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Abstract. Let G be a locally compact abelian group and M be a semifinite von
Neumann algebra with a faithful semifinite normal trace τ . We study Hilbert transforms

associated with G-flows on M and closed semigroups Σ of Ĝ satisfying the condition

Σ ∪ (−Σ) = Ĝ. We prove that Hilbert transforms on such closed semigroups satisfy a
weak-type estimate and can be extended as linear maps from L1(M, τ) into L1,∞(M, τ).
As an application, we obtain a Matsaev-type result for p = 1: if x is a quasi-nilpotent
compact operator on a Hilbert space and Im(x) belongs to the trace class then the singular
values {µn(x)}

∞

n=1 of x are O(1/n).

1. Introduction. The classical Hardy spaces Hp(T), 1 ≤ p ≤ ∞, and
boundedness of Riesz projections have played significant roles in the devel-
opments of modern analysis. This theory, which was originally developed
for spaces of functions on T, has found many generalizations not only for
various function spaces but also from a more abstract operator theory point
of view. The basic theme is to decompose a given space into a direct sum of
“analytic” and “co-analytic” subspaces, analogous to the decomposition of
Lp(T), 1 < p <∞, as a direct sum of Hp(T) and its complement.
Let X be a Banach space, G be a locally compact abelian group and

{Ug}g∈G be a bounded continuous group of linear operators on X. In [1],
Arveson introduced a notion of spectrum of any vector in X associated with
the group {Ug}g∈G (see definition below), which in turn allows one to con-
sider spectral subspaces of X associated with subsets of the dual group Ĝ
of G. Such spectral subspaces generalize the construction of classical Hardy
spaces as subspaces of Lp(T). Motivated by Arveson’s spectral analysis of
groups of automorphisms on von Neumann algebras, Zsidó [27] studied the
existence of projections onto spectral subspaces which generalize the clas-
sical Riesz projections. Generalizations of analyticity and Riesz projections
have been explored by several authors. In [27], Zsidó established the ex-
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istence of generalized Riesz projections associated with some closed semi-

groups of Ĝ on non-commutative Lp-spaces associated with general semi-
finite von Neumann algebras for 1 < p <∞. The case of symmetric spaces
of measurable operators was completely settled by Dodds et al. [8]. Berk-
son et al. [4] established an analytic-type decomposition related to compact
abelian groups for UMD-spaces. The general case of locally compact groups
was considered by Asmar et al. [2].

The purpose of the present paper is to examine possible extensions of
these results to preduals of von Neumann algebras. Recall that the triangular
projection is not bounded in the space of trace class operators [17]; the
triangular projection is in fact a non-commutative Riesz projection, so as in
the commutative case, Zsidó’s result is not valid for p = 1. Our main result
is a non-commutative weak-type estimate that generalizes the celebrated
result of Kolmogorov. We remark that a non-commutative generalization of
Kolmogorov’s theorem was obtained in [22] in the setting of finite maximal
subdiagonal algebras. A similar result was also considered by Dodds et al. [9]
for triangular truncations relative to a finite family of mutually orthogonal
projections.

As an application, Zsidó showed that the theory of generalized Riesz
projections onto spectral subspaces of non-commutative Lp-spaces can be
used to prove the classical result of Matsaev about compact operators on
Hilbert spaces. Combining Zsidó’s approach with our main result, we deduce
that if x is a quasi-nilpotent operator on a Hilbert space and Im(x) belongs
to the trace class then the singular values of x are O(1/n). This improves
an earlier result that states that such an x belongs to the Matsaev ideal CΩ.
The paper is organized as follows. We begin by gathering some necessary

definitions and present some basic facts concerning spectral subspaces; then
we present the main result. The last section is dedicated to the extension of
Matsaev’s theorem to the case p = 1.

2. Non-commutative spaces. We begin by recalling the basic con-
structions of non-commutative spaces. We denote by M a semifinite von
Neumann algebra on the Hilbert space H, with a fixed faithful and normal
semifinite trace τ . The identity inM is denoted by 1, and we denote byMp
the set of all projections in M. A linear operator x : dom(x) → H, with
domain dom(x) ⊆ H, is called affiliated with M if ux = xu for all unitary u
in the commutantM′ ofM. A closed and densely defined operator x affil-
iated withM is called τ -measurable if for every ε > 0 there exists p ∈ Mp
such that p(H) ⊆ dom(x) and τ(1 − p) < ε. With the sum and product

defined as the respective closures of the algebraic sum and product, M̃ is a
∗-algebra. For standard facts concerning von Neumann algebras, we refer to
[15] and [24].
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We recall the notion of generalized singular value function [11]. Given a
self-adjoint operator x in H, we denote by ex(·) the spectral measure of x.
Now assume that x ∈ M̃. Then e|x|(B) ∈ M for all Borel sets B ⊆ R, and

there exists s > 0 such that τ(e|x|(s,∞)) < ∞. For x ∈ M̃ and t ≥ 0 we
define

µt(x) = inf{s ≥ 0 : τ(e|x|(s,∞)) ≤ t}.
The function µ(x) : [0,∞) → [0,∞] is called the generalized singular value
function (or decreasing rearrangement) of x; note that µt(x)<∞ for all t>0.
Suppose that a > 0. If we considerM = L∞([0, a),m), where m denotes the
Lebesgue measure on the interval [0, a), as an abelian von Neumann algebra
acting via multiplication on the Hilbert space H = L2([0, a),m), with the

trace given by integration with respect tom, it is easy to see that M̃ consists
of all measurable functions on [0, a) which are bounded except on a set of fi-

nite measure. Further, if f ∈ M̃, then the generalized singular value function
µ(f) is precisely the classical non-increasing rearrangement of the function
|f |. On the other hand, ifM is the space of all bounded linear operators in
some Hilbert space equipped with the canonical trace tr, then M̃ =M and,
if x ∈M is compact, then the generalized singular value function µ(x) may
be identified in a natural manner with the sequence {µn(x)}∞n=0 of singular
values of |x| =

√
x∗x, repeated according to multiplicity and arranged in

non-increasing order.

By L0([0, a),m) we denote the space of all C-valued Lebesgue measurable
functions on the interval [0, a) (with identification m-a.e.). A Banach space
(E, ‖ · ‖E), where E ⊆ L0([0, a),m), is called a rearrangement-invariant
Banach function space on the interval [0, a) if it follows from f ∈ E, g ∈
L0([0, a),m) and µ(g) ≤ µ(f) that g ∈ E and ‖g‖E ≤ ‖f‖E. If (E, ‖ · ‖E)
is a rearrangement-invariant Banach function space on [0, a), then E is said
to be symmetric if f, g ∈ E and g ≺≺ f imply that ‖g‖E ≤ ‖f‖E . Here
g ≺≺ f denotes submajorization in the sense of Hardy–Littlewood–Pólya:

t\
0

µs(g) ds ≤
t\
0

µs(f) ds for all t > 0.

If (E, ‖ · ‖E) is a rearrangement-invariant, symmetric Banach function space
on [0, a), then E will be called fully symmetric if f ∈ E, g ∈ L0([0, a),m)
and g ≺≺ f imply g ∈ E and ‖g‖E ≤ ‖f‖E . The general theory of
rearrangement-invariant spaces may be found in [18] and [23].

Given a semifinite von Neumann algebra (M, τ) and a fully symmet-
ric Banach function space (E, ‖ · ‖E) on ([0, τ(1)),m), we define the non-
commutative space E(M, τ) by setting

E(M, τ) := {x ∈ M̃ : µ(x) ∈ E}
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with

‖x‖E(M,τ) := ‖µ(x)‖E for x ∈ E(M, τ).

Equipped with ‖ · ‖E(M,τ), the space E(M, τ) is a Banach space. Moreover,
the inclusions

L1(M, τ) ∩M ⊆ E(M, τ) ⊆ L1(M, τ) +M
hold with continuous embeddings (here the norms in L1(M, τ) ∩ M and
L1(M, τ) +M are the usual norms of intersection and sum of Banach
spaces). Note that if E is order continuous then L1(M, τ) ∩ M is dense
in E(M, τ). We also remark that if 1 ≤ p < ∞ and E = Lp([0, τ(1))) then
E(M, τ) coincides with the definition of Lp(M, τ) as in [21] and [25]. In
particular, ifM = B(H) with the standard trace then these Lp-spaces are
precisely the Schatten classes Cp. For additional information on these spaces,
we refer to [5], [6] and [7].
We define the non-commutative weak-L1, L1,∞(M, τ), to be the linear

subspace of all x ∈ M̃ for which the quasi-norm
‖x‖1,∞ := sup

t>0
tµt(x) = sup

λ>0
λτ(e|x|(λ,∞))

is finite. Equipped with the quasi-norm ‖ · ‖1,∞, it is a quasi-Banach space
and ‖x‖1,∞ ≤ ‖x‖1 for all x ∈ L1(M, τ).

3. Spectrum and spectral subspaces. Let G be a locally compact
abelian group with a fixed Haar measure dg with dual group Ĝ. Let (X,F)
be a dual pair of (complex) Banach spaces in the sense of Zsidó ([27]), that is,
(X,F) is equipped with a bilinear functional (x, φ) 7→ 〈x, φ〉, (x, φ) ∈ X×F ,
such that

(i) ‖x‖ = supφ∈F , ‖φ‖≤1 |〈x, φ〉| for all x ∈ X;
(ii) ‖φ‖ = supx∈X, ‖x‖≤1 |〈x, φ〉| for all φ ∈ F ;
(iii) the convex hull of every relativelyF -compact subset ofX is relatively

F -compact;
(iv) the convex hull of every relativelyX-compact subset of F is relatively

X-compact.

Typical examples of dual pairs are (X,X∗) and (X∗, X) for an arbi-
trary complex Banach space X. Another example relevant for this paper
is (E(M, τ), E×(M, τ)) where E(M, τ) is a non-commutative space and
E×(M, τ) is its Köthe dual (in the sense of [7]).
We denote by BF (X) the Banach space of all F -continuous linear op-

erators on X. We recall that for any locally compact abelian group G, a
subgroup {Ug}g∈G of BF (X) is called an F-continuous representation of G
if U0 = Id, Ug1+g2 = Ug1Ug2 for all g1, g2 ∈ G and g 7→ 〈Ugx, φ〉 is continuous
for every x ∈ X and φ ∈ F .
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The representation {Ug}g∈G is said to be bounded if sup{‖Ug‖ : g ∈G}
< ∞. If G is compact, then any F -continuous representation is bounded.
If {Ug}g∈G is an F -continuous bounded representation of G, x ∈ X and
f ∈ L1(G), then we define the Arveson convolution f ∗U x as follows:

f ∗U x = F -
\
G

f(g)Ug(x) dg.

The Arveson spectrum for x ∈ X is defined by
SpU (x) =

⋂
{Z(f̂ ) : f ∈ L1(G) and f ∗U x = 0};

here f̂ denotes the Fourier transform of f and Z(f̂ ) = {γ ∈ Ĝ : f̂(γ) = 0}.
If M(G) denotes the space of all complex regular Borel measures on G with
finite total variation then for every µ ∈M(G), the linear functional

Uµ̂ : x→ F -
\
G

Ug(x) dµ(g)

is F -continuous (see [1, Proposition 1.4]).
For any closed subset F ⊆ Ĝ, we define the corresponding spectral sub-

space XUF by setting

XUF := {x ∈ X : SpU (x) ⊆ F}.
The linear subspace XUF is closed in X and we remark that if F1 and F2 are

closed subsets of Ĝ and if F1 ∩ F2 = ∅ then XUF1 ∩XUF2 = {0}. Moreover,

XUF = F -closure
(⋃
{XUK : K ⊆ F, K compact}

)
.

From the latter property, one can generalize the definition of spectral sub-
spaces to any subset S of Ĝ by setting

XUS := F -closure
(⋃
{XUK : K ⊆ S, K compact}

)
.

A useful restatement of the definition of spectral subspaces for the case of
closed subsets F of Ĝ was noted in [27]:

XUF = {x ∈ X : if µ ∈M(G), F ∩ supp(µ̂) = ∅ then Uµ̂(x) = 0}

= {x ∈ X : if f ∈ L1(G), supp(f̂) is compact,
F ∩ supp(f̂ ) = ∅ then U

f̂
(x) = 0}.

Definition 3.1. A representation {Ug}g∈G of G in BF (X) is said to
have the weak projection property on S ⊆ Ĝ if for any closed subset F ⊆ Ĝ,

F -closure
( ⋃

K⊆S∩F
K compact

XUK +
⋃

K⊆(Ĝ\S)∩F
K compact

XUK

)
= XUF .
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Definition 3.2. A representation {Ug}g∈G of G in BF (X) is said to
have the projection property on S ⊂ Ĝ if it has the weak projection property
on S and there exists an F -continuous projection PUS with range the spectral
subspace XUS and kernel X

U
Ĝ\S
.

In general, this projection PUS need not exist. In [2], Asmar et al. con-
sidered the case of a locally compact abelian group with ordered dual group
Ĝ and spectral decompositions of UMD-spaces. Their result can be summa-
rized as follows.

Theorem 3.3 ([2], Theorem 6.3). Assume that X is a UMD-space and

Ĝ is ordered. If P = {γ ∈ Ĝ : γ ≥ 0} and F is the interior of P \ {0} then
any strongly continuous representation {Ug}g∈G of G in X has the projection
property on F with ‖PUF ‖ ≤ c3aX , where aX is a constant depending only
on X (but not on the particular group G) and c = sup{‖Ug‖ : g ∈ G}.
For extensive discussions on weak projection properties and projection

properties, we refer to [27, Sect. 3].
We will now specialize to non-commutative spaces. Let (M, τ) be a

semifinite von Neumann algebra. A G-flow onM is an ultraweakly continu-
ous representation {Ug}g∈G of G onM with a ∗-automorphism ofM which
preserves the trace τ . Since Ug’s are trace-preserving, it is clear that any G-
flow can be extended to a group of trace-preserving isometries on L1(M, τ).
By interpolation, any G-flow on M extends to a group of rearrangement-
preserving maps on L1(M, τ) +M. It follows that if E is a symmetric
Banach function space on R then any G-flow on M extends to a group
UE = {UEg }g∈G of isometries on E(M, τ).

Note that UL
1

is anM-continuous representation of G in L1(M, τ). This
follows by observing that if x ∈ L1(M, τ) and y ∈M then for every g ∈ G,

τ(UL
1

g (x)y) = τ(xU−g(y)).

Similarly, UL
1∩L∞ is an L1(M, τ) +M-continuous representation of G in

L1(M, τ) ∩M. In general, if E is a separable symmetric Banach function
space on R

+ then L1(M, τ) ∩M is dense in E(M, τ), so the extension UE

of the G-flow U is uniquely determined by its restriction to L1(M, τ) ∩M
and therefore UE is an F -continuous representation of G on E(M, τ) for
F = E(M, τ)∗ = E∗(M, τ).
Unless there is a need for distinction, we will simply denote UE by U .
We remark that if Σ is a closed semigroup of Ĝ then the spectral sub-

spaceMUΣ is a closed subalgebra ofM. More generally, if E, F and V are
symmetric spaces on R

+ with E.F ⊆ V and Σ is a closed semigroup of

Ĝ then E(M, τ)UΣ .F (M, τ)UΣ ⊆ V (M, τ)UΣ. These facts can be deduced for
instance from [27, Theorem 2.1, Corollary 2.3].
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The setting of symmetric spaces of measurable operators was considered
by Dodds et al. [8] who proved the following result:

Theorem 3.4. If E is a separable symmetric Banach function space on
R
+, then the following statements are equivalent :

(i) E has non-trivial Boyd indices;

(ii) there exists a constant c(E) which depends only on E such that for
every semifinite von Neumann algebra (M, τ), for every G-flow {Ug}g∈G
on (M, τ) and for all closed semigroups Σ ⊆ Ĝ such that Σ ∪ (−Σ) is a
group, {UEg }g∈G has the projection property on Σ with ‖PU

E

Σ ‖ ≤ c(E).

The projections whose existence is guaranteed by Theorems 3.3 and 3.4
are referred to as the generalized Riesz projections determined by the G-flow
U and the closed semigroup Σ.

The particular case E = Lp(R+) with 1 < p < ∞ is due to Zsidó [27].
Since reflexive Lp(M, τ)’s are UMD-spaces, Theorems 3.3 and 3.4 can be
viewed as generalizations of Zsidó’s result.

To illustrate these ideas, let s 7→ Us be the representation of the group
T on the abelian von Neumann algebra L∞(T) given by Usf(θ) = f(θ − s)
for all f ∈ L∞(T). Then T̂ = Z and if we consider the closed subset Z

+

of T̂ then for every 1 ≤ p ≤ ∞, the spectral subspace Lp(T)U
Z+
is the

usual Hardy space Hp(T). For another example, recall that a nest N is
a set of projections of B(H), totally ordered, that is closed in the strong
operator topology and contains 0 and 1. The associated nest algebra is
algN = {a ∈ B(H) : (1 − p)ap = 0 for all p ∈ N}. Loebl and Muhly [19]
proved that for every nest subalgebra ofM, there exists an associated inner
action α = {αt}t∈R of the group R on M such that M ∩ algN = {x ∈
M : Spα(x) ⊆ [0,∞)} = Mα[0,∞). The subalgebra M∩ algN is called the
analytic subalgebra H∞(α) associated with α. Another (equivalent) way to
define H∞(α) is as the set of all x ∈ M for which t 7→ 〈ϕ, αt(x)〉 ∈ H∞(R)
for every ϕ ∈M∗.
The main goal of this paper is to study the case of L1(M, τ). First, we

will gather some basic results concerning properties of G-flows related to
closed groups of Ĝ. These results will be crucial for the definition of Hilbert
transform and will be used repeatedly in what follows.

Proposition 3.5. Let {Ug}g∈G be a G-flow on M and Λ be a closed
subgroup of Ĝ. If {Ug}g∈G has the projection property on Λ then {UL

1

g }g∈G
has the projection property. Moreover , PUΛ (x) = PU

L
1

Λ (x) ∈ L1(M, τ) ∩M
for every x ∈ L1(M, τ) ∩M.



16 N. RANDRIANANTOANINA

Proof. Assume that {Ug}g∈G has the projection property for Λ. One can
deduce from [27, Theorem 3.16] that {UL1g }g∈G has the projection property
on Λ with PUΛ = (P

UL
1

Λ )∗.

Fix x ∈ L1(M, τ) ∩ M and let {µi}i∈I be a net in M(G) such that
supi ‖µi‖ < ∞, µ̂i = 1 on Λ for all i ∈ I and µi ∗ f → 0 in L1(G) for all
f ∈ L1(G) with supp(f̂ ) compact and Λ ∩ supp(f̂) = ∅. From [27, Corol-
lary 3.17],

lim
i
‖UL1µ̂i (x)− P

UL
1

Λ (x)‖p = 0.

Recall that UL
1

µ̂i
(x) =

T
G Ug(x) dµi(g) ∈ L1(M, τ) where the integral is

the Bochner integral. Since x belongs to L1(M, τ) ∩M so does Ug(x) and
considering the representation {UL1∩L∞g }g∈G with the dual pair (L1(M, τ)∩
M, L1(M, τ) +M), we have

〈UL1∩L∞µ̂i
(x), z〉 =

\
G

〈Ug(x), z〉 dµi(g)

for all z ∈ L1(M, τ) +M. Hence

‖UL1∩L∞µ̂i
(x)‖L1(M,τ)∩M ≤

\
G

‖Ug(x)‖L1(M,τ)∩M d|µi|(g)

≤ sup
g∈G
‖Ug‖ · ‖x‖L1(M,τ)∩M sup

i
‖µi‖.

This shows that {UL1∩L∞µ̂i
(x)}i∈I is a bounded net in L1(M, τ) ∩M. Let

θ : L1(M, τ) ∩M→ L1(M, τ) be the natural inclusion. It is clear that θ is

σ(L1(M, τ)∩M, L1(M, τ) +M)-to-weak continuous and therefore UL1µ̂i ◦ θ
are σ(L1(M, τ) ∩M, L1(M, τ) +M)-continuous maps and for every z ∈
L1(M, τ) ∩M and i ∈ I,

〈UL1µ̂i (θ(x)), z〉 = 〈U
L1∩L∞

µ̂i
(x), z〉.

This shows that UL
1

µ̂i
◦ θ(x) = UL1∩L∞µ̂i

(x) for every i ∈ I.
Recall that {UL1µ̂i (x)}i∈I is a bounded net in L

1(M, τ)∩M that converges
to PU

L
1

Λ (x) in L1(M, τ) and by semi-embedding, PU
L
1

Λ (x) ∈ L1(M, τ)∩M.
A similar argument also proves that if γ : L1(M, τ) ∩ M → M is

the natural inclusion then Uµ̂i ◦ γ(x) = UL
1∩L∞

µ̂i
(x) for every i ∈ I. Since

PUΛ (x) = weak
∗- limi Uµ̂i(x), we conclude that P

U
Λ (x) = P

UL
1

Λ (x) as elements
of L1(M, τ) +M.
It may be of interest to observe that the argument used in the proof

above yields the following: if E and F are separable symmetric Banach
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function spaces on R
+ and a G-flow {Ug}g∈G on a semifinite von Neumann

algebra (M, τ) has the projection property on a closed subgroup Λ onto both

E(M, τ)U
E

Λ and F (M, τ)U
F

Λ , then P
UE

Λ (x) = P
UF

Λ (x) for all x ∈ E(M, τ) ∩
F (M, τ).

Corollary 3.6. Let {Ug}g∈G be a G-flow onM and Λ be a closed sub-
group of Ĝ. If {Ug}g∈G has the projection property on Λ then {UL

1∩L∞
g }g∈G

has the projection property on Λ.

Proof. From Proposition 3.5 above, the operator Q : L1(M, τ) ∩M →
L1(M, τ) ∩ M defined by Q(x) = PUΛ (x) is well defined. It is clear that
Q is a projection and its range is equal to (L1(M, τ) ∩M)UΛ . Similarly, if
R : L1(M, τ)+M→ L1(M, τ)+M is defined by R(x) = PUL

1

Λ (x1)+P
U
Λ (x2)

for x1 ∈ L1(M, τ), x2 ∈ M and x = x1 + x2, then R is a well defined
projection with range being a subspace of (L1(M, τ) +M)UΛ and satisfies
〈R(x), y〉 = 〈x,Q(y)〉 for all x ∈ L1(M, τ) + M and y ∈ L1(M, τ) ∩M.
Note also that {UL1+L∞g }g∈G has the weak projection property.
We claim that Ker(R) = (L1(M, τ) +M)U

Ĝ\Λ
. For this, let x = x1 + x2

∈ Ker(R). Then PU
L
1

Λ (x1) = −PUΛ (x2), so x = (x1 − PU
L
1

Λ (x1)) +

(x2−PUΛ (x2)). But x1−PU
L
1

Λ (x1) and x2−PUΛ (x2) belong to L1(M, τ)U
Ĝ\Λ

and MU
Ĝ\Λ
respectively so x ∈ (L1(M, τ) +M)U

Ĝ\Λ
. Conversely, if x ∈

(L1(M, τ) +M)U
Ĝ\Λ
then 〈x, y〉 = 0 for every y ∈ (L1(M, τ) ∩M)UΛ ; but

since Ran(Q) = (L1(M, τ) ∩M)UΛ , we have 〈R(x), y〉 = 〈x,Q(y)〉 = 0 for
every y ∈ L1(M, τ) ∩M, hence R(x) = 0. The claim is verified.
It is now easy to deduce that Ran(R) = (L1(M, τ)+M)UΛ , which shows

that {UL1+L∞g }g∈G (and likewise {UL
1∩L∞
g }g∈G) has the projection property

on Λ.

For the sake of convenience, we list the following basic properties:

Lemma 3.7. Let {Ug}g∈G be a G-flow on a semifinite von Neumann al-
gebra (M, τ) and Λ be a closed subgroup of Ĝ. If {Ug}g∈G has the projection
property on Λ then:

(i) PUΛ (1) = 1;

(ii) PUΛ (x
∗) = (PUΛ (x))

∗ for all x ∈M;
(iii) PUΛ (x) ≥ 0 whenever 0 ≤ x ∈M;
(iv) τ(PU

L
1

Λ (x)) = τ(x) for all x ∈ L1(M, τ).

For the case of closed semigroups, the next result is an immediate con-
sequence of [27, Theorem 5.1].
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Proposition 3.8. Let {Ug}g∈G be a G-flow on M and Σ be a closed
semigroup of Ĝ. If Λ = Σ ∩ (−Σ) is a subgroup and {Ug}g∈G has the
projection property on Λ then:

(i) PUΛ (yxz) = yP
U
Λ (x)z for all x ∈M and y, z ∈MUΛ ;

(ii) PUΛ (xy) = P
U
Λ (x)P

U
Λ (y) for all x, y ∈MUΣ.

Proposition 3.9. Let {Ug}g∈G be a G-flow on M and Σ be a closed
semigroup of Ĝ. Let Λ = Σ ∩ (−Σ) and assume that Σ ∪ (−Σ) = Ĝ. If
{Ug}g∈G has the projection property on Λ then
(L1(M, τ) ∩M)UΣ\(−Σ) + (L1(M, τ) ∩M)U(−Σ)\Σ + (L1(M, τ) ∩M)UΛ

is σ(L1(M, τ) ∩M, L1(M, τ) +M)-dense in L1(M, τ) ∩M.
Proof. Note that the closed semigroup Σ is polyhedral (in the sense of

[27], p. 232). Since {UL1∩L∞g }g∈G has the projection property on Λ and
Ĝ = Σ ∪ (−Σ), we have Λ ⊂ Σ ⊂ Ĝ and the boundary of Σ is in Λ so

{UL1∩L∞g }g∈G has the weak projection property on Λ. From [27, Lemma 3.8],
(L1(M, τ)∩M)UΣ+(L1(M, τ)∩M)U

Ĝ\Σ
is σ(L1(M, τ)∩M, L1(M, τ)+M)-

dense in L1(M, τ)∩M. From (Ĝ\Σ)∩(Ĝ\Λ) = (−Σ)\Σ and the assumption
that {UL1∩L∞g }g∈G has the projection property on Λ, the statement of the
proposition follows.

4. Hilbert transforms. Throughout this section, {Ug}g∈G is a fixed
G-flow on a semifinite von Neumann algebra (M, τ), Σ is a closed semi-

group of Ĝ such that Λ = Σ ∩ (−Σ) is a group such that {Ug}g∈G has the
projection property on Λ and Σ ∪ (−Σ) = Ĝ. The following linear subspace
of L1(M, τ) ∩M serves as a starting point of our investigation:

A := (L1(M, τ) ∩M)UΛ + (L1(M, τ) ∩M)UΣ\(−Σ)(4.1)

+ (L1(M, τ) ∩M)U(−Σ)\Σ .
From Proposition 3.9, A is σ(L1(M, τ) ∩M, L1(M, τ) +M)-dense in

L1(M, τ)∩M. Our goal is to define a notion of conjugation on A and then
extend it continuously to a more general symmetric space of measurable
operators. As in [22], we consider the following definition:

Definition 4.1. Let a1 ∈ (L1(M, τ) ∩ M)UΣ\(−Σ), a2 ∈ (L1(M, τ)

∩ M)U(−Σ)\Σ and d ∈ (L1(M, τ) ∩ M)UΛ so that x = d + a1 + a2 ∈ A.
The conjugate of x associated with the semigroup Σ is the operator x̃ =
ia2 − ia1 ∈ L1(M, τ) ∩M.
Note that for every x ∈ A as in the definition above, x + ix̃ = 2a1 + d

and therefore x+ ix̃ ∈ (L1(M, τ) ∩M)UΣ .
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We let the Hilbert transform (conjugation) associated with the closed

semigroup Σ of Ĝ be the map HUΣ : A → L1(M, τ) ∩M defined by setting
HUΣ(x) = x̃ for all x ∈ A.
From Theorem 3.4, we can deduce the following result:

Theorem 4.2. Let E be a separable symmetric Banach function space
on R

+. Assume that E has non-trivial Boyd indices. Then there exists a
unique continuous linear extension of HUΣ from E(M, τ) into E(M, τ). In
particular , if 1 < p <∞, there exists a unique continuous linear extension
of HUΣ from Lp(M, τ) into Lp(M, τ) with the property that x + iHUΣ(x) ∈
Lp(M, τ)UΣ for all x ∈ Lp(M, τ). Moreover , there exists an absolute constant
C (independent of p) such that

‖HUΣ(x)‖p ≤ Cpq‖x‖p for all x ∈ Lp(M, τ) and 1/p+ 1/q = 1.

We remark that if E is a separable symmetric Banach function space on
R
+ that has non-trivial Boyd indices then HUΣ : E(M, τ) → E(M, τ) can
be defined as

HUΣ := iPU
E

(−Σ)\Σ − iPU
E

Σ\(−Σ),(4.2)

where the existence of the projections PU
E

(−Σ)\Σ and P
UE

Σ\(−Σ) is guaranteed

by Theorem 3.4 above. It is easy to see that PU
E

Λ ◦ HUΣ = 0.
We now turn to the discussion of the main result of the paper (Theo-

rem 4.3 below). It is the analogue of Theorem 4.2 for the case p = 1 and
can be viewed as a non-commutative analogue of Kolmogorov’s weak type
estimate for harmonic conjugate functions.

Theorem 4.3. Let 0 ≤ x ∈ L1(M, τ) ∩M and f = x + iHUΣ(x). Then
for every λ > 0,

τ(e|f |(λ,∞)) ≤ 4‖x‖1
λ

.

Our approach is based on the main idea used in [22, Theorem 2]. For
convenience, we collect some properties of HUΣ .
Lemma 4.4. For x ∈ L1(M, τ) ∩M and f = x + iHUΣ(x), the formal

series

ϕ(t) =

∞∑

k=0

tkεkfk

k!

is absolutely convergent in (L1(M, τ) +M)UΣ for t < 1/(eM‖x‖L1(M,τ)∩M)
where M = 2C +2 and C is the absolute constant from Theorem 4.2 above.

Proof. Note that f ∈ Lp(M, τ) for every 1 < p < ∞ so the series∑∞
k=2 ε

kfk/k! is absolutely convergent in L1(M, τ) (and therefore in
L1(M, τ) +M) as in [14, Theorem 3a]. Thus 1 + tεf +∑∞k=2 εkfk/k! is
absolutely convergent in L1(M, τ) +M.
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Lemma 4.5. If 0 ≤ x ∈ L1(M, τ) ∩ M and 0 < ε < 1, let f = x +
iHUΣ(x). Then:
(i) 1+ εf is invertible with ‖(1+ εf)−1‖ ≤ 1;
(ii) fε = f(1+ εf)

−1 ∈MUΣ ;
(iii) PUΛ (fε) = P

U
Λ (x)P

U
Λ ((1+ εf)

−1).

Proof. Since f is densely defined and x ≥ 0, we have |〈(1+ εf)h, h〉| ≥
‖h‖2 for all h ∈ D(f). So 1+εf has bounded inverse with ‖(1+εf)−1‖ ≤ 1.
For (ii), we will adjust the proof of [22, Lemma 2] to our setting. Note

first that fε is bounded. In fact, εfε = 1−(1+εf)−1. To prove that fε ∈MUΣ ,
it suffices to show that (1+ εf)−1 ∈MUΣ . Indeed, since x ∈ L1(M, τ)∩M,
we have f ∈ Lp(M, τ)UΣ for every 1 < p < ∞, so if (1 + εf)−1 ∈ MUΣ then
fε ∈ Lp(M, τ)UΣ and since it is bounded it belongs toMUΣ .
Set A = −εf . There exists a (unique) semigroup (Tt)t>0 of contractions

such that A is the infinitesimal generator of (Tt)t>0 (see for instance [26,
pp. 246–249]). It is well known that

(1−A)−1h =
∞\
0

e−tTth dt for all h ∈ H

and

Tth = lim
n→∞
exp(tA(1− n−1A)−1)h for all h ∈ H.

We claim that Tt ∈MUΣ for every t > 0.
Since (Tt)t>0 is a semigroup and MUΣ is a subalgebra, it is enough to

verify this claim for small values of t. Assume 2t ≤ 1/(eM‖x‖L1(M,τ)∩M).
Let ϕ(·) be the formal series defined in Lemma 4.4. We will show that
Tt = ϕ(−t). Using the series expansion of the exponential and Lemma 4.4,
we get

‖exp(tA(1− n−1A)−1)− ϕ(−t)‖L1(M,τ)+M

≤
∑

k≥0

tk

k!
‖(A(1− n−1A)−1)k −Ak‖L1(M,τ)+M

≤
∑

k≥0

∥∥∥∥
(2t)k

k!
εkfk
∥∥∥∥
L1(M,τ)+M

<∞.

Fix k ≥ 0 and set Jn = (1 − n−1A)−1 for every n ≥ 1. Since ‖Jn‖M ≤ 1
and 1− Jn = εn−1f(1+ εn−1f)−1 for all n ≥ 1,

‖(AJn)k −Ak‖L1(M,τ)+M = ‖Ak(Jn)k −Ak‖L1(M,τ)+M

=
∥∥∥Ak(Jn − 1)

( k−1∑

s=0

(Jn)
s
)∥∥∥
L1(M,τ)+M
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≤ k‖Ak(Jn − 1)‖L1(M,τ)+M
≤ kεn−1‖Akf‖L1(M,τ)+M
= kεk+1n−1‖fk+1‖L1(M,τ)+M.

This shows that limn→∞(t
k/k!)‖(A(1 − n−1A)−1)k − Ak‖L1(M,τ)+M) = 0,

so by the estimate on the series above,

lim
n→∞
‖exp(tA(1− n−1A)−1)− ϕ(−t)‖L1(M,τ)+M = 0,

which in turn shows that Tt = ϕ(−t) ∈ (L1(M, τ) +M)UΣ and since Tt
is bounded, the claim follows. We conclude the proof of (ii) by noticing
that MUΣ is weak∗-closed in M and (1 − A)−1 is the weak∗-integral of an
MUΣ-valued map so (1−A)−1 ∈MUΣ .
For (iii), note that A is dense in L2(M, τ) so there exists a sequence

{an}∞n=1 in A such that limn→∞ ‖an − x‖2 = 0. Since HUΣ acts continu-
ously on L2(M, τ), we have limn→∞ ‖HUΣ(an) − HUΣ(x)‖2 = 0. Similarly,
limn→∞ ‖(an+ iHUΣ(an))(1+εf)−1−fε‖2 = 0. Since both an+ iHUΣ(an) and
(1+εf)−1 belong toMUΣ , Proposition 3.8 (ii) and the fact that PUΛ ◦HUΣ = 0
imply that PUΛ ((an + iHUΣ(an))(1 + εf)−1) = PUΛ (an)P

U
Λ ((1 + εf)

−1). It is
now clear that (iii) follows by taking the limit as n goes to ∞.
Proof of Theorem 4.3. Fix 0 < ε < 1 and let fε ∈MUΣ as in Lemma 4.5.

For every λ > 0, consider the following transformation on {w : Re(w) ≥ 0}:

Aλ(z) = 1 +
z − λ
z + λ

.

Since Aλ is analytic, Proposition 3.8(ii) implies that

PUΛ (Aλ(fε)) = Aλ(P
U
Λ (fε)).

As PUΛ (fε) = P
U
Λ (x)P

U
Λ ((1+ εf)

−1), we have

PUΛ (Aλ(fε)) = Aλ(P
U
Λ (x)P

U
Λ ((1+ εf)

−1)).

If y = PUΛ (x)P
U
Λ ((1+ εf)

−1 then

PUΛ (Aλ(fε)) = 1+ (y − λ1)(y + λ1)−1 = 2y(y + λ1)−1.
Similarly, PUΛ ((Aλ(fε))

∗) = 2(y∗ + λ1)−1y∗ and hence

PUΛ (Re(Aλ(fε))) = y(y + λ1)
−1 + (y∗ + λ1)−1y∗.

Taking the traces on both sides, we get

τ(PUΛ (Re(Aλ(fε)))) = 2Re(τ(y(y + λ1)
−1)) ≤ 2τ(|y|) · ‖(y + λ1)−1‖M.

As Re(y) = Re(PUΛ (fε)) = P
U
Λ (Re(fε)) ≥ 0, we have ‖(y + λ1)−1‖M ≤ 1/λ

and since τ(|y|) ≤ τ(PUΛ (x)) = τ(x) (as 0 ≤ x ∈ L1(M, τ)∩M), we conclude
that

τ(PUΛ (Re(Aλ(fε)))) ≤ 2‖x‖1/λ.(4.3)
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Now we shall estimate τ(PUΛ (Re(Aλ(fε)))) from below. Note that

(f∗ε + λ1)
−1[2|fε|2 + 2λRe(fε)](fε + λ1)−1 ≥ 2(f∗ε + λ1)−1|fε|2(fε + λ1)−1

(as Re(fε) ≥ 0). Therefore
PUΛ (Re(Aλ(fε))) ≥ PUΛ (2(f∗ε + λ1)−1|fε|2(fε + λ1)−1).

We remark that since the Hilbert transform is bounded in L2(M, τ), we
have f ∈ L2(M, τ) and therefore |fε|2 and 2(f∗ε + λ1)−1|fε|2(fε + λ1)−1
belong to L1(M, τ). By Lemma 3.7(iv),

τ(PUΛ (2(f
∗
ε + λ1)

−1|fε|2(fε + λ1)−1))
= τ(2(f∗ε + λ1)

−1|fε|2(fε + λ1)−1)
= τ(2|fε|2(fε + λ1)−1(f∗ε + λ1)−1)
= τ(2|fε|2(|fε|2 + 2λRe(fε) + λ21)−1)

as (fε + λ1)
−1(f∗ε + λ1)

−1 = (|fε|2 + 2λRe(fε) + λ21)−1.
Set Q = e|fε|(λ,∞). The projection Q commutes with |fε| and we have

τ(PUΛ (Re(Aλ(fε)))) ≥ τ(2Q|fε|2(|fε|2 + 2λRe(fε) + λ21)−1).(4.4)

Define

A = |fε|2 + 2λRe (fε) + λ21, B = |fε|2 + 2λ|fε|+ λ21.
For every positive operator C that commutes with B, we get τ(CA−1) ≥
τ(CB−1) (see [22], Lemmas 5 and 6). In particular, for C = 2Q|fε|2,

τ(PUΛ (Re(Aλ(fε)))) ≥ τ(2Q|fε|2(|fε|2 + 2λ|fε|+ λ21)−1).(4.5)

Using the spectral decomposition of |fε|, we can write

2Q|fε|2(|fε|2 + 2λ|fε|+ λ21)−1 =
∞\
λ

2t2

t2 + 2λt+ λ2
de
|fε|
t .

Let

ψλ(t) =
2t2

t2 + 2λt+ λ2
for t ∈ [λ,∞).

As in [22], ψλ is increasing on [λ,∞) so ψλ(t) ≥ ψλ(λ) = 1/2 for t ≥ λ, and
therefore

2Q|fε|2(|fε|2 + 2λ|fε|+ λ21)−1 ≥ 12Q,
so we deduce that

τ(PUΛ (Re(Aλ(fε)))) ≥ 12τ(Q).(4.6)

Combining (4.3) and (4.6), we conclude that

τ(Q) ≤ 4‖x‖1/λ.
Now taking ε → 0, note that f − fε = εf2(1 + εf)−1 so (fε) con-

verges to f in measure. We deduce from [11, Lemma 3.4] that µt(f) ≤
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lim infn→∞ µt(fεn) for each t > 0 and εn → 0. This implies that for every
λ > 0 and every t > 0, χ(λ,∞)(µt(f)) ≤ lim infn→∞ χ(λ,∞)(µt(fεn)). Hence
by Fatou’s lemma,

τ(e|f |(λ,∞)) =
1\
0

χ(λ,∞)(µt(|f |)) dt

≤ lim inf
n→∞

1\
0

χ(λ,∞)(µt(|fεn |)) dt

= lim inf
n→∞

τ(e|fεn |(λ,∞)) ≤ 4‖x‖1/λ.

As shown in [22] for the case of finite maximal subdiagonal algebras, an
immediate corollary of the preceding theorem is the following result:

Corollary 4.6. The Hilbert transform extends to be a linear map HUΣ
from L1(M, τ) into L1,∞(M, τ) with the following property : for every x ∈
L1(M, τ), the operator x+ iHUΣ(x) belongs to the closure of L1(M, τ)UΣ in
L1,∞(M, τ).

As in the case of functions, when the von Neumann algebraM is finite,
one can deduce the next corollary.

Corollary 4.7. If τ(1) <∞ and 0 < p < 1, then the Hilbert transform
HUΣ is a bounded linear map from L1(M, τ) into Lp(M, τ).

Let P = {pi}Ni=1 be an arbitrary finite family of mutually orthogonal
projections fromM. The triangular truncation projection on M̃ with respect
to P is defined by

Tx :=
∑

1≤n<m≤N

pmxpn, x ∈ M̃.

Theorem 4.8 ([9], Theorem 1.4). There exists an absolute constant C
such that

‖Tx‖1,∞ ≤ C‖x‖1
for all x ∈ L1(M, τ).

Proof. Without loss of generality, we may assume that
∑N
i=1 pi = 1. For

t ∈ T, consider the unitary operator ut ∈M defined by

ut =

N∑

m=1

eimtpm,

and the ∗-automorphisms
Ut(x) = ut

∗xut, x ∈M.
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Then {Ut}t∈T is a T-flow onM and T̂ = Z. If we consider Σ = Z
+ then it

is easy to verify that

L1(M, τ)UΣ\{0} =
{ ∑

1≤n<m≤N

pmxpn : x ∈ L1(M, τ)
}
,

L1(M, τ)U{0} =
{ N∑

n=1

pnxpn : x ∈ L1(M, τ)
}
.

Let x ∈ L1(M, τ) ∩M. It is clear that
PUΣ\{0}(x) =

1
2(x+ iHUΣ(x)− PU{0}(x))

and therefore the conclusion follows directly from Corollary 4.6.

5. Application: Matsaev’s Theorem for trace class operators. In
this section, we will discuss variants of the well known result of Matsaev [20]:
if 1 < p <∞, there exists a constant K(p) such that if x is a quasi-nilpotent
compact operator in a separable Hilbert space such that Im(x) belongs to
the Schatten ideal Cp then so does Re(x) and

‖Re(x)‖p ≤ K(p)‖Im(x)‖p.
In [27], Zsidó proved that Matsaev’s Theorem follows directly from

boundedness of some generalized Riesz projections. This connection was
also discovered independently by Asmar et al. [2]. Extensions of Matsaev’s
result have been considered by several authors. For instance, generalizations
to non-commutative Lp-spaces were studied in [3], and the case of symmet-
ric spaces of measurable operators was considered in [12] and [8]. Our result
in this section treats the case of the trace class ideal.
Let CΩ be the normed ideal of compact operators x such that

‖x‖Ω = sup
n

{ n∑

j=1

(2j − 1)−1
( n∑

j=1

µj(x)
)}

<∞.

The ideal CΩ is strictly larger than C1 and is contained in the intersection
of all Cp for 1 < p <∞. It is known that if x is quasi-nilpotent and Im(x) ∈
C1 then x ∈ CΩ (see for instance [13], p. 192). The next theorem is an
improvement of this fact.

Theorem 5.1. Let x be a quasi-nilpotent compact operator on a separ-
able Hilbert space such that Im(x) belongs to C1. Then the sequence
{µn(x)}∞n=1 is O(1/n).
The proof is based on the following subdiagonalization of compact oper-

ators:

Theorem 5.2 ([9], Theorem 5.5). Let H be a separable complex Hilbert
space and x ∈ K(H). Then there exists a uniformly continuous one-para-
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meter group {ut}t∈R of unitaries on H such that , denoting by {Ut}t∈R the

uniformly continuous group of ∗-automorphisms of K(H) defined by Ut(y)
= utyu−t, we have:

(i) K(H)U({0}) is the closed linear span of a sequence of mutually orthogo-

nal projections with one-dimensional range, so it is an abelian C∗-subalgebra
of K(H);

(ii) {Ut}t∈R has the projection property on {0};
(iii) x ∈ K(H)U(−∞,0].
Proof of Theorem 5.1. Let x be quasi-nilpotent and compact on the

Hilbert space H and {Ut}t∈R denote the R-flow on B(H) defined by

Ut(y) = utyu−t, y ∈ B(H),
with x ∈ K(H)U(−∞,0] as in Theorem 5.2. Since x is quasi-nilpotent, by

[27, Corollary 5.2], so is PU{0}(x) and therefore P
U
{0}(x) = 0. Consequently,

x ∈ K(H)U(−∞,0). We conclude that Im(x) ∈ K(H)UR\{0}. Since Im(x) ∈ C1,
we get Im(x) ∈ (C1)UR\{0} ⊂ (Cp)UR\{0} for every 1 < p < ∞. As in the
proof of [27, Theorem 5.7], we remark that x = 2iPU(−∞,0](Im(x)) (where the

projection PU(−∞,0] is a bounded map in Cp).
If we consider the closed semigroup Σ = [0,∞) of R then iHUΣ(y) =

−P V(−∞,0)(y) + P V(0,∞)(y) for every y ∈ Cp, which gives

P V(−∞,0](y) =
1
2(y − iHUΣ(y) + PU{0}(y)).

This shows that

x = i(Im(x)− iHUΣ(Im(x)) + PU{0}(Im(x)))
and

Re(x) = HUΣ(Im(x)).
It follows from Corollary 4.6 that there exists an absolute constant K
such that ‖x‖1,∞ ≤ K‖Im(x)‖1 and by the definition of ‖ · ‖1,∞, µn(x) ≤
(K‖Im(x)‖1)/n for all n ≥ 1.
Let x be a compact operator on a separable Hilbert space H. We denote

by λn(x), n ≥ 1, the eigenvalues of x repeated according to algebraic multi-
plicity and arranged in decreasing order of absolute values (this arrangement
is not unique). Note that the s-numbers µn(x) = λn(|x|), n ≥ 1. For any
(two-sided) ideal I contained in K(H), we recall the commutator subspace
Com(I), i.e. the closed linear span of the commutators [x, y] = xy − yx
where x ∈ I and y ∈ B(H). A trace on I is a linear functional τ : I → C

that is unitarily invariant, or equivalently, that vanishes on Com(I) (see [10]
and [16] for background).
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Theorem 5.3. Let x be a quasi-nilpotent compact operator on a sepa-
rable Hilbert space H such that Im(x) ∈ C1. Then

sup
n≥1

∣∣∣
n∑

i=1

λi(Re(x))
∣∣∣ <∞.

Proof. Let x be a quasi-nilpotent operator in K(H) such that Im(x) ∈
C1. By Theorem 5.1, there exists a constant K such that µn(x) ≤ K/n for
n ≥ 1. A fortiori , there exists a constant C such that µn(Re(x)) ≤ C/n for
n ≥ 1. Consider the (two-sided) ideal

I = {a ∈ K(H) : {µn(a)}∞n=1 is O(1/n)}.
Clearly, I is a geometrically stable ideal, i.e. if (sn) is a decreasing real
sequence then diag{sn} ∈ I if and only if diag{(s1 . . . sn)1/n} ∈ I. Sup-
pose that τ is a trace on I. By a result of Dykema and Kalton [10, Corol-
lary 2.4], for any given operator a ∈ I, the value of τ(a) depends only
on the eigenvalues of a and their algebraic multiplicities. Since x is quasi-
nilpotent and x ∈ I, we have τ(x) = 0 and therefore τ(Re(x)) = 0. Hence
Re(x) ∈ Com(I). We apply a result of Kalton [16, Theorem 3.1] to conclude
that the diagonal operator diag

{
1
n(λ1 + . . . + λn)

}
is in I. That is, there

exists a fixed constant C such that∣∣∣∣
λ1 + . . .+ λn

n

∣∣∣∣ ≤
C

n
,

which shows that |∑ni=1 λi| ≤ C for all n ≥ 1.
Acknowledgements. The author is grateful to Nigel Kalton for valu-

able suggestions.
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