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A NOTE ON MARKOV OPERATORS AND TRANSITION SYSTEMS

BY

BARTOSZ FREJ (Wroctaw)

Abstract. On a compact metric space X one defines a transition system to be a lower
semicontinuous map X — 2% Tt is known that every Markov operator on C(X) induces
a transition system on X and that commuting of Markov operators implies commuting of
the induced transition systems. We show that even in finite spaces a pair of commuting
transition systems may not be induced by commuting Markov operators. The existence of
trajectories for a pair of transition systems or Markov operators is also investigated.

0. Preliminaries. Let X be a compact metrizable space with the Borel
o-algebra B. Denote by C(X) the space of all real-valued continuous func-
tions on X, and by 2% the collection of all nonempty closed subsets of X . Let
N be the set of all natural numbers, and No = NU {0}. A transition proba-
bility on X is a function P : X x B — [0, 1] such that P(z,-) is a probability
measure for every x € X, and P(-, A) is a Borel measurable function for
every A € B. By the Ionescu-Tulcea theorem, every transition probability
induces a random process on X in such a way that for every xy € X there
exists a unique probability measure y,, on the product space X satisfying
for measurable rectangles F = Fy x ... x F,, x XY the following condition:

piao (F) = Xpy (20) | Plwo,day) | P(ay,ds) ... | Pzn_1,day).
Fy Fo Fy

Given a probability measure Py on X, we obtain a measure p on X0, in-
dependent of the starting point of the process, by putting

H(E) = | 1. (E) Po(de)

for all measurable sets E C XM (see e.g. [N]). Then P, is a stationary mea-
sure for the process if and only if the resulting measure p is invariant under
the shift transformation on X™o,

With a transition probability P we associate an operator on bounded
Borel functions defined by Tpf(z) = § f(y) P(x,dy). We say that P is a
Feller transition probability if the map sending a point x € X to the measure
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P(z,-) is a continuous transformation from X into the set M(X) of all
probability measures on X endowed with the weak* topology. Equivalently,
P is Feller if and only if Tp sends C(X) into C'(X).

From now on, by a transition probability we mean a Feller transition
probability. It is known that Tp is a Markov operator on X, i.e. a bounded
linear operator such that Tp f is nonnegative for every nonnegative function
f,and that Tpf = 1if f = 1. Conversely, every Markov operator on C'(X) is
of this form for some transition probability P. For simplicity, we use the same
letter (usually T') to denote both a transition probability and the correspond-
ing Markov operator. Let 17,75 be transition probabilities on a space X. We
define Ty To(x, A) = { To(y, A) T (x, dy). It turns out that 71T is a transition
probability which corresponds to the composition of the Markov operators
Ty and T3 on C(X). We say that Ty and Ty commute if T1Ty = ToT.

For a transition probability 7" the measure T'(x,-) expresses our expec-
tations concerning the next state of the random process associated with T
with initial point z. In the topological setup we may be interested only in
locating the smallest closed subset of the phase space X containing possible
future states. In this way, one is led to investigate the map assigning to any
x € X the topological support of T'(z, -), namely

or: X — 2%, ¢r(z) =suppT(z,)

(see [I] and [D]). This map turns out to be lower semicontinuous, i.e. for
every open set U the set {z : ¢7(2) NU # 0} is open. In general, we define
a transition system on X to be any lower semicontinuous map ¢ : X — 2X.
For instance, if f : X — X is a continuous map then ¢(z) = {f(z)} defines
a transition system. We will say that a transition system ¢ is inscribed in
another transition system ¢ (notation ¢ < ) if ¢(x) C ¢(z) for every
x € X. For a given transition system ¢, the existence of a Markov operator
whose transition system ¢ is inscribed in ¢ follows immediately from the
classical Michael selection theorem. Moreover, from a more subtle Michael
selection theorem (Th. 3.1” in [M]) we see that there exists a transition
probability T for which ¢ = ¢.

Notice that it is possible to extend a system ¢ : X — 2% to a map from
into 2%. Simply, put

(1) o(F) = | o(x)

zeF

2X

for F' € 2%. In this manner, composition (and commuting) of transition
systems is well defined; (¢ o ¢){x} is denoted by ¢ o ¢(x). It is not hard to
verify that if S, T are Markov operators, then ¢sr = ¢g o dr.

Consider a family T4, ..., T,, of commuting Markov operators. Then, by
the last statement, the corresponding transition systems also commute. The
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converse is not true in general; commuting transition systems need not be as-
sociated with commuting Markov operators. We will provide an appropriate
example in Section 2. Consequently, theorems stated for commuting transi-
tion systems are more general than those formulated for Markov operators.
Conversely, counterexamples constructed in terms of Markov operators are
automatically valid for transition systems.

An interesting class of transition systems is obtained by taking continu-
ous maps ¢ : X — 2% Then the extended map ¢ : 2% — 2% is continuous
and (2%, ¢) can be regarded as a dynamical system. Such an approach was
exploited in [D]. Continuity also implies that the closure in formula (1) is
superfluous, since the union | J . ¢(z) is already closed. As we shall see,
this makes the notion of commuting more meaningful. Obviously, transition
systems defined on finite (discrete) spaces are continuous.

For any transition systems ¢, : X — 2% we will denote by ¢ U 1) the
transition system on X given by the formula

(@UV)(z) = ¢(z) Ut(z).
Clearly, ¢ < ¢ U and 1 < ¢ U. For instance, for convex combinations of
transition probabilities S and T" we have

basS+(1—a)T = ¢s U Pr
if 0 < a< 1. If ¢,9 are induced by functions f,g : X — X, respectively,
then we simply write f U g.

In the case of finite spaces the investigation of transition systems and
probabilities reduces to studying matrices. Namely, with every transition
system ¢ on a finite k-element space we associate a 0-1 square matrix [¢;;], . .
such that ¢;; = 1 if and only if the jth point belongs to the image of the ith
point. Composition of transition systems corresponds to the following rule
of “multiplying” 0-1 matrices:

(A©® B)(i,j) = sgn(AB(i, j)).
One can also write (AUB) (3, j) = A(i,7)VB(4, j) for the matrix representing
the sum of transition systems. For example, let ), be a cyclic group of
integers modulo n. Denote by I : C,, — C), the identity map, and by R :
C,, — C,, the addition of the unit, i.e. R(p) =p+ 1 (modn). If n = 3 then
IUR, TUR? RUR? on Cs correspond to the following 0-1 matrices:

1 1 0 1 0 1 01 1
IUR~ |0 1 1|, JTUR*~ |1 1 0|, RUR*~ |1 0 1],
1 0 1 0 1 1 1 1 0
and the ®-product of any two of them equals
1 1 1
1 1 1

1 11
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Likewise, transition probabilities on finite spaces are usually written in
the form of stochastic matrices, and every such matrix defines a Feller transi-
tion probability. Here, composition of probabilities coincides with the usual
product of matrices. For instance, if o, 3,7 € [0,1], a + 8+ v = 1, then
al + BR + yR? stands for the transition probability on Cs defined by the
stochastic matrix

a B v
vy a f
B v «

If T is a stochastic matrix, then the 0-1 matrix of ¢ is obtained from T by
replacing all nonzero entries by 1.

1. Trajectories of transition systems. For a transition system ¢
on a compact space X we define a trajectory as a sequence (2" )pen, C X

such that "1 € ¢(z™) for every n € Ny. For a finite collection ¢1, ..., ¢,
of transition systems a trajectory is an m-dimensional array (z™t»"m) €
XNox...xNo gych that for every ng, ..., n,, the following transition law holds:

xn1+1,n2,---,nm c ¢1 (ajm,---,nm)’

.,L,nl,nngl,...,nm c ¢2(.,L,nl,...,nm)7

xnl,ng,...,nm+1 c ¢m(xn1,...,nm).

A construction of trajectories for an arbitrary pair of commuting continuous
transition systems can be found in [I] (the set {2 in the proof of Theorem 3).

For a finite family of Markov operators, by a trajectory we will mean a
trajectory of the induced family of transition systems. It is shown in [DI]
that if T" and S are commuting Markov operators, then for every probability
measure Py on X there exists a probability measure p on X™V0XNo compat-
ible with these operators, which is stationary if Py is invariant. Using this
fact one can show the following theorem.

THEOREM 1. The measure i of the set of all trajectories of the pair S, T
1s equal to 1.

Proof. For fixed ko,ly € Ny consider the set Cy(ko,lp) of all (zF!) €
XNoxNo gatisfying the condition z¥o+blo € ¢p(zko-l0). By Theorem 1 of [DI]
the measure of this set is equal to

X S . S S T(gkolo dghothloy = (g0l gplilo)

X X ¢ (xkorlo)

x S(z%o=t dzxOloy 8200, dz¥1t) Py(dz®P) = 1,
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since ¢r(xko-l0) is the support of the measure T'(x*o:lo .). Similarly, the
measure of the set C,(ko,lo) = {(z®!) : aFolotl ¢ pg(zkol0)} is equal
to 1. Clearly, the set of all trajectories of the pair S,T coincides with the

intersection
() () [Culk, D) N Culk, )],
keNg leNp

hence has measure 1. =

As the following example shows, it is not true that an arbitrary pair of
commuting transition systems has a nonempty set of trajectories.

ExaMpPLE 1. Consider the space

Y ={p}tU{a,ai,as,...} U0,7],

where p,a,ay,as,... are different elements not belonging to [0, 7], p is an
isolated point, and the sequence ai,as,... converges to a. The space Y is
compact. Define transition systems ¢ and 1 on Y in the following way:
{a,a1,a9,...} if y =p,
) {k/n:keN}N[0,7] if y =ap,
oY) = {0} if y = a,
{p} if y € [0, ],
{a7a17a27"'} 1fy:p7
) {r—k/n:keN}N[0,x] ify=a,,
viy) = {n} if y = a,
{r} if y € [0, 7].

Both ¢ and 1) are lower semicontinuous (the only discontinuity point is a).
Moreover, ¢ and 1 commute, because

[0, ] if y =p,
¢O¢(y):1[)ogb(y): {p} ifye{a,al,ag,...},
{a,a1,a9,...} ifye]|0,nx].

We will show that the pair v, ¢ has no trajectories. Since for any y € Y
one of the images ¢(y), $*(y), ¢*(y) must be equal to {p}, it suffices to prove
that there are no trajectories starting from p. Notice that constructing a tra-
jectory with initial point 2%° = p we obtain #1° € ¢(2%°) = {a, a1, as,...}
and 2% € ¥(2°°) = {a,a;,as,...}. Then we have simultaneously z''! €
#(x%1), which consists of rational numbers, and z! € ¥ (2!?) contained in
the set of irrational numbers. A contradiction. m

In view of Theorem 1 it is clear that the pair ¢, in the preceding ex-
ample is not associated with any pair of commuting Markov operators. In
Section 2 we give another example indicating that even continuous (thus
having trajectories) commuting transition systems need not be associated
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with commuting Markov operators. The existence of trajectories for com-
muting transition systems breaks completely at dimension three; in [DI] we
find an example of three commuting continuous transition systems induced
by three commuting Markov operators on a finite space with empty set of
trajectories.

Let us mention some relations between transition systems and subshifts
of finite type—a subject of extensive study in symbolic dynamics. It is known
that the trajectories of a single transition system acting on a finite space
can be identified with a subshift of finite type. On the other hand, every
subshift of finite type may be recoded (using higher block codes) to obtain a
shift space induced by a transition system (for information about subshifts
of finite type we refer to [LM]). The subshift induced by a transition sys-
tem ¢ is, in fact, the topological support of a certain stationary measure
p (as at the beginning of this paper) for the process corresponding to a
transition probability 7" such that ¢ = ¢. The set of trajectories of a finite
collection of commuting transition systems on a finite space (if nonempty)
can be identified with a multidimensional subshift of finite type. It seems
to be an open question whether every multidimensional subshift of finite
type can be represented in this way (it certainly can, if we drop the com-
mutation requirement). As our next example shows, even when nonempty, a
multidimensional subshift of finite type need not admit an invariant measure
representing a multidimensional Markov process in the sense of [DI].

2. Commuting incompatibility. In the following, we construct an
example of commuting 0-1 matrices not associated with commuting sto-
chastic matrices.

EXAMPLE 2. Let X = (3 x (3. Define transition systems on X by
Ix(IUR) on {0} x Cs,

p={ Ix(ITUR? on {1} x Cs,
I x (RUR?) on {2} x Cs,
Rx(IUR) on {0} x Cj,
w: RX(IUR2) on {1}><C37

R x (RUR?) on {2} x Cs.

Since I and R commute, and superpositions of any two systems from among
TUR, IUR?, RUR? give IURU R?, the systems ¢ and ¢ commute. We will
show that there exist no commuting stochastic matrices Ty, T, inducing the
transition systems ¢, .

Suppose such matrices exist. Enumerating the elements of X so that the
point (p, ¢) has number 3p + ¢, we can write
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e d 00 0 0|0 0 07
0 b |0 0 0|0 0 0
¢/ 0 ¢c|0 0 0|0 0 0
0 0 0ld 0o 4]0 0 0
T,=[0 0 0]¢ e 0|0 0 0],
00 0|0 f fl0 00
00 0l0O O 0]0 g ¢
00 0/l0O 0 O|W 0 h
oo olo o ol i & ol
00 O ]r 0[]0 0 0]
00 0|0 s s]0 0 0
00 0|¢ 0 ¢t|0 0 0
00 0/0O0 O0]u 0 o
Ty=|0 0 0|0 0 0o v 0],
00 0/0 0 0]0 w w
0z 2]0 0 0[]0 0 0
Yy 0 y|0 0 0|0 0 0
Lz 2 0]l0 0 olo0o 0 O]

where a +a’ = 1,0+b =1,...,2+2 =1 and a,b,c, ...

,z € (0,1); none

of the numbers a,b, ...,z is 0 or 1, since ¢ and % are supposed to give the
precise supports of the transition measures. In order that the matrices T}

and Ty, commute, it is necessary that

a a 0 r r 0
0 b v 0 s §|=
_c’ 0 c t 0 t
i.e.
[ ar ar’' +a's  a's
(2) b't’ bs bs' +b't
_c’r + ct’ cr' ct
Therefore
ar =rd+1r'¢e,
bs = se + s’ f’,
ct=tf +t'd,
and further
r(a—d)=r'¢e,
(3) s(b—e)=45"f,
tc— f)=1td,

r r 0 d 0 d
0 s s|-]1e e 0],
0 t o f f
rd+r'e r'e rd’
= se/ se+sf §f
t'd t ot td

ar’ +a's =1'e,
bs' +b't =5'f,
ct' +cr=1td,

/
a s

b't
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Since all the coefficients belong to (0,1), the right-hand sides are positive
and we obtaina >d >c> f >b>e > a. A contradiction. =

In fact, there are no commuting matrices Ty and T3, inducing transition
systems inscribed in ¢, . To prove this one has to allow the possibility of
some (or all) of a,b, ...,z being 0 or 1. Notice that in this case (3) together
with the additional assumption r,s,¢ € (0, 1) implies only weak inequalities
between the coefficients. Hence, we obtain a = b= ... = f = 1, which, con-
sidering the whole matrices, leads to a contradiction. The proof is completed
by showing that none of r, s,t can belong to {0, 1}.
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