ∇u) dx = λ1
\

RN

uxjuxj dx =
λ1
2

\
RN

(u2)xjxj dx = −
Nλ1
2

\
RN

u2 dx.

Therefore

2−N

2

\
RN

|∇u|2 dx−
Nλ1
2

\
RN

u2 dx

= −
2N

α+ β

\
RN

|u|α|v|β dx−
2−N

2

\
RN

|∇v|2 dx+
Nλ2
2

\
RN

v2 dx

and this completes the proof.

Proposition 7.2. The system of equations (19) has no positive solu-
tions in H1(RN )×H1(RN ) for λ1, λ2 ≥ 0 with λ1 + λ2 > 0.
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Proof. Indeed, we have\
RN

(|∇u|2 + |∇v|2) dx = 2
\

RN

|u|α|v|β dx−
\

RN

(λ1u
2 + λ2v

2) dx.

It then follows from the Pokhozhaev identity that

(N − 2)
\

RN

|u|α|v|β dx−
N − 2

2

\
RN

(λ1u
2 + λ2v

2) dx

= (N − 2)
\

RN

|u|α|v|β dx−
N

2

\
RN

(λ1u
2 + λ2v

2) dx.

This yields \
RN

(λ1u
2 + λ2v

2) dx = 0

and consequently u = v = 0 on R
N .
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