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Abstract. Let (L, ‖ · ‖L) be a Banach lattice of equivalence classes of real-valued
measurable functions on a σ-finite measure space and T = {T (u) : u = (u1, . . . , ud),
ui > 0, 1 ≤ i ≤ d} be a strongly continuous locally bounded d-dimensional semigroup
of positive linear operators on L. Under suitable conditions on the Banach lattice L we
prove a general differentiation theorem for locally bounded d-dimensional processes in L
which are additive with respect to the semigroup T .

1. Introduction and the results. Let (Ω,Σ, µ) be a σ-finite measure
space and (L, ‖ · ‖L) a Banach lattice of equivalence classes of real-valued
measurable functions on (Ω,Σ, µ) under pointwise operations. Thus we un-
derstand that if f ∈ L then the function f+(ω) = max{f(ω), 0} is also
in L, and two functions f and g in L are not distinguished provided that
f(ω) = g(ω) for almost all ω ∈ Ω. We let |f |(ω) = max{f(ω),−f(ω)}.
Hereafter all statements and relations are assumed to hold modulo sets of
measure zero. By definition, the norm ‖ · ‖L has the following property
(cf. p. 1 of [11]):

(I) If f, g ∈ L and |f(ω)| ≤ |g(ω)| for almost all ω ∈ Ω, then ‖f‖L ≤
‖g‖L.

Moreover, in this paper, we will assume that (L, ‖ · ‖L) has the following
additional properties:

(II) If g is a real-valued measurable function on Ω and if there exists an
f ∈ L such that |g(ω)| ≤ |f(ω)| for almost all ω ∈ Ω, then g ∈ L.
(III) If En ∈ Σ, En ⊃ En+1 for each n ≥ 1, and

⋂∞
n=1En = ∅, then for

all f ∈ L we have
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lim
n→∞
‖f · χEn‖L = 0,

where χEn denotes the characteristic function of En.

We recall that Property (II) means that L is “solid” in the vector lattice
of equivalence classes of all real-valued measurable functions on (Ω,Σ, µ)
(and since L is a subspace, it means that L is an “ideal” of that vector lat-
tice), and that Property (III) is clearly implied by the “σ-order continuity”
of the norm. When L is “σ-order complete”, (III) implies the σ-order conti-
nuity of the norm. This follows from Theorem II.5.14 of [14], or Proposition
1.a.7 of [11], because (III) implies that L does not contain a sublattice that
is vector lattice isomorphic to ℓ∞.
An operator S : L → L is called positive if Sf(ω) ≥ 0 for almost all

ω ∈ Ω for every f in L+, where L+ = {f ∈ L : f(ω) ≥ 0 a.e. on Ω}.
If d ≥ 1 is an integer, then we let

Pd = {u = (u1, . . . , ud) ∈ Rd : ui > 0, 1 ≤ i ≤ d},

R
+
d = {u = (u1, . . . , ud) ∈ Rd : ui ≥ 0, 1 ≤ i ≤ d}.

Further, Id denotes the class of all bounded intervals in Pd, and λd is
the d-dimensional Lebesgue measure. We will consider a strongly continuous
d-dimensional semigroup T = {T (u) : u ∈ Pd} of positive linear operators
on L. Thus

(i) each T (u) is a positive linear operator from L to itself,
(ii) T (u+ v) = T (u)T (v) for u, v ∈ Pd, and
(iii) limu→v ‖T (u)f − T (v)f‖L = 0 for v ∈ Pd and f ∈ L.

It is known that there are two measurable decompositions Ω = P + N
and Ω = C +D with respect to T = {T (u)} (see e.g. [13]) such that

(a) if f ∈ L+ and {ω : f(ω) > 0} ⊂ N , then ‖T (u)f‖L = 0 for all u ∈ Pd,
(b) if 0 6= f ∈ L+ and µ(P ∩ {ω : f(ω) > 0}) > 0, then ‖T (u)f‖L > 0

for some u ∈ Pd,
(c) T (u)f(ω) = 0 on D for every u ∈ Pd and f ∈ L

+,
(d) C =

⋃∞
n=1{ω : T (1/n, . . . , 1/n)h(ω) > 0} for some h ∈ L

+.

If Ω = P , then T = {T (u)} will be called proper. Thus if

IL = strong- lim
u→0
T (u),

where IL denotes the identity operator on L, then T = {T (u)} becomes
proper. We assume below that T is locally bounded, i.e.,

(1) K(T ) := sup{‖T (u)‖L : u ∈ (0, 1]
d} <∞,

where ‖T (u)‖L denotes the operator norm of T (u) on L. It then follows that
for each f ∈ L the vector-valued function u 7→ T (u)f is Bochner integrable
over every I ∈ Id.



A GENERAL DIFFERENTIATION THEOREM 145

By a (d-dimensional) process F in L we mean a set function F : Id → L.
It is positive if F (I) ∈ L+ for all I ∈ Id, and locally bounded if

(2) K(F ) := sup

{
‖F (I)‖L
λd(I)

: I ∈ Id, I ⊂ (0, 1]
d, λd(I) > 0

}
<∞,

and bounded if

(3) sup

{
‖F (I)‖L
λd(I)

: I ∈ Id, λd(I) > 0

}
<∞.

It is called additive (with respect to T ) if the following conditions hold:

(i) T (u)F (I) = F (u+ I) for all u ∈ Pd and I ∈ Id.

(ii) If I1, . . . , Ik ∈ Id are pairwise disjoint and I =
⋃k
i=1 Ii ∈ Id, then

F (I) =
∑k
i=1 F (Ii).

Thus if F (I) =
T
I
T (u)f du for all I ∈ Id, where f is a fixed function

in L+, then F (I) defines a positive locally bounded additive process in L.
Following Akcoglu and del Junco [1], this process will be called absolutely
continuous. It is known (see e.g. [1]) that there are many positive locally
bounded additive processes in L which are not absolutely continuous.

In this paper we discuss d-dimensional locally bounded additive pro-
cesses F in L and, in particular, study the almost everywhere convergence
of the averages α−dF ((0, α]d) as α approaches zero. But, as is known, this
does not make sense when the averages denote equivalence classes and not
actual functions and α ranges through all positive numbers. Therefore, in
this paper, we let α range through a countable dense subset D of the posi-
tive numbers. It may be assumed that D includes all positive rational num-
bers. Following Akcoglu and Krengel [2], we use the notation q-limα→0 and
q-lim supα→0, etc., to mean that these limits are taken as α tends to zero
through the set D.

We are now in a position to state our main result as follows.

Theorem. Let T = {T (u) : u ∈ Pd} be a strongly continuous locally
bounded d-dimensional semigroup of positive linear operators on L, and F :
Id → L be a locally bounded d-dimensional process in L which is additive
with respect to T . Assume that T is proper. Then the limit

(4) f0(ω) := q- lim
α→0
α−dF ((0, α]d)(ω)

exists for almost all ω ∈ Ω.

Corollary. Assume that L = Lp(µ) for some p with 1 ≤ p <∞. Then
the above limit function f0 is a function in Lp(µ) satisfying

(5) lim
u→0
‖T (u)f0 − f0‖Lp(µ) = 0.
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Akcoglu and del Junco [1] (see also pp. 693–708 of [4], and [15]) proved
such a differentiation theorem in the case L = L1(µ), under the assump-
tions that T = {T (u) : u ∈ Pd} is a contraction semigroup of positive linear
operators on L1(µ) and that F is a bounded additive process in L1(µ), and
then Lin [10] used Akcoglu and del Junco’s result to obtain the theorem for
the case where L = Lp(µ) with 1 ≤ p <∞, assuming only the local bound-
edness of the semigroup T . Thus the present theorem may be considered to
be a generalization.
We note that, besides Lp(µ)-spaces, there are many interesting Banach

lattices of functions which share the additional properties (II) and (III). Ex-
amples are Lorentz spaces and Orlicz spaces, etc. Here the author intends
to generalize the differentiation theorem to such function spaces. Since cal-
culating norms of functions in Lorentz spaces or Orlicz spaces is somewhat
complicated and vague (cf. [7] and [8]), the author thinks that it is prefer-
able to consider a locally bounded semigroup T instead of a contraction
semigroup. It is interesting to note that the hypothesis that T is a proper
semigroup cannot be omitted from the Theorem. A counterexample can be
found in Theorem 2 of [12]. On the other hand, when L = L1(µ), Emilion
[6] has proved the theorem for a contraction semigroup on L1(µ) in which
the operators need not be positive and the semigroup need not be proper.
The necessity of positivity of the operators in the general context follows
from the example of Akcoglu and Krengel in [3].
In §2 we provide some necessary lemmas, and the proofs are given in §3.

In the last section an example is presented to show that the limit function
f0 does not necessarily belong to L.

Acknowledgments. In the original manuscript of the paper the author
considered a uniformly bounded semigroup T and a positive bounded addi-
tive process F . The referee suggested that the theorem might hold without
the positivity assumption on the process F , by modifying the proof of [1]. He
also suggested that Lin’s paper [10] would be useful when T is assumed to
be locally bounded. These suggestions led the author to the present version,
and hence he would like to express his sincere gratitude to the referee.

2. Lemmas. The next two lemmas are basic throughout the paper.
Their proofs can be found in [13], and hence we omit the details here.

Lemma 1. There exists a strictly positive measurable function w on Ω
such that

T
Ω
fw dµ <∞ for all f ∈ L+.

The function w defines by integration the positive linear functional f 7→T
Ω
fw dµ on L, which, since L is a Banach lattice, is necessarily continuous

in norm (see e.g. pp. 2–3 in [11]). Hence the functional S∗w is well defined
for every bounded linear operator S : L→ L. The point of the next lemma
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is that if S is positive, then the functional corresponding to S∗w is also given
by integration with respect to a non-negative measurable function.

Lemma 2. Let S : L→ L be a positive linear operator and w be a non-
negative measurable function on Ω such that

T
Ω
fw dµ <∞ for all f ∈ L+.

Then there exists a non-negative measurable function v on Ω, written as
v = S∗w, such that \

Ω

(Sf)w dµ =
\
Ω

fv dµ

for all f ∈ L.

Let T = {T (u) : u ∈ Pd} be a strongly continuous locally bounded d-
dimensional semigroup of positive linear operators on L. Since K(T ) <∞,
an easy computation shows that there exists a constant β > 0 such that for
every f ∈ L the vector-valued function

t = (t1, . . . , td) 7→ e
−β(t1+...+td)T (t)f

is Bochner integrable on Pd. Then we can define a positive linear operator
ST : L→ L by

(6) ST f =
\

Pd

e−β(t1+...+td)T (t)f dt.

If w denotes the strictly positive measurable function in Lemma 1, then we
let

(7) vT = S
∗
Tw.

The following result is essential in §3.

Lemma 3. We have P = {ω : vT (ω) > 0}, and

0 ≤ T (t)∗vT ≤ e
β(t1+...+td)vT

on Ω for each t ∈ Pd.

Proof. An easy modification of the proof of Lemma 8 of [13] yields the
result.

3. Proofs

Proof of Theorem. Since T = {T (u)} is proper by hypothesis, an easy
consideration shows that it may be assumed without loss of generality that

(8) C = P = Ω.

Indeed, by Lemma 3, we have vT (ω) > 0 for almost all ω ∈ Ω. Choose a
constant η > 0 such that

∣∣∣
\
Ω

f · vT dµ
∣∣∣ ≤

\
Ω

|f | · vT dµ ≤ η · ‖f‖L
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for all f ∈ L. Then it follows that\
Ω

|T (t)f | · vT dµ ≤
\
Ω

|f | · T (t)∗vT dµ ≤ e
β(t1+...+td)

\
Ω

|f | · vT dµ(9)

≤ eβ(t1+...+td)η · ‖f‖L

for all t = (t1, . . . , td) ∈ Pd and f ∈ L. Since L is a dense subspace of
L1(vT dµ) by Property (II), T = {T (t) : t ∈ Pd} can be regarded as a
strongly continuous semigroup of positive linear operators on L1(vT dµ) such
that

(10) ‖T (t)‖L1(vT dµ) ≤ e
β(t1+...+td)

for all t = (t1, . . . , td) ∈ Pd, and the process F can be considered to be a
locally bounded additive process in L1(vT dµ). Since the decomposition Ω =
C+D corresponding to the original semigroup T = {T (u)} on L is identical
with the one corresponding to the new semigroup T = {T (u)} on L1(vT dµ)
given by (10), and since T (u)L1(C, vT dµ) ⊂ L1(C, vT dµ) for all u ∈ Pd (cf.
(c) in §1), it follows from [1] that the restriction TC = {T (u)|L1(C, vT dµ) :
u ∈ Pd} of the new semigroup T = {T (u)} to L1(C, vT dµ) becomes strongly
continuous at the origin. Let

T0 = strong- lim
u→0
: T (u)|L1(C,vT dµ).

Then, by an easy approximation argument, TC can be extended continuously
to R

+
d . We will denote the extended semigroup by TC = {Tu : u ∈ R

+
d }.

Let I ∈ Id with I ⊂ (0, 1]
d. Then, the local boundedness of F in

L1(vT dµ) implies

(11) lim
n→∞
‖F (I ∩ (1/n, 1]d)− F (I)‖L1(vT dµ) = 0.

Since

F (I ∩ (1/n, 1]d) ∈ T (1/n, . . . , 1/n)L1(vT dµ) ⊂ L1(C, vT dµ),

we deduce from (11) that F (I) ∈ L1(C, vT dµ) and that T0F (I) = F (I).
Next, let I ∈ Id be given arbitrarily. Then we can choose a decomposition

{αi + Ii : αi ∈ R
+
d , Ii ∈ Id, 1 ≤ i ≤ n}

of I such that Ii ⊂ (0, 1]
d for each i = 1, . . . , n. Then put

(12) F̂ (I) :=
n∑

i=1

TαiF (Ii).

Clearly, F̂ (I) is well defined, and the set function F̂ : Id → L1(C, vT dµ)
becomes a process in L1(C, vT dµ) which is additive with respect to the

semigroup TC = {Tu : u ∈ R
+
d }. Since F̂ (I) = F (I) for all I ∈ Id with

I ⊂ (0, 1]d, we may assume that F̂ = F , C = P = Ω, TC = {Tu : u ∈ R
+
d }
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= {T (u) : u ∈ R
+
d } = T , and L1(vT dµ) = L, for the proof of the Theorem.

This is the reason why we may assume (8), from the beginning. We continue
the proof as follows. Since F is additive with respect to {T (u) : u ∈ R

+
d },

we immediately find that

(13) ‖F (I)‖L1(vT dµ) ≤ η ·K(F )λd(I)e
β(b1+...+bd)

for all I = (a1, b1]× . . .× (ad, bd] ∈ Id.
We assume for a moment that F is a positive process. Then define the

process

(14) G(I) =
\
I

e−β(t1+...+td) dF (t)

(cf. (3.3) of [1]). As in [10], we see, by using (13), that

‖G(I)‖L1(vT dµ) =
\
Ω

(\
I

e−β(t1+...+td) dF (t)
)
vT dµ ≤ η ·K(F )λd(I)

and, since F is additive with respect to T ,

e−β(u1+...+ud)T (u)G(I) = e−β(u1+...+ud)T (u)
[\
I

e−β(t1+...+td) dF (t)
]

=
\
u+I

e−β(t1+...+td) dF (t) = G(u+ I).

Thus G becomes a positive bounded additive process in L1(vT dµ) with re-
spect to the strongly continuous contraction semigroup {e−β(u1+...+ud)T (u) :
u ∈ Pd} on L1(vT dµ). Thus we can apply Theorem (1.11) of [1] to infer that
the limit

g0(ω) := q- lim
α→0
α−dG((0, α]d)(ω)

exists for almost all ω ∈ Ω. This, together with the definition of G (cf. (14)),
yields that the equality

g0(ω) = q- lim
α→0
α−dF ((0, α]d)(ω)

holds for almost all ω ∈ Ω.
If F is a locally bounded non-positive additive process, then we apply

the argument in (3.6) of [1] to the semigroup and process in L1(vT dµ) given
by (10) and (13), and obtain that F can be written as

F = F1 − F2,

where F1 and F2 are positive locally bounded additive processes in L1(vT dµ)
satisfying the inequality

‖Fi(I)‖L1(vT dµ) ≤ η ·K(F )λd(I)e
β(b1+...+bd)

for all I = (a1, b1] × . . . × (ad, bd] ∈ Id and i = 1, 2. Hence the proof is
complete.
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Proof of Corollary. From K(F ) < ∞ and Fatou’s lemma it follows
that f0 ∈ Lp(µ). We may assume, as in the proof of the Theorem, that
C = P = Ω. Then the strong limit T (0) = strong-limu→0 T (u) exists in
Lp(µ). Indeed, when p = 1, this follows from the proof of Theorem 3 of
[12], since C = Ω. When 1 < p <∞, it is a consequence of Theorem 7.1.11
of [9], since Lp(µ) is then a reflexive Banach space. (As is easily seen from
its proof, Theorem 7.1.11 of [9] holds for the d-dimensional semigroup T .)
Therefore the semigroup T can be extended continuously to R

+
d by an easy

approximation argument, and consequently there exist constants δ > 0 and
M > 0 such that

(15) ‖T (t)‖Lp(µ) ≤Me
δ(t1+...+td)

for all t = (t1, . . . , td) ∈ R
+
d .

(i) We first consider the case p = 1. From the proof of the theorem (cf.
(9)), there exists a constant β > 0 and a strictly positive function vT in
L∞(µ) such that

(16) ‖T (t)f‖L1(vT dµ) ≤ e
β(t1+...+td)‖f‖L1(vT dµ)

for all t = (t1, . . . , td) ∈ R
+
d and f ∈ L1(µ), where we may assume for later

use that β > δ. Then, since L1(µ) is a dense subspace of L1(vT dµ), T can
be regarded as a strongly continuous semigroup of positive linear operators
on L1(vTdµ) such that

T (0) = strong-lim
t→0
T (t)

in L1(vT dµ), and we have

(17) ‖T (0)‖L1(vT dµ) ≤ 1.

To see that T (0) is Markovian on L1(vT dµ), put

g̃ =
\

(0,1]d

T (t)g dt,

where g is a strictly positive function in L1(µ) (⊂ L1(vT dµ)). Since Ω = C,
it follows that g̃ is a strictly positive function in L1(vT dµ). Furthermore,
T (0)g̃ = g̃. Thus T (0) is a positive linear contraction on L1(vT dµ) having a
strictly positive fixed point. Therefore T (0) is conservative and Markovian
(cf. pp. 116–117 in [9]). It follows that

(18)
\
Ω

(T (0)f) · vT dµ =
\
Ω

f · vT dµ

for all f ∈ L1(vTdµ).
Now we apply the argument in (3.6) of [1] as before. Since β > δ, we see,

by using (15), that F can be written as

F = F1 − F2,
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where F1 and F2 are positive additive processes in L1(µ) such that

(19) ‖Fi(I)‖L1(µ) ≤ K(F )λd(I)M · e
β(b1+...+bd)

for all I = (a1, b1]× . . .× (ad, bd] ∈ Id and i = 1, 2. Then define the process
Gi : Id → L

+
1 (µ) by the relation

(20) Gi(I) =
\
I

e−β(t1+...+td)dFi(t)

for i = 1, 2. It follows from (19) that

‖Gi(I)‖L1(vT dµ) =
\
Ω

(\
I

e−β(t1+...+td) dFi(t)
)
vT dµ

≤ K(F )λd(I)M‖vT ‖L∞(µ).

Furthermore, since Fi is additive with respect to T , we see, as in the proof
of the Theorem, that Gi becomes a positive bounded additive process in
L1(vT dµ) with respect to the contraction semigroup {e

−β(u1+...+ud)T (u) :
u ∈ Pd} on L1(vT dµ). Hence we can define

gi(ω) := q- lim
α→0
α−dGi((0, α]

d)(ω)

for almost all ω ∈ Ω. Then, by using (20), we find that the equality

gi(ω) = q- lim
α→0
α−dFi((0, α]

d)(ω)

holds for almost all ω ∈ Ω. Hence f0(ω) = g1(ω)− g2(ω) on Ω and, by (19)
and Fatou’s lemma, we see that gi ∈ L

+
1 (µ) for each i = 1, 2.

We finally prove that

lim
u→0
‖T (u)gi − gi‖L1(µ) = 0

for i = 1, 2. To do so, let k ≥ 1 be an integer and define f̃k in L
+
1 (µ) by

f̃k(ω) = inf{m
dF1((0,m

−1]d)(ω) : m ≥ k}.

Since 0 ≤ f̃1(ω) ≤ f̃2(ω) ≤ . . . → g1(ω) for almost all ω ∈ Ω, and since

g1 ∈ L
+
1 (µ), it follows that limk→∞ ‖g1 − f̃k‖L1(µ) = 0. Then for I ∈ Id we

have

F1(I) = strong- lim
k→∞

\
I

T (u)[kdF1((0, k
−1]d)] du (cf. Lemma 3.2 of [1])

≥ strong- lim
k→∞

\
I

T (u)f̃k du =
\
I

T (u)g1 du
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in L1(µ). Therefore

g1(ω) = q- lim
k→∞
kdF1((0, k

−1]d)(ω)

≥ q- lim
k→∞
kd
( \
(0,k−1]d

T (u)g1 du
)
(ω) = T (0)g1(ω)

for almost all ω ∈ Ω, where the last equality comes from the strong continu-
ity at the origin of the semigroup T on L1(µ). Hence (18) yields g1 = T (0)g1.
Consequently,

‖T (u)g1 − g1‖L1(µ) = ‖T (u)g1 − T (0)g1‖L1(µ) → 0

as u ∈ R
+
d approaches 0 ∈ R

+
d . Similarly we get limu→0 ‖T (u)g2 − g2‖L1(µ)

= 0, and hence the proof is complete for the case p = 1.

(ii) We next consider the case 1 < p < ∞. Since Lp(µ) is a reflexive
Banach space, a remark following Theorem 4.3 of Emilion [5] implies that
there exists a function f ∈ Lp(µ) for which

F (I) =
\
I

T (t)f dt

holds for all I ∈ Id. Then the strong continuity at the origin of the semigroup
T yields

lim
α→0
‖T (0)f − α−dF ((0, α]d)‖Lp(µ) = 0,

whence f0 = T (0)f = T (0)
2f = T (0)f0, and this completes the proof.

Remark. The proof of the Corollary shows that if L is reflexive, then
any locally bounded additive process F : Id → L with respect to the lo-
cally bounded semigroup T = {T (u) : u ∈ Pd} has the form F (I) =T
I
T (t)f dt for some function f in L. Then, since the strong limit T (0) =
strong-limu→0 T (u) exists, we get f0 = T (0)f by Lemma 2 of [13], and hence

(21) lim
α→0
‖α−dF ((0, α]d)− f0‖L = 0.

This convergence result does not hold in general when L is not reflexive. A
counterexample can be found in [1] when L = L1(µ).

4. An example. In this section we give an example to show that the
limit function f0 in the Theorem need not belong to L, even in dimension 1.

To do this, let Ω = [0, 1] with the Lebesgue measure λ1. Let Φ be an
N -function, i.e., a function on the interval (−∞,∞) which has the form

Φ(u) =

|u|\
0

p(t) dt,



A GENERAL DIFFERENTIATION THEOREM 153

where the function p(t) is right-continuous for t ≥ 0, strictly positive for
t > 0, and non-decreasing with

p(0) = 0 and lim
t→∞
p(t) =∞.

For a Lebesgue measurable function f on Ω, we define

MΦ(f) =
\
Ω

Φ(|f(ω)|) dλ1(ω).

Then define the Orlicz function space

LΦ = {f :MΦ(f/a) <∞ for some a > 0},

and the Luxemburg norm

‖f‖Φ = inf{a > 0 :MΦ(f/a) ≤ 1}

for f ∈ LΦ. It follows (see e.g. Chapter II of [8]) that (LΦ, ‖ · ‖Φ) becomes a
Banach lattice under pointwise operations and that the set

HΦ = {f :MΦ(f/a) <∞ for all a > 0}

is a separable closed sublattice with Properties (II) and (III) for L = HΦ
and ‖ · ‖L = ‖ · ‖Φ. If there exist constants k > 0 and u0 ≥ 0 such that

Φ(2u) ≤ kΦ(u) for u ≥ u0,

then Φ is said to satisfy the ∆2-condition. It is known that the ∆2-condition
is equivalent to LΦ = HΦ (cf. pp. 80–88 in [8]).

For a real number t ≥ 0, define a measure preserving transformation
φt : Ω → Ω by

φt(ω) = t+ ω (mod 1).

Clearly, {φt : t ≥ 1} becomes a measurable semiflow, and hence it induces
in an obvious manner a strongly continuous semigroup {T (t) : t ≥ 0} of
positive linear isometries on HΦ by using the separability of HΦ and the
measurability of {T (t) : t ≥ 0}. We also note that each T (t) is an invertible
isometry on LΦ. To give the desired example we must assume HΦ 6= LΦ.
Then there exists a non-negative function f in LΦ \HΦ. Since LΦ ⊂ L1 =
{f :

T
Ω
|f(ω)| dλ1(ω) < ∞}, we can define a function F (I) in L

+
1 for an

interval I = (a, b] ∈ I1 by the relation

F (I)(ω) =

b\
a

f(φt(ω)) dt.

The continuity in L1(R) of the translations yields that F (I)(ω) is a con-
tinuous and hence bounded function on Ω = [0, 1]. Thus it follows that
F (I) ∈ H+Φ , and hence the function I 7→ F (I) defines a one-dimensional
positive bounded additive process in HΦ with respect to the semigroup
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{T (t) : t ≥ 0} such that

‖F (I)‖Φ ≤
b\
a

‖T (t)f‖Φ dt = (b− a)‖f‖Φ

for all I = (a, b] ∈ I1. Thus by the Theorem the limit

f0(ω) := q- lim
α→0
α−1F ((0, α])(ω)

exists for almost all ω ∈ Ω. But we must have f0(ω) = f(ω) for almost all
ω ∈ Ω by Wiener’s classical local ergodic theorem (see e.g. Theorem 1.2.4
of [9]), whence f0 6∈ HΦ. This completes our argument.
What makes the example work is that LΦ is not separable when it is

different fromHΦ (cf. p. 85 in [8]), and we do not obtain the strong continuity
of {T (t)} in LΦ. Indeed, if we had the continuity, then in the example we
would have

1

α
F ((0, α]) =

1

α

α\
0

T (t)f dt→ f

in the norm ‖ · ‖Φ, and then f ∈ HΦ since HΦ is a closed subspace. This is
a contradiction.
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