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THE MEAN VALUE OF |L(k, χ)|2

AT POSITIVE RATIONAL INTEGERS k ≥ 1

BY

STÉPHANE LOUBOUTIN (Marseille)

Abstract. Let k ≥ 1 denote any positive rational integer. We give formulae for the
sums

Sodd(k, f) =
∑

χ(−1)=−1

|L(k, χ)|2

(where χ ranges over the φ(f)/2 odd Dirichlet characters modulo f > 2) whenever k ≥ 1
is odd, and for the sums

Seven(k, f) =
∑

χ(−1)=+1

|L(k, χ)|2

(where χ ranges over the φ(f)/2 even Dirichlet characters modulo f > 2) whenever k ≥ 1
is even.

1. Introduction. The aim of this paper is to prove the following two
results:

Theorem 1. Let f > 2, k ≥ 1 and l ≥ 1 denote rational integers. Set

φl(f) =
∏

p|f

(1− 1/pl) and φ(f) = fφ1(f).

Then for any k ≥ 1 there exists a polynomial Rk(X) =
∑2k
l=0 rk,lX

l of degree

2k with rational coefficients such that for all f > 2 we have

2

φ(f)

∑

χ(−1)=(−1)k

|L(k, χ)|2 =
π2k

2((k − 1)!)2

2k
∑

l=1

rk,lφl(f)f
l−2k

where χ ranges over the φ(f)/2 Dirichlet characters modulo f such that
χ(−1) = (−1)k.
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Theorem 2. Assume f > 2 and k ≥ 1. Let

Modd(k, f) =
2

φ(f)

∑

χ(−1)=−1

|L(k, χ)|2 (k ≥ 1 odd),

Meven(k, f) =
2

φ(f)

∑

χ(−1)=+1

|L(k, χ)|2 (k ≥ 2 even)

denote the mean value of |L(k, χ)|2 where χ ranges over the φ(f)/2 Dirichlet
characters modulo f such that χ(−1) = (−1)k. Then

Modd(1, f) =
π2

6
φ2(f)−

π2φ1(f)

2f
,

Meven(2, f) =
π4

90
φ4(f) +

π4

9f2
φ2(f),

Modd(3, f) =
π6

945
φ6(f)−

π6

45f4
φ2(f),

Meven(4, f) =
π8

9450
φ8(f) +

π8

2025f4
φ4(f) +

4π8

567f6
φ2(f).

To prove these results, we follow the same line of reasoning as for proving
[Lou1, Th. 2] (which is nothing else but our formula for Modd(1, f) and
generalizes [Wal] who only considered the case of prime modulus f). First,
in (1) we generalize [Lou1, Th. 1] by giving a formula for the values L(k, χ)
for the χ’s that satisfy χ(−1) = (−1)k. Second, we generalize [Lou1, Lemma
(a)] in Proposition 4. Third, we prove in Proposition 5 that Theorem 1 holds
with the polynomials Rk(X) defined in (5)–(7). Finally, Theorem 2 follows
from Theorem 1 and the computation of the Ri(X) for 1 ≤ i ≤ 4.

2. Proof of the results

2.1. Formulae for Modd(k, f) and Meven(k, f)

Proposition 3. Let k ≥ 1 and f > 2 denote positive rational integers.
Let cot(k) denote the kth derivative of x 7→ cot(x) = cos(x)/sin(x).

1. If χ is a Dirichlet character modulo f > 2 and if χ(−1) = (−1)k then

L(k, χ) =
(−1)k−1πk

2fk(k − 1)!

f−1
∑

l=1

χ(l) cot(k−1)(πl/f).(1)

2. We have

∑

χ(−1)=(−1)k

|L(k, χ)|2 =
π2kφ(f)

4((k − 1)!)2f2k

f−1
∑

l=1
(l,f)=1

(

cot(k−1)
(

πl

f

))2

(2)
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where the first sum ranges over all the φ(f)/2 Dirichlet characters modulo
f > 2 which satisfy χ(−1) = (−1)k and the second sum ranges over integers
l relatively prime to f .

Proof. Recall that for 0 < b < 1 we have

π cot(πb) =
∑

n≥0

(

1

n+ b
−

1

n+ 1− b

)

.

Therefore, for k ≥ 1 we have

(−1)k−1πk

(k − 1)!
cot(k−1)(πb) =

∑

n≥0

(

1

(n+ b)k
+

(−1)k

(n+ 1− b)k

)

.(3)

Now, for b > 0 we set ζ(s, b) =
∑

n≥0(n+ b)
−s for ℜ(s) > 1 (Hurwitz’s zeta

function). For ℜ(s) > 1 we have

L(s, χ) = f−s
f−1
∑

l=1

χ(l)ζ(s, l/f)(4)

= f−s
f−1
∑

l=1

χ(f − l)ζ(s, 1− (l/f))

= f−sχ(−1)

f−1
∑

l=1

χ(l)ζ(s, 1− (l/f))

=
f−s

2

f−1
∑

l=1

χ(l)(ζ(s, l/f) + χ(−1)ζ(s, 1− (l/f)))

=
f−s

2

f−1
∑

l=1

χ(l)
∑

n≥0

(

1

(n+ (l/f))s
+

χ(−1)

(n+ 1− (l/f))s

)

.

Moreover, if χ(−1) = −1 then it is easily seen that this last equality is valid
for ℜ(s) > 0. Therefore, if k ≥ 1 and χ(−1) = (−1)k then, using (3) and
(4), we do obtain (1). Let us recall that for f > 2 and ε = ±1 we have

∑

χ(−1)=ε

χ(l)χ(l′) =
φ(f)

2
〈l, l′〉ε

where

〈l, l′〉ε :=

{

1 if l′ ≡ l (mod f) and gcd(l, f) = 1,
ε if l′ ≡ −l (mod f) and gcd(l, f) = 1,
0 otherwise.

We deduce the second point from these relations, (1) and cot(k)(−x) =
(−1)k−1 cot(k)(x).
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2.2. Evaluation of the sums
∑d−1
l=1 (cot

(k−1)(πl/d))2. The derivative of
cot is −1 − cot2. Therefore, if we define inductively polynomials Pk(X) ∈
Z[X] by means of P1(X) = X and Pk+1(X) = (X

2+1)P ′k(X), then cot
(k−1)

= (−1)k−1Pk(cot) and (cot
(k−1))2 = Qk(cot

2) where Qk(X) =
∑k
l=0 qk,lX

l

∈ Z[X] is defined by Qk(X
2) = (Pk(X))

2.

For j ≥ 1 we define polynomials sj(X) ∈ Q[Y ] of degree 2j by

sj(X) =
(X − 1)(X − 2)(X − 3) . . . (X − 2j)

(2j + 1)!
(j ≥ 1),(5)

and use them to define inductively on j ≥ 1 polynomials Fj(X) ∈ Q[X] of
degree ≤ 2j by means of

(6) Fj(X)−s1(X)Fj−1(X)+. . .+(−1)
j−1sj−1(X)F1(X)+(−1)

jjsj(X)=0.

We finally set

Rk(X) = qk,0(X − 1) + 2

k
∑

j=1

qk,jFj(X) ∈ Q[X].(7)

Notice that for any k ≥ 1 the degree of Rk(X) is ≤ 2k and that Rk(1) = 0
(this is because (5) yields sj(1) = 0 for all j ≥ 1 and (6) then yields Fj(1) = 0
for all j ≥ 1). We will write

Rk(X) =

2k
∑

l=0

rk,lX
l

and we will prove that these Rk(X) are the polynomials which appear in
the statement of Theorem 1. Using (7), (6) and (5) we computed Table 1
opposite, according to which we deduce Theorem 2 from Theorem 1.

Proposition 4. Let k ≥ 1 be a given rational integer and let Rk(X) be
as in (7). Then for any rational integer d > 1 we have

R(k, d) :=

d−1
∑

l=1

(cot(k−1)(πl/d))2 = Rk(d).(8)

Proof. Let k ≥ 1 be a given integer. Let j range from 1 to k. Let D
range over the integers D ≥ k. We set

Sj(X1, . . . , XD) =

D
∑

a=1

Xja

and

σj(X1, . . . , XD) =
∑

1≤a1<...<aj≤D

Xa1 . . .Xaj .
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Table 1

P1(X) = X

Q1(X) = X

F1(X) = s1(X) = (X
2 − 3X + 2)/6

R1(X) = 2F1(X) = (X
2 − 3X + 2)/3

P2(X) = 1 +X
2

Q2(X) = 1 + 2X +X
2

F2(X) = s1(X)F1(X)− 2s2(X) = (X
4 − 20X2 + 45X − 26)/90

R2(X) = (X − 1) + 4F1(X) + 2F2(X) = (X
4 + 10X2 − 11)/45

P3(X) = 2X + 2X
3

Q3(X) = 4X + 8X
2 + 4X3

F3(X) = s1(X)F2(X)− s2(X)F1(X) + 3s3(X)

= (2X6 − 42X4 + 483X2 − 945X + 502)/1890

R3(X) = 8F1(X) + 16F2(X) + 8F3(X) = 8(X
6 − 21X2 + 20)/945

P4(X) = 2 + 8X
2 + 6X4

Q4(X) = 4 + 32X + 88X
2 + 96X3 + 36X4

F4(X) = s1(X)F3(X)− s2(X)F2(X) + s3(X)F1(X)− 4s4(X)

= (3X8 − 80X6 + 924X4 − 7920X2 + 14175X − 7102)/28350

R4(X) = 4(X − 1) + 64F1(X) + 176F2(X) + 192f3(X) + 72F4(X)

= 4(3X8 + 14X4 + 200X2 − 217)/1575

For each j ∈ {1, . . . , k} there exists fj = fj(X1, . . . , Xj) ∈ Z[X1, . . . , Xj]
such that for all D ≥ k we have

Sj(X1, . . . , XD) = fj(σ1(X1, . . . , XD), . . . , σi(X1, . . . , XD)).(9)

Newton’s formulae

fj −X1fj−1 +X2fj−2 + . . . (−1)
j−1Xj−1f1 + (−1)

jjXj = 0 (for j ≤ D)

(and f1(X1) = X1) allow us to compute inductively these polynomials fj =
fj(X1, . . . , Xj) for 1 ≤ j ≤ k. In particular, the polynomials defined in (6)
are given by

Fj(X) = fj(s1(X), . . . , sj(X)) (j ≥ 1).(10)

According to (7), (10) and (8), to complete the proof, we only have to show
that if k ≥ 1 is given, then for any d > 1 we have
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R(k, d) = qk,0(d− 1) + 2

k
∑

j=1

qk,jfj(s1(d), . . . , sj(d)).(11)

Set d′ = (d− 1)/2 if d ≥ 3 is odd, d/2 if d ≥ 2 is even. Choose D such that
D ≥ d′ and D ≥ k, set

αl(d) =

{

cot2(πl/d) for 1 ≤ l ≤ d′,
0 for d′ < l ≤ D,

and for 1 ≤ j ≤ k set

σj(d) = σj(α1(d), . . . , αD(d))

and

Sj(d) := Sj(α1(d), . . . , αD(d)) = fj(σ1(d), . . . , σj(d)) (by (9)).

Since for d > 1 and j ≥ 1 we have

d−1
∑

l=1

cot2j(πl/d) = 2

D
∑

l=1

(αl(d))
j = 2Sj(d) = 2fj(σ1(d), . . . , σj(d)),

we obtain

R(k, d) = qk,0(d− 1) + 2

k
∑

j=1

qk,jfj(σ1(d), . . . , σj(d)).(12)

Therefore, according to (11) and (12), it only remains to show that for
any d > 1 we have σj(d) = sj(d) for 1 ≤ j ≤ k. Since the cot(πl/d) for
1 ≤ l ≤ d− 1 are the roots of the polynomial ((X + i)d − (X − i)d)/(2id) =
Xd−1−s1(d)X

d−3+s2(d)X
d−5−. . . (where i2 = −1), we see that the αl(d) for

1 ≤ l ≤ D are the roots of the polynomialXD−s1(d)X
D−1+s2(d)X

D−2−. . .
(for sj(d) = 0 for 2j ≥ d), and we do obtain σj(d) = sj(d).

2.3. Proof of the main theorem

Proposition 5 (proves Theorem 1). Let µ denote Möbius’ function.

1. For f > 2 and k ≥ 1 we have

∑

χ(−1)=(−1)k

|L(k, χ)|2 =
φ(f)

4f2k

(

πk

(k − 1)!

)2
∑

d|f
d>1

µ(f/d)Rk(d).(13)

2. If Rk(X) =
∑2k
l=0 rk,lX

l is a polynomial of degree ≤ 2k such that
Rk(1) = 0 then

∑

d|f
d>1

µ(f/d)Rk(d) =
∑

d|f

µ(f/d)Rk(d) =

2k
∑

l=1

rk,lφl(f)f
l.(14)
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Proof. Only the first point needs a proof. Since
∑

d|n µ(d) = 1 if n = 1

and 0 if n > 1, we deduce (13) from (2) and the following computation:

f−1
∑

a=1
(a,f)=1

(

cot(k−1)
(

πa

f

))2

=

f−1
∑

a=1

(

cot(k−1)
(

πa

f

))2
(

∑

d|a
d|f

µ(d)
)

=
∑

d|f
d<f

µ(d)

f/d−1
∑

b=1

(

cot(k−1)
(

πdb

f

))2

=
∑

d|f
d<f

µ(d)Rk

(

f

d

)

=
∑

d|f
d>1

µ

(

f

d

)

Rk(d).

3. Remarks. 1. According to our proof, the polynomial

((2k + 1)!)2kRk(X) ∈ Z[X]

has integral coefficients. Therefore, ((2k+1)!)2kR(k, d) = ((2k+1)!)2kRk(d)
is a rational integer (see (8)), and any entry Rk(X) of Table 1 can be easily
checked: verify that the polynomial ((2k + 1)!)2kRk(X) of degree 2k has
integral coefficients and that the 2k+1 rational integers ((2k+1)!)2kR(k, d)−
((2k + 1)!)2kRk(d) are equal to zero for 1 ≤ d ≤ 2k + 1.
2. After the publication of [Lou1], Qi Minggao sent us another proof

of [Lou1, Th. 2] (see [QiM]). However, his proof was much more compli-
cated than ours and cannot be generalized for computing the mean value of
|L(k, χ)|2 where χ ranges over the Dirichlet characters modulo f such that
χ(−1) = (−1)k.
3. Since the values at non-positive integers of Dirichlet L-functions are

generalized Bernoulli numbers (see [Was, Th. 4.2]), and since according to
their functional equations these values at non-positive integers are related to
their values at positive integers, one might think it would be easier to prove
Theorem 1 by dealing with these values at non-positive integers. However,
this approach is doomed to failure because functional equations are valid
only for primitive characters, and according to [Lou3], there is no hope
for ever finding similar simple formulae for the mean value of |L(k, χ)|2

where χ ranges over the primitive Dirichlet characters modulo f such that
χ(−1) = (−1)k.
4. Whereas for any positive rational integer n ≥ 1 asymptotic expansions

exist of the type

∑

χ 6=1

|L(1, χ)|2 =
π2

6
p− log2 p+

n−1
∑

k=0

akp
−k +O(p−n)(15)
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for mean values of primitive L-functions modulo primes p ≥ 3 (see [KM]),
there is no known formula for such mean values. Hence, there is no hope of
finding formulae for the mean values

M(k, f) :=
1

φ(f)

∑

χ

|L(k, χ)|2 =
1

2
Modd(k, f) +

1

2
Meven(k, f)

where χ ranges over the φ(f) Dirichlet characters modulo f > 2 (and where
k ≥ 1 is a positive rational integer). However, asymptotic formulae similar
to (15) for these M(k, χ) are given in [KM].
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