COLLOQUIUM MATHEMATICUM

THE MEAN VALUE OF $|L(k, \chi)|^{2}$
 AT POSITIVE RATIONAL INTEGERS $k \geq 1$

BY
 STÉPHANE LOUBOUTIN (Marseille)

Abstract. Let $k \geq 1$ denote any positive rational integer. We give formulae for the sums

$$
S_{\text {odd }}(k, f)=\sum_{\chi(-1)=-1}|L(k, \chi)|^{2}
$$

(where χ ranges over the $\phi(f) / 2$ odd Dirichlet characters modulo $f>2$) whenever $k \geq 1$ is odd, and for the sums

$$
S_{\text {even }}(k, f)=\sum_{\chi(-1)=+1}|L(k, \chi)|^{2}
$$

(where χ ranges over the $\phi(f) / 2$ even Dirichlet characters modulo $f>2$) whenever $k \geq 1$ is even.

1. Introduction. The aim of this paper is to prove the following two results:

Theorem 1. Let $f>2, k \geq 1$ and $l \geq 1$ denote rational integers. Set

$$
\phi_{l}(f)=\prod_{p \mid f}\left(1-1 / p^{l}\right) \quad \text { and } \quad \phi(f)=f \phi_{1}(f)
$$

Then for any $k \geq 1$ there exists a polynomial $R_{k}(X)=\sum_{l=0}^{2 k} r_{k, l} X^{l}$ of degree $2 k$ with rational coefficients such that for all $f>2$ we have

$$
\frac{2}{\phi(f)} \sum_{\chi(-1)=(-1)^{k}}|L(k, \chi)|^{2}=\frac{\pi^{2 k}}{2((k-1)!)^{2}} \sum_{l=1}^{2 k} r_{k, l} \phi_{l}(f) f^{l-2 k}
$$

where χ ranges over the $\phi(f) / 2$ Dirichlet characters modulo f such that $\chi(-1)=(-1)^{k}$.

[^0]Theorem 2. Assume $f>2$ and $k \geq 1$. Let

$$
\begin{aligned}
& M_{\mathrm{odd}}(k, f)=\frac{2}{\phi(f)} \sum_{\chi(-1)=-1}|L(k, \chi)|^{2} \quad(k \geq 1 \text { odd }), \\
& M_{\mathrm{even}}(k, f)=\frac{2}{\phi(f)} \sum_{\chi(-1)=+1}|L(k, \chi)|^{2} \quad(k \geq 2 \text { even })
\end{aligned}
$$

denote the mean value of $|L(k, \chi)|^{2}$ where χ ranges over the $\phi(f) / 2$ Dirichlet characters modulo f such that $\chi(-1)=(-1)^{k}$. Then

$$
\begin{aligned}
& M_{\text {odd }}(1, f)=\frac{\pi^{2}}{6} \phi_{2}(f)-\frac{\pi^{2} \phi_{1}(f)}{2 f} \\
& M_{\text {even }}(2, f)=\frac{\pi^{4}}{90} \phi_{4}(f)+\frac{\pi^{4}}{9 f^{2}} \phi_{2}(f), \\
& M_{\text {odd }}(3, f)=\frac{\pi^{6}}{945} \phi_{6}(f)-\frac{\pi^{6}}{45 f^{4}} \phi_{2}(f), \\
& M_{\text {even }}(4, f)=\frac{\pi^{8}}{9450} \phi_{8}(f)+\frac{\pi^{8}}{2025 f^{4}} \phi_{4}(f)+\frac{4 \pi^{8}}{567 f^{6}} \phi_{2}(f) .
\end{aligned}
$$

To prove these results, we follow the same line of reasoning as for proving [Lou1, Th. 2] (which is nothing else but our formula for $M_{\text {odd }}(1, f)$ and generalizes [Wal] who only considered the case of prime modulus f). First, in (1) we generalize [Lou1, Th. 1] by giving a formula for the values $L(k, \chi)$ for the χ 's that satisfy $\chi(-1)=(-1)^{k}$. Second, we generalize [Lou1, Lemma (a)] in Proposition 4. Third, we prove in Proposition 5 that Theorem 1 holds with the polynomials $R_{k}(X)$ defined in (5)-(7). Finally, Theorem 2 follows from Theorem 1 and the computation of the $R_{i}(X)$ for $1 \leq i \leq 4$.

2. Proof of the results

2.1. Formulae for $M_{\text {odd }}(k, f)$ and $M_{\text {even }}(k, f)$

Proposition 3. Let $k \geq 1$ and $f>2$ denote positive rational integers. Let $\cot ^{(k)}$ denote the k th derivative of $x \mapsto \cot (x)=\cos (x) / \sin (x)$.

1. If χ is a Dirichlet character modulo $f>2$ and if $\chi(-1)=(-1)^{k}$ then

$$
\begin{equation*}
L(k, \chi)=\frac{(-1)^{k-1} \pi^{k}}{2 f^{k}(k-1)!} \sum_{l=1}^{f-1} \chi(l) \cot ^{(k-1)}(\pi l / f) \tag{1}
\end{equation*}
$$

2. We have

$$
\begin{equation*}
\sum_{\chi(-1)=(-1)^{k}}|L(k, \chi)|^{2}=\frac{\pi^{2 k} \phi(f)}{4((k-1)!)^{2} f^{2 k}} \sum_{\substack{l=1 \\(l, f)=1}}^{f-1}\left(\cot ^{(k-1)}\left(\frac{\pi l}{f}\right)\right)^{2} \tag{2}
\end{equation*}
$$

where the first sum ranges over all the $\phi(f) / 2$ Dirichlet characters modulo $f>2$ which satisfy $\chi(-1)=(-1)^{k}$ and the second sum ranges over integers l relatively prime to f.

Proof. Recall that for $0<b<1$ we have

$$
\pi \cot (\pi b)=\sum_{n \geq 0}\left(\frac{1}{n+b}-\frac{1}{n+1-b}\right) .
$$

Therefore, for $k \geq 1$ we have

$$
\begin{equation*}
\frac{(-1)^{k-1} \pi^{k}}{(k-1)!} \cot ^{(k-1)}(\pi b)=\sum_{n \geq 0}\left(\frac{1}{(n+b)^{k}}+\frac{(-1)^{k}}{(n+1-b)^{k}}\right) . \tag{3}
\end{equation*}
$$

Now, for $b>0$ we set $\zeta(s, b)=\sum_{n \geq 0}(n+b)^{-s}$ for $\Re(s)>1$ (Hurwitz's zeta function). For $\Re(s)>1$ we have

$$
\begin{align*}
L(s, \chi) & =f^{-s} \sum_{l=1}^{f-1} \chi(l) \zeta(s, l / f) \tag{4}\\
& =f^{-s} \sum_{l=1}^{f-1} \chi(f-l) \zeta(s, 1-(l / f)) \\
& =f^{-s} \chi(-1) \sum_{l=1}^{f-1} \chi(l) \zeta(s, 1-(l / f)) \\
& =\frac{f^{-s}}{2} \sum_{l=1}^{f-1} \chi(l)(\zeta(s, l / f)+\chi(-1) \zeta(s, 1-(l / f))) \\
& =\frac{f^{-s}}{2} \sum_{l=1}^{f-1} \chi(l) \sum_{n \geq 0}\left(\frac{1}{(n+(l / f))^{s}}+\frac{\chi(-1)}{(n+1-(l / f))^{s}}\right)
\end{align*}
$$

Moreover, if $\chi(-1)=-1$ then it is easily seen that this last equality is valid for $\Re(s)>0$. Therefore, if $k \geq 1$ and $\chi(-1)=(-1)^{k}$ then, using (3) and (4), we do obtain (1). Let us recall that for $f>2$ and $\varepsilon= \pm 1$ we have

$$
\sum_{\chi(-1)=\varepsilon} \chi(l) \overline{\chi\left(l^{\prime}\right)}=\frac{\phi(f)}{2}\left\langle l, l^{\prime}\right\rangle_{\varepsilon}
$$

where

$$
\left\langle l, l^{\prime}\right\rangle_{\varepsilon}:= \begin{cases}1 & \text { if } l^{\prime} \equiv l(\bmod f) \text { and } \operatorname{gcd}(l, f)=1, \\ \varepsilon & \text { if } l^{\prime} \equiv-l(\bmod f) \text { and } \operatorname{gcd}(l, f)=1, \\ 0 & \text { otherwise. }\end{cases}
$$

We deduce the second point from these relations, (1) and $\cot ^{(k)}(-x)=$ $(-1)^{k-1} \cot ^{(k)}(x)$.
2.2. Evaluation of the sums $\sum_{l=1}^{d-1}\left(\cot ^{(k-1)}(\pi l / d)\right)^{2}$. The derivative of cot is $-1-\cot ^{2}$. Therefore, if we define inductively polynomials $P_{k}(X) \in$ $\mathbb{Z}[X]$ by means of $P_{1}(X)=X$ and $P_{k+1}(X)=\left(X^{2}+1\right) P_{k}^{\prime}(X)$, then $\cot ^{(k-1)}$ $=(-1)^{k-1} P_{k}(\cot)$ and $\left(\cot ^{(k-1)}\right)^{2}=Q_{k}\left(\cot ^{2}\right)$ where $Q_{k}(X)=\sum_{l=0}^{k} q_{k, l} X^{l}$ $\in \mathbb{Z}[X]$ is defined by $Q_{k}\left(X^{2}\right)=\left(P_{k}(X)\right)^{2}$.

For $j \geq 1$ we define polynomials $s_{j}(X) \in \mathbb{Q}[Y]$ of degree $2 j$ by

$$
\begin{equation*}
s_{j}(X)=\frac{(X-1)(X-2)(X-3) \ldots(X-2 j)}{(2 j+1)!} \quad(j \geq 1) \tag{5}
\end{equation*}
$$

and use them to define inductively on $j \geq 1$ polynomials $F_{j}(X) \in \mathbb{Q}[X]$ of degree $\leq 2 j$ by means of

$$
\begin{equation*}
F_{j}(X)-s_{1}(X) F_{j-1}(X)+\ldots+(-1)^{j-1} s_{j-1}(X) F_{1}(X)+(-1)^{j} j s_{j}(X)=0 \tag{6}
\end{equation*}
$$

We finally set

$$
\begin{equation*}
R_{k}(X)=q_{k, 0}(X-1)+2 \sum_{j=1}^{k} q_{k, j} F_{j}(X) \in \mathbb{Q}[X] . \tag{7}
\end{equation*}
$$

Notice that for any $k \geq 1$ the degree of $R_{k}(X)$ is $\leq 2 k$ and that $R_{k}(1)=0$ (this is because (5) yields $s_{j}(1)=0$ for all $j \geq 1$ and (6) then yields $F_{j}(1)=0$ for all $j \geq 1$). We will write

$$
R_{k}(X)=\sum_{l=0}^{2 k} r_{k, l} X^{l}
$$

and we will prove that these $R_{k}(X)$ are the polynomials which appear in the statement of Theorem 1. Using (7), (6) and (5) we computed Table 1 opposite, according to which we deduce Theorem 2 from Theorem 1.

Proposition 4. Let $k \geq 1$ be a given rational integer and let $R_{k}(X)$ be as in (7). Then for any rational integer $d>1$ we have

$$
\begin{equation*}
R(k, d):=\sum_{l=1}^{d-1}\left(\cot ^{(k-1)}(\pi l / d)\right)^{2}=R_{k}(d) \tag{8}
\end{equation*}
$$

Proof. Let $k \geq 1$ be a given integer. Let j range from 1 to k. Let D range over the integers $D \geq k$. We set

$$
S_{j}\left(X_{1}, \ldots, X_{D}\right)=\sum_{a=1}^{D} X_{a}^{j}
$$

and

$$
\sigma_{j}\left(X_{1}, \ldots, X_{D}\right)=\sum_{1 \leq a_{1}<\ldots<a_{j} \leq D} X_{a_{1}} \ldots X_{a_{j}}
$$

Table 1

$$
\begin{aligned}
P_{1}(X) & =X \\
Q_{1}(X) & =X \\
F_{1}(X) & =s_{1}(X)=\left(X^{2}-3 X+2\right) / 6 \\
R_{1}(X) & =2 F_{1}(X)=\left(X^{2}-3 X+2\right) / 3 \\
\hline P_{2}(X) & =1+X^{2} \\
Q_{2}(X) & =1+2 X+X^{2} \\
F_{2}(X) & =s_{1}(X) F_{1}(X)-2 s_{2}(X)=\left(X^{4}-20 X^{2}+45 X-26\right) / 90 \\
R_{2}(X) & =(X-1)+4 F_{1}(X)+2 F_{2}(X)=\left(X^{4}+10 X^{2}-11\right) / 45 \\
\hline P_{3}(X) & =2 X+2 X^{3} \\
Q_{3}(X) & =4 X+8 X^{2}+4 X^{3} \\
F_{3}(X) & =s_{1}(X) F_{2}(X)-s_{2}(X) F_{1}(X)+3 s_{3}(X) \\
& =\left(2 X^{6}-42 X^{4}+483 X^{2}-945 X+502\right) / 1890 \\
R_{3}(X) & =8 F_{1}(X)+16 F_{2}(X)+8 F_{3}(X)=8\left(X^{6}-21 X^{2}+20\right) / 945 \\
\hline P_{4}(X) & =2+8 X^{2}+6 X^{4} \\
Q_{4}(X) & =4+32 X+88 X^{2}+96 X^{3}+36 X^{4} \\
F_{4}(X) & =s_{1}(X) F_{3}(X)-s_{2}(X) F_{2}(X)+s_{3}(X) F_{1}(X)-4 s_{4}(X) \\
& =\left(3 X^{8}-80 X^{6}+924 X^{4}-7920 X^{2}+14175 X-7102\right) / 28350 \\
R_{4}(X) & =4(X-1)+64 F_{1}(X)+176 F_{2}(X)+192 f_{3}(X)+72 F_{4}(X) \\
& =4\left(3 X^{8}+14 X^{4}+200 X^{2}-217\right) / 1575
\end{aligned}
$$

For each $j \in\{1, \ldots, k\}$ there exists $f_{j}=f_{j}\left(X_{1}, \ldots, X_{j}\right) \in \mathbb{Z}\left[X_{1}, \ldots, X_{j}\right]$ such that for all $D \geq k$ we have

$$
\begin{equation*}
S_{j}\left(X_{1}, \ldots, X_{D}\right)=f_{j}\left(\sigma_{1}\left(X_{1}, \ldots, X_{D}\right), \ldots, \sigma_{i}\left(X_{1}, \ldots, X_{D}\right)\right) \tag{9}
\end{equation*}
$$

Newton's formulae
$f_{j}-X_{1} f_{j-1}+X_{2} f_{j-2}+\ldots(-1)^{j-1} X_{j-1} f_{1}+(-1)^{j} j X_{j}=0 \quad($ for $j \leq D)$
(and $f_{1}\left(X_{1}\right)=X_{1}$) allow us to compute inductively these polynomials $f_{j}=$ $f_{j}\left(X_{1}, \ldots, X_{j}\right)$ for $1 \leq j \leq k$. In particular, the polynomials defined in (6) are given by

$$
\begin{equation*}
F_{j}(X)=f_{j}\left(s_{1}(X), \ldots, s_{j}(X)\right) \quad(j \geq 1) \tag{10}
\end{equation*}
$$

According to (7), (10) and (8), to complete the proof, we only have to show that if $k \geq 1$ is given, then for any $d>1$ we have

$$
\begin{equation*}
R(k, d)=q_{k, 0}(d-1)+2 \sum_{j=1}^{k} q_{k, j} f_{j}\left(s_{1}(d), \ldots, s_{j}(d)\right) \tag{11}
\end{equation*}
$$

Set $d^{\prime}=(d-1) / 2$ if $d \geq 3$ is odd, $d / 2$ if $d \geq 2$ is even. Choose D such that $D \geq d^{\prime}$ and $D \geq k$, set

$$
\alpha_{l}(d)= \begin{cases}\cot ^{2}(\pi l / d) & \text { for } 1 \leq l \leq d^{\prime} \\ 0 & \text { for } d^{\prime}<l \leq D\end{cases}
$$

and for $1 \leq j \leq k$ set

$$
\sigma_{j}(d)=\sigma_{j}\left(\alpha_{1}(d), \ldots, \alpha_{D}(d)\right)
$$

and

$$
S_{j}(d):=S_{j}\left(\alpha_{1}(d), \ldots, \alpha_{D}(d)\right)=f_{j}\left(\sigma_{1}(d), \ldots, \sigma_{j}(d)\right) \quad(\text { by }(9))
$$

Since for $d>1$ and $j \geq 1$ we have

$$
\sum_{l=1}^{d-1} \cot ^{2 j}(\pi l / d)=2 \sum_{l=1}^{D}\left(\alpha_{l}(d)\right)^{j}=2 S_{j}(d)=2 f_{j}\left(\sigma_{1}(d), \ldots, \sigma_{j}(d)\right)
$$

we obtain

$$
\begin{equation*}
R(k, d)=q_{k, 0}(d-1)+2 \sum_{j=1}^{k} q_{k, j} f_{j}\left(\sigma_{1}(d), \ldots, \sigma_{j}(d)\right) \tag{12}
\end{equation*}
$$

Therefore, according to (11) and (12), it only remains to show that for any $d>1$ we have $\sigma_{j}(d)=s_{j}(d)$ for $1 \leq j \leq k$. Since the $\cot (\pi l / d)$ for $1 \leq l \leq d-1$ are the roots of the polynomial $\left((X+i)^{d}-(X-i)^{d}\right) /(2 i d)=$ $X^{d-1}-s_{1}(d) X^{d-3}+s_{2}(d) X^{d-5}-\ldots$ (where $\left.i^{2}=-1\right)$, we see that the $\alpha_{l}(d)$ for $1 \leq l \leq D$ are the roots of the polynomial $X^{D}-s_{1}(d) X^{D-1}+s_{2}(d) X^{D-2}-\ldots$ (for $s_{j}(d)=0$ for $2 j \geq d$), and we do obtain $\sigma_{j}(d)=s_{j}(d)$.

2.3. Proof of the main theorem

Proposition 5 (proves Theorem 1). Let μ denote Möbius' function.

1. For $f>2$ and $k \geq 1$ we have

$$
\begin{equation*}
\sum_{\chi(-1)=(-1)^{k}}|L(k, \chi)|^{2}=\frac{\phi(f)}{4 f^{2 k}}\left(\frac{\pi^{k}}{(k-1)!}\right)^{2} \sum_{\substack{d \mid f \\ d>1}} \mu(f / d) R_{k}(d) \tag{13}
\end{equation*}
$$

2. If $R_{k}(X)=\sum_{l=0}^{2 k} r_{k, l} X^{l}$ is a polynomial of degree $\leq 2 k$ such that $R_{k}(1)=0$ then

$$
\begin{equation*}
\sum_{\substack{d \mid f \\ d>1}} \mu(f / d) R_{k}(d)=\sum_{d \mid f} \mu(f / d) R_{k}(d)=\sum_{l=1}^{2 k} r_{k, l} \phi_{l}(f) f^{l} \tag{14}
\end{equation*}
$$

Proof. Only the first point needs a proof. Since $\sum_{d \mid n} \mu(d)=1$ if $n=1$ and 0 if $n>1$, we deduce (13) from (2) and the following computation:

$$
\begin{aligned}
\sum_{\substack{a=1 \\
(a, f)=1}}^{f-1}\left(\cot ^{(k-1)}\left(\frac{\pi a}{f}\right)\right)^{2} & =\sum_{a=1}^{f-1}\left(\cot ^{(k-1)}\left(\frac{\pi a}{f}\right)\right)^{2}\left(\sum_{\substack{d|a \\
d| f}} \mu(d)\right)^{2} \\
& =\sum_{\substack{d \mid f \\
d<f}} \mu(d) \sum_{b=1}^{f / d-1}\left(\cot ^{(k-1)}\left(\frac{\pi d b}{f}\right)\right)^{2} \\
& =\sum_{\substack{d \mid f \\
d<f}} \mu(d) R_{k}\left(\frac{f}{d}\right)=\sum_{\substack{d \mid f \\
d>1}} \mu\left(\frac{f}{d}\right) R_{k}(d)
\end{aligned}
$$

3. Remarks. 1. According to our proof, the polynomial

$$
((2 k+1)!)^{2 k} R_{k}(X) \in \mathbb{Z}[X]
$$

has integral coefficients. Therefore, $((2 k+1)!)^{2 k} R(k, d)=((2 k+1)!)^{2 k} R_{k}(d)$ is a rational integer (see (8)), and any entry $R_{k}(X)$ of Table 1 can be easily checked: verify that the polynomial $((2 k+1)!)^{2 k} R_{k}(X)$ of degree $2 k$ has integral coefficients and that the $2 k+1$ rational integers $((2 k+1)!)^{2 k} R(k, d)-$ $((2 k+1)!)^{2 k} R_{k}(d)$ are equal to zero for $1 \leq d \leq 2 k+1$.
2. After the publication of [Lou1], Qi Minggao sent us another proof of [Lou1, Th. 2] (see [QiM]). However, his proof was much more complicated than ours and cannot be generalized for computing the mean value of $|L(k, \chi)|^{2}$ where χ ranges over the Dirichlet characters modulo f such that $\chi(-1)=(-1)^{k}$.
3. Since the values at non-positive integers of Dirichlet L-functions are generalized Bernoulli numbers (see [Was, Th. 4.2]), and since according to their functional equations these values at non-positive integers are related to their values at positive integers, one might think it would be easier to prove Theorem 1 by dealing with these values at non-positive integers. However, this approach is doomed to failure because functional equations are valid only for primitive characters, and according to [Lou3], there is no hope for ever finding similar simple formulae for the mean value of $|L(k, \chi)|^{2}$ where χ ranges over the primitive Dirichlet characters modulo f such that $\chi(-1)=(-1)^{k}$.
4. Whereas for any positive rational integer $n \geq 1$ asymptotic expansions exist of the type

$$
\begin{equation*}
\sum_{\chi \neq 1}|L(1, \chi)|^{2}=\frac{\pi^{2}}{6} p-\log ^{2} p+\sum_{k=0}^{n-1} a_{k} p^{-k}+O\left(p^{-n}\right) \tag{15}
\end{equation*}
$$

for mean values of primitive L-functions modulo primes $p \geq 3$ (see $[\mathrm{KM}]$), there is no known formula for such mean values. Hence, there is no hope of finding formulae for the mean values

$$
M(k, f):=\frac{1}{\phi(f)} \sum_{\chi}|L(k, \chi)|^{2}=\frac{1}{2} M_{\mathrm{odd}}(k, f)+\frac{1}{2} M_{\mathrm{even}}(k, f)
$$

where χ ranges over the $\phi(f)$ Dirichlet characters modulo $f>2$ (and where $k \geq 1$ is a positive rational integer). However, asymptotic formulae similar to (15) for these $M(k, \chi)$ are given in $[\mathrm{KM}]$.

REFERENCES

[KM] M. Katsurada and K. Matsumoto, The mean values of Dirichlet L-functions at integer points and class numbers of cyclotomic fields, Nagoya Math. J. 134 (1994), 151-172.
[Lou1] S. Louboutin, Quelques formules exactes pour des moyennes de fonctions L de Dirichlet, Canad. Math. Bull. 36 (1993), 190-196.
[Lou2] -, Corrections à : Quelques formules exactes pour des moyennes de fonctions L de Dirichlet, ibid. 37 (1994), 89.
[Lou3] -, On the mean value of $|L(1, \chi)|^{2}$ for odd primitive Dirichlet characters, Proc. Japan Acad. Ser. A 75 (1999), 143-145.
[QiM] M. G. Qi, A kind of mean square formula for L-functions, J. Tsinghua Univ. 31 (1991), 34-41 (in Chinese).
[Wal] H. Walum, An exact formula for an average of L-series, Illinois J. Math. 26 (1982), 1-3.
[Was] L. C. Washington, Introduction to Cyclotomic Fields, Chapters 4 and 11, Grad. Texts in Math. 83, Springer, 2nd ed., 1997.

Institut de Mathématiques de Luminy, UPR 9016
163, avenue de Luminy
Case 907
13288 Marseille Cedex 9, France
E-mail: loubouti@iml.univ-mrs.fr

[^0]: 2000 Mathematics Subject Classification: Primary 11M06, 11M20, 11R18.
 Key words and phrases: Dirichlet L-functions, characters.

