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Abstract. We consider the maximal function ‖(Saf)[x]‖
L∞[−1,1] where (S

af)(t)∧(ξ)

= eit|ξ|
a

f̂(ξ) and 0 < a < 1. We prove the global estimate

‖Saf‖L2(R,L∞[−1,1]) ≤ C‖f‖Hs(R), s > a/4,

with C independent of f . This is known to be almost sharp with respect to the Sobolev
regularity s.

1. Introduction. In several papers during the last couple of years in-
terest has been focused on summability processes for oscillatory Fourier in-
tegrals. The kernels of these summability processes have the feature of being
non-summable. An example is given by the integral representing solutions
to the time-dependent Schrödinger equation

1

(2π)n

\
Rn

ei(xξ+t|ξ|
a)f̂(ξ) dξ, a = 2, t→ 0.

Almost everywhere convergence results are established by first deriving a
norm inequality for the associated maximal function. Typically, the maximal
function is controlled by a Hilbert–Sobolev norm ‖f‖Hs(Rn). The optimal

regularity s is equal to 1/4 for all a > 1 when n = 1 (cf. e.g. Carleson [2],
Dahlberg, Kenig [5] and Sjölin [8]). Recent results and references in the case
n > 1, where the problem is open, may be found in Moyua, Vargas, Vega [6].
Although it is enough to derive a local estimate for the maximal func-

tion, global estimates are of independent interest since they relate global
regularity properties of the oscillatory integral to the regularity of the ini-
tial datum. The purpose of the present note is to derive such an estimate in
the case 0 < a < 1 (see Theorem 2.5 with proof in Section 4). This estimate
is almost sharp, as shown by a previous counterexample found in [13].
For the specific problem of global maximal estimates in the case a > 0 we

have the following general theorem (cf. e.g. Cowling [3], Cowling, Mauceri [4],
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Rubio de Francia [7], Sogge, Stein [10], Stein [12, §XI.4.1, p. 511], and [14,
Theorem 14.1, p. 215]), which is known to be sharp with respect to s in the
case a = 1 (cf. e.g. [14, Theorem 14.2, p. 216]):

Theorem. Assume that the functions w1 and w2 belong to L
2(R) and

that the function m satisfies the following assumption: there is a number C
independent of (t, ξ) such that

|m(t, ξ)| ≤ Cw1(t), |[∂tm](t, ξ)| ≤ C(w1(t) + w2(t)|ξ|
a), a > 0.

If s > a/2, then there is a number C independent of f such that
( \

Rn

sup
|t|≤1

∣∣∣
\

Rn

eixξm(t, ξ)f̂(ξ) dξ
∣∣∣
2
dx
)1/2
≤ C‖f‖Hs(Rn).
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2. Notation and statement of the Theorem

2.1. Numbers denoted by C (sometimes with subscripts) may be differ-
ent at each occurrence even within the same chain of inequalities.
Unless otherwise explicitly stated, all functions f and g are supposed to

belong to S(R).

2.2. Oscillatory integrals. For real numbers x, ξ and t and a > 0 we let
Φa(ξ, x, t) = xξ + t|ξ|

a. We define

(Saf)[x](t) =
\
R

eiΦa(ξ,x,t)f̂(ξ) dξ.

Here f̂ is the Fourier transform of f,

f̂(ξ) =
\
R

e−ixξf(x) dx.

2.3. Auxiliary functions and smooth decomposition of Littlewood and

Paley. Let B denote the open unit ball in R. We will use auxiliary functions
χ and ψ such that χ ∈ C∞0 (R) is even,

χ(R \ 2B) = {0}, χ(R) ⊆ [0, 1], χ(B) = {1}

and ψ = 1− χ. From χ and ψ we obtain families of functions as follows: for
m > 1 set χm(ξ) = χ(ξ/m) and ψm(ξ) = ψ(mξ).
Throughout this paper N will denote a dyadic integer. We will use an

even function η ∈ C∞0 (R) such that

η(R+ \ [1/2, 2]) = {0}, η(R) ⊆ [0, 1].
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We choose η so as to obtain a smooth decomposition of Littlewood and
Paley, i.e. ∑

N>1

η(Nξ) +
∑

N

η(ξ/N) = 1, ξ 6= 0.

It is well known that this can be achieved. See e.g. Bergh, Löfström [1,
Lemma 6.1.7, pp. 135–136].

2.4. Function spaces. Let X be a Banach space. For a measurable func-
tion u : R→ X we define

‖u‖Lp(R,X) =
(\

R

‖u(x)‖pX dx
)1/p

.

Whenever the integral is convergent we say that u belongs to Lp(R, X).
When this notation is used X will be equal to L∞(I) for an interval I ⊂ R.
For a real number s we introduce inhomogeneous fractional Sobolev

spaces

Hs(R) =
{
f ∈ S ′(R) : ‖f‖2Hs(R) =

\
R

γ2s(ξ)|f̂(ξ)|
2 dξ <∞

}
.

Here

γs(ξ) = χ(ξ) +
∑

N

N sη(ξ/N).

Our definition of Hs(R) is consistent with the definition found e.g. in Stein
[11, Chapter V, §3.3, pp. 134–135] (there denoted by L 2s (R)) since there are
numbers C1 and C2 independent of ξ such that

C1(1 + ξ
2)s/2 ≤ γ2s(ξ)

1/2 ≤ C2(1 + ξ
2)s/2.

Note also that there are numbers C1 and C2 independent of ξ such that

C1γ−s(ξ) ≤ γs(ξ)
−1 ≤ C2γ−s(ξ).(2.1)

2.5. Theorem. Assume that s > a/4. Then there is a number C inde-
pendent of f such that

‖Saf‖
L2(R,L∞(B))

≤ C‖f‖Hs(R).(2.2)

That the theorem is almost sharp with respect to the number of deriva-
tives s on the right hand side of (2.2) follows from [13, Theorem 1.2(b),
p. 486].

3. Some preparation

3.1. Lemma. Let ϕ be a smooth function with ϕ′′(ξ) 6= 0 for ξ ∈ supp η.
Then there exists a number C independent of x and t such that

∣∣∣
\
R

ei(xξ+tϕ(ξ))η(ξ) dξ
∣∣∣ ≤ C|t|−1/2, |t| ≥ 1.
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Remarks on the proof. The lemma is a consequence of Stein [12, Theo-
rem 1, Chapter VII, p. 348] with n = 2.

3.2. Lemma. Let 0 < a < 1. Then Saχ̌ ∈ L1(R, L∞(2B)).

Proof. Let

mt,1(ξ) =

( M∑

k=0

(it|ξ|a)k

k!

)
χ(ξ).(3.1)

Here we have chosen M so that aM < 1 < a(M + 1). Let mt,2(ξ) =
exp(it|ξ|a)χ(ξ) −mt,1(ξ). From Sjölin [9, p. 110] (estimates for Iµ,β,γ with
notation from the cited paper) it is clear that supt∈2B |m̌t,2| ∈ L

1(R). Hence
it suffices to show that supt∈2B |m̌t,1| ∈ L

1(R).
Notice that the integral

1\
−1

sup
t∈2B

|m̌t,1(x)| dx(3.2)

is convergent. Hence, to show that supt∈2B |m̌t,1| ∈ L
1(R), in view of (3.1)

it is enough to show that for 0 < a < 1 there is a positive number C
independent of x such that

∣∣∣
\
R

eixξ|ξ|aχ(ξ) dξ
∣∣∣ ≤ C|x|−1−a, |x| ≥ 1.(3.3)

Now we invoke our family of auxiliary functions ψm to get\
R

eixξ|ξ|aχ(ξ) dξ = lim
m→∞

\
R

eixξ|ξ|aψm(ξ)χ(ξ) dξ

= −
1

ix

(\
R

eixξa sgn(ξ)|ξ|a−1χ(ξ) dξ

+
\
R

eixξ|ξ|aχ′(ξ) dξ + lim
m→∞

\
R

eixξ|ξ|aψm
′(ξ)χ(ξ) dξ

)

= −
1

ix
(I1(x) + I2(x) + lim

m→∞
I3,m(x))

where we have used dominated convergence and integration by parts. To
show (3.3) it is sufficient to show that there is a number C independent of x
such that

|I1(x)| ≤ C|x|
−a, |x| ≥ 1,(3.4)

that I2 decays rapidly at infinity and that limm→∞ I3,m = 0.

3.2.1. Estimate for I1. I1(x) is (apart from multiplication by a non-
zero number C independent of x) the convolution at x of the inverse Fourier
transform of the homogeneous function h : ξ 7→ sgn(ξ)|ξ|a−1 with the func-
tion χ̌ ∈ S(R). Since h is odd and homogeneous of degree a − 1 its inverse
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Fourier transform ȟ is odd and homogeneous of degree −a. It follows that
the convolution ȟ∗ χ̌ = I1/C is bounded and continuous and that it satisfies
the estimate (3.4).

3.2.2. Estimate for I2. I2 is (apart from a transposition) the Fourier
transform of the C∞-function ξ 7→ |ξ|aχ′(ξ) of compact support. Hence I2
decays rapidly at infinity.

3.2.3. Estimate for I3,m. Due to symmetry we have

I3,m(x) = 2i

∞\
0

sin(xξ)|ξ|aψ′m(ξ)χ(ξ) dξ.(3.5)

and using the support of ψ′m we get the estimate

|I3,m(x)| ≤ 2
∣∣∣
2/m\
1/m

|ξ|aψ′m(ξ) dξ
∣∣∣ ≤ Cm−a(3.6)

where C is a number independent of m and x.

4. Proof of the Theorem

4.1. Linearization of the maximal operator. Fix s > a/4. To prove our
theorem it is necessary and sufficient to prove that there is a number C
independent of f such that

(\
R

sup
t∈B

∣∣∣
\
R

eiΦa(ξ,x,t)γ−2s(ξ)
1/2f(ξ) dξ

∣∣∣
2
dx
)1/2
≤ C‖f‖L2(R).(4.1)

This follows from the definition of Hs(R), from (2.1) and from Parseval’s
formula. As in Sjölin [9], for a measurable function t with t(R) ⊆ B we
define

[Rtf ](x) =
\
R

eiΦa(ξ,x,t(x))γ−2s(ξ)
1/2f(ξ) dξ.

To prove (4.1) it is sufficient to prove that Rt is bounded on L
2(R) uniformly

with respect to t.

4.2. Approximation of Rt and reduction to kernel estimate. To approx-
imate Rt we define, for m and µ both greater than 1,

[Rmµ,tf ](x) =
\
R

χm(x)e
iΦa(ξ,x,t(x))γ−2s(ξ)

1/2χµ(ξ)f(ξ) dξ.

Because of the cutoffs both in range and frequency the boundedness on L2(R)
for Rmµ,t can easily be verified. To reduce to a kernel estimate we study the
adjoint given by

[R∗mµ,tg](ξ) =
\
R

χm(x)e
−iΦa(ξ,x,t(x))γ−2s(ξ)

1/2χµ(ξ)g(x) dx.
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We will prove that the operator R∗mµ,t is bounded on L
2(R) uniformly with

respect to m, µ and t. Then Rmµ,t will be bounded on L
2(R) uniformly with

respect to m, µ and t. Since

[Rtf ](x) = limm→∞
[Rmm,tf ](x),

by Fatou’s lemma we can conclude that Rt is bounded on L
2(R) and that

the bound is independent of t.
A computation involving Fubini’s theorem shows that\

R

|[R∗mµ,tg](ξ)|
2 dξ ≤

\\
R2

Kmµ(x− x
′)|g(x)g(x′)| dx dx′,(4.2)

where

Kmµ(x) = χ2m(x) sup
t∈2B

∣∣∣
\
R

eiΦa(ξ,x,t)γ−2s(ξ)χµ(ξ)
2 dξ
∣∣∣.

(When m =∞ we replace χ2m by 1.) We shall prove that there is a number
C independent of m and µ such that

‖Kmµ‖L1(R) ≤ C.(4.3)

Once this kernel estimate is proved, the desired uniform boundedness is
immediate. See §4.4.

4.3. Proof of the kernel estimate. To show (4.3) it is enough to show
that there is a number C independent of µ such that

‖K∞µ‖L1(R) ≤ C.(4.4)

Now we apply the smooth decomposition of Littlewood and Paley, referred
to in §§2.3 and 2.4, expressed by the function γ−2s. We define

L0(x) = ‖(S
aχ̌)[x]‖

L∞(2B)
,

LN (x) = N
−2s sup
t∈2B

∣∣∣
\
R

eiΦa(ξ,x,t)η(ξ/N) dξ
∣∣∣.

To show (4.4) it is then enough to show that

‖L0‖L1(R) +
∑

N

‖LN‖L1(R)(4.5)

is convergent.
A change of variables gives

LN (x) = N
1−2s sup

t∈2B

|(Saη̌)[Nx](Nat)|.

4.3.1. Estimate for (Saη̌)[Nx](Nat) when t ∈ 2a−2N1−a|x|B. It is clear
that

sup
x∈R, t∈2B

|(Saη̌)[Nx](Nat)| ≤ ‖η‖L1(R).(4.6)
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Let

BN,x = 2
a−2N1−a|x|B.

Set Φ′a = ∂1Φa. Our assumption on t together with |ξ| ≥ 1/2 implies by the
triangle inequality that

|Φ′a(ξ,Nx,N
at)| ≥ |Nx|/2.(4.7)

In the integral

(Saη̌)[Nx](Nat) =
\
R

eiΦa(ξ,Nx,N
at)η(ξ) dξ

we use integration by parts twice (cf. Stein [12, p. 331]). When we carry out
the differentiation (

1

iΦ′a

(
η

iΦ′a

)′)′

we find that there is a number C independent of N and x such that

sup
t∈BN,x∩2B

|(Saη̌)[Nx](Nat)| ≤ C(1 + |Nx|2)−1(4.8)

taking (4.6), (4.7) and the support of η into account.

4.3.2. Estimate for (Saη̌)[Nx](Nat) when t ∈ 2a−2N1−a|x|Bc. From
Lemma 3.1 with ϕ(ξ) = |ξ|a, ξ ∈ supp η, and our assumption on t in this
case it follows that there is a number C independent of N and x such that

sup
t∈BN,x

c
∩2B

|(Saη̌)[Nx](Nat)| ≤ C|Nx|−1/2.(4.9)

4.3.3. Estimate for LN . Let

BN = 2
3−aNa−1B.

We have

sup
t∈2B

|(Saη̌)[Nx](Nat)|

≤ sup
t∈BN,x∩2B

|(Saη̌)[Nx](Nat)|+ sup
t∈BN,x

c
∩2B

|(Saη̌)[Nx](Nat)|.

Now we estimate ‖LN‖L1(R). We get\
R

sup
t∈2B

|(Saη̌)[Nx](Nat)| dx

≤
\
R

sup
t∈BN,x∩2B

|(Saη̌)[Nx](Nat)| dx+
\
BN

sup
t∈BN,x

c
∩2B

|(Saη̌)[Nx](Nat)| dx

≤ C
(\

R

(1 + |Nx|2)−1 dx+
\
BN

|Nx|−1/2 dx
)
≤ CNa/2−1
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where we have used (4.8) and (4.9) in the second last inequality. (The num-
bers C are independent of N .) In conclusion

‖LN‖L1(R) ≤ CN
1−2sNa/2−1 = CNa/2−2s.(4.10)

Together with Lemma 3.2 this shows that the expression in (4.5) is finite.

4.4. Conclusion. Having proved our kernel estimate we now proceed
from (4.2) as follows:\

R

|[R∗mµ,tg](ξ)|
2 dξ ≤ ‖Kmµ ∗ |g|‖L2(R)‖g‖L2(R)

≤ ‖Kmµ‖L1(R)‖g‖
2
L2(R)

where we have used Minkowski’s inequality in the last inequality. We now
conclude the proof by invoking (4.3).
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