VOL. 91

2002

NO. 2

RANK α OPERATORS ON THE SPACE C(T, X)

ВY

DUMITRU POPA (Constanța)

Abstract. For $0 \leq \alpha < 1$, an operator $U \in L(X, Y)$ is called a rank α operator if $x_n \xrightarrow{\tau_{\alpha}} x$ implies $Ux_n \to Ux$ in norm. We give some results on rank α operators, including an interpolation result and a characterization of rank α operators $U: C(T, X) \to Y$ in terms of their representing measures.

Let X be a Banach space and $0 \leq \alpha < 1$; a sequence $(x_n)_{n \in \mathbb{N}} \subset X$ is called τ_{α} -convergent to 0, written $x_n \xrightarrow{\tau_{\alpha}} 0$, if there exists a constant $c \geq 0$ such that $\|\sum_{n \in B} x_n\| \leq c|B|^{\alpha}$ for all finite subsets $B \subset \mathbb{N}$, or equivalently, $\|\sum_{n \in B} \lambda_n x_n\| \leq c|B|^{\alpha}$ for all finite subsets $B \subset \mathbb{N}$ and $\lambda_n \in K = \mathbb{R}$ or \mathbb{C} with $|\lambda_n| \leq 1$ (the constant c may vary). Here |B| is the cardinality of B. A sequence $(x_n)_{n \in \mathbb{N}} \subset X$ is called τ_{α} -convergent to x, written $x_n \xrightarrow{\tau_{\alpha}} x$, if $x_n - x \xrightarrow{\tau_{\alpha}} 0$.

For $0 \leq \alpha < 1$, an operator $U \in L(X, Y)$ is called a rank α operator if $x_n \xrightarrow{\tau_\alpha} x$ implies $Ux_n \to Ux$ in norm. We denote by $R_\alpha(X, Y)$ the Banach space of all rank α operators from X to Y. A Banach space has rank α if each τ_α -convergent sequence is norm convergent. The notions of τ_α -convergence and rank α spaces have been first introduced by A. Pełczyński [8]. Observe that rank 0 operators coincide with unconditionally converging operators. In the following proposition we give some results concerning rank α operators.

PROPOSITION 1. (a) R_{α} is an operator ideal in the sense of A. Pietsch [9], for each $0 \leq \alpha < 1$.

(b) If $0 \le \alpha \le \beta < 1$, then $R_{\beta}(X, Y) \subset R_{\alpha}(X, Y)$.

(c) $DP(X,Y) \subset R_{\alpha}(X,Y)$ for each $0 \leq \alpha < 1$, where DP denotes the ideal of Dunford–Pettis operators.

(d) R_{α} is a closed ideal of operators for each $0 \leq \alpha < 1$.

 $^{2000 \} Mathematics \ Subject \ Classification: 46A32, 46B28, 46E15, 46M05, 47A80, 47B10, 47B38.$

 $Key\ words\ and\ phrases:$ Banach spaces of continuous functions, tensor products, p-summing.

Proof. (a) is clear; (b) follows from the fact that if $\alpha \leq \beta$, then τ_{α} -convergence implies τ_{β} -convergence; (c) follows from the fact that τ_{α} -convergence implies weak convergence.

(d) If $x_n \xrightarrow{\tau_{\alpha}} 0$ then there is a constant c > 0 such that $\sup_{n \in \mathbb{N}} ||x_n|| \leq c$. If $U_k \in R_{\alpha}(X, Y)$ for each $k \in \mathbb{N}$ and $U_k \to U$ in norm then for each $\varepsilon > 0$, there exists $k \in \mathbb{N}$ such that $||U_k - U|| < \varepsilon/(2c)$. Since $U_k \in R_{\alpha}(X, Y)$, we have $||U_k(x_n)|| \to 0$ as $n \to \infty$, so there exists $n_{\varepsilon} \in \mathbb{N}$ such that $||U_k(x_n)|| < \varepsilon/2$ for each $n \geq n_{\varepsilon}$; hence $||U(x_n)|| < \varepsilon$ for each $n \geq n_{\varepsilon}$, i.e. $U \in R_{\alpha}(X, Y)$.

Now we indicate in what conditions a diagonal operator has rank α , which shows in particular that the inclusions (b) and (c) from Proposition 1 are strict.

EXAMPLE 2. Let $1 , <math>\lambda = (\lambda_n)_{n \in \mathbb{N}} \in l_{\infty}$ and $D_{\lambda} : l_p \to l_p$ be the diagonal operator associated to λ , i.e. $D_{\lambda}(x_n) = (\lambda_n x_n)$. Then:

- (a) For $1/p \leq \alpha < 1$, $D_{\lambda} \in R_{\alpha}(l_p, l_p)$ if and only if $\lambda \in c_0$.
- (b) For $0 \le \alpha < 1/p$, $D_{\lambda} \in R_{\alpha}(l_p, l_p)$ if and only if $\lambda \in l_{\infty}$.

Proof. (a) If $D_{\lambda} \in R_{\alpha}(l_p, l_p)$, then since $1/p \leq \alpha$, Proposition 1(b) implies that $D_{\lambda} \in R_{1/p}(l_p, l_p)$. Since $e_n \xrightarrow{\tau_{1/p}} 0$ (e_n is the canonical basis of l_p), we find that $||D_{\lambda}(e_n)|| \to 0$, i.e. $\lambda_n \to 0$ and so $\lambda \in c_0$. Conversely, if $\lambda \in c_0$, then the operator D_{λ} is compact, so D_{λ} has rank α .

(b) For $0 \leq \alpha < 1/p$, the space l_p has rank α (see [1], Proposition 2.3(2), or [8]), so by the ideal property of rank α operators, $D_{\lambda} \in R_{\alpha}(l_p, l_p)$ for each $\lambda \in l_{\infty}$.

It is also easy to prove the following:

PROPOSITION 3. For each compact Hausdorff space T,

 $W(C(T), X) = DP(C(T), X) = R_0(C(T), X) = R_\alpha(C(T), X)$

for each $0 \leq \alpha < 1$.

Proof. The first two equalities are well known ([5], Theorem 15, pp. 159–160), and Proposition 1(c)&(b) assures that $DP(C(T), X) \subset R_{\alpha}(C(T), X) \subset R_{0}(C(T), X)$.

Now we prove that a certain composition operator is a rank α operator.

PROPOSITION 4. Let $A \in R^{dual}_{\alpha}(X,Y)$, $B \in DP(Z,T)$ and define $h : L(Y,Z) \to L(X,T)$ by h(U) = BUA. Then h is a rank α operator.

Proof. Let $U_n \xrightarrow{\tau_{\alpha}} 0$. For $n \in \mathbb{N}$, let $x_n \in X$ with $||x_n|| \le 1$ be such that (1) $||h(U_n)|| - 1/n < ||h(U_n)(x_n)|| = ||(BU_nA)(x_n)||.$

If $z^* \in Z^*$, since $U_n \xrightarrow{\tau_\alpha} 0$, we obtain $z^* \circ U_n \xrightarrow{\tau_\alpha} 0$. Now $A \in R_\alpha^{\text{dual}}(X, Y)$ so $A^*(z^* \circ U_n) \to 0$ in norm, or $z^* \circ U_n \circ A \to 0$ in norm of X^* . Hence $(z^* \circ U_n \circ A)(x_n) \to 0$, i.e. $\langle (U_n \circ A)(x_n), z^* \rangle \to 0$ and since $z^* \in Z^*$ is arbitrary, $(U_n \circ A)(x_n) \to 0$ weakly. As $B \in DP(Z, T)$ we have $B((U_n \circ A)(x_n)) \to 0$ in norm of T, i.e. $(B \circ U_n \circ A)(x_n) \to 0$ in norm of T and the relation (1) implies $||h(U_n)|| \to 0$, i.e. h is a rank α operator.

COROLLARY 5. Let $0 \le \alpha < 1$, $U \in R^{dual}_{\alpha}(X, X_1)$ and $V \in DP^{dual}(Y, Y_1)$. Then the projective tensor product $U \bigotimes_{\pi} V$ is in $R^{dual}_{\alpha}(X \bigotimes_{\pi} Y, X_1 \bigotimes_{\pi} Y_1)$.

Proof. Since $h = (U \otimes_{\pi} V)^* : L(X_1, Y_1^*) \to L(X, Y^*)$ acts as $h(\psi) = V^* \psi U$, it suffices to apply Proposition 4.

A natural question is: is the ideal of all dual rank α operators projective tensor stable? The answer is no. For $2 \leq p < \infty$, take the identity operator $i: l_q \to l_q (1/p+1/q = 1)$, the dual of which has rank α for each $0 \leq \alpha < 1/p$ (see [1], Proposition 2.3, or [8]). But the dual of $i \bigotimes_{\pi} i: l_q \bigotimes_{\pi} l_q \to l_q \bigotimes_{\pi} l_q$ is the identity operator on $L(l_q, l_p)$, which, because $2 \leq p < \infty, q \leq p$, contains a copy of c_0 and hence has no rank.

For $0 \leq \alpha < 1$, X a Banach space, let $E_{\alpha}(X) = \{(x_n)_{n \in \mathbb{N}} \subset X \mid x_n \xrightarrow{\tau_{\alpha}} 0\}$, which is evidently a Banach space for the norm

$$\|\xi\| = \sup\left\{\frac{\|\sum_{n \in B} x_n\|}{|B|^{\alpha}} \,\middle|\, B \text{ finite } \subset \mathbb{N}, \ B \neq \emptyset\right\},\$$

where $\xi = (x_n)_{n \in \mathbb{N}} \in E_{\alpha}(X)$. Observe that $U \in L(X, Y)$ is a rank α operator if and only if for each sequence $(x_n)_{n \in \mathbb{N}} \in E_{\alpha}(X)$, the sequence $(Ux_n)_{n \in \mathbb{N}}$ is in $c_0(Y)$. In addition the operator $h : E_{\alpha}(X) \to c_0(Y)$ given by $h((x_n)_{n \in \mathbb{N}}) = (Ux_n)_{n \in \mathbb{N}}$ is linear and continuous.

Now we prove an interpolation result for rank α operators. We recall that given a Banach interpolation couple $\mathbf{Y} = (Y_0, Y_1)$ and $0 < \theta < 1$, $[Y_0, Y_1]_{\theta}$ is the interpolation space obtained by the complex method of Calderón (see [12], 1.9.3, for details).

PROPOSITION 6. Let $0 < \theta < 1$, X a Banach space, $\mathbf{Y} = (Y_0, Y_1)$ a Banach interpolation couple and $0 \le \alpha < 1$. Then

$$[R_{\alpha}(X,Y_0), L(X,Y_1)]_{\theta} \subset R_{\alpha}(X, [Y_0,Y_1]_{\theta}).$$

Proof. For $\xi = (x_n)_{n \in \mathbb{N}} \in E_{\alpha}(X)$ we define the operator

$$h_{\xi}: R_{\alpha}(X, Y_0) + L(X, Y_1) \to l_{\infty}(Y_0 + Y_1), \quad h_{\xi}(U) = (Ux_n)_{n \in \mathbb{N}}.$$

Then using the definition of rank α operators (see the above discussion), we obtain two continuous linear operators: $h_{\xi} : R_{\alpha}(X, Y_0) \to c_0(Y_0)$ and $h_{\xi} : L(X, Y_1) \to l_{\infty}(Y_1)$, with

 $\|h_{\xi}: R_{\alpha}(X, Y_{0}) \to c_{0}(Y_{0})\| \leq \|\xi\|, \quad \|h_{\xi}: L(X, Y_{1}) \to l_{\infty}(Y_{1})\| \leq \|\xi\|,$ hence by interpolation,

$$h_{\xi} : [R_{\alpha}(X, Y_0), L(X, Y_1)]_{\theta} \to [c_0(Y_0), l_{\infty}(Y_1)]_{\theta}$$

is also a continuous linear operator and

$$\begin{split} \|h_{\xi} : [R_{\alpha}(X,Y_{0}), L(X,Y_{1})]_{\theta} &\to [c_{0}(Y_{0}), l_{\infty}(Y_{1})]_{\theta} \|\\ &\leq \|h_{\xi} : R_{\alpha}(X,Y_{0}) \to c_{0}(Y_{0})\|^{1-\theta} \|h_{\xi} : L(X,Y_{1}) \to l_{\infty}(Y_{1})\|^{\theta} \leq \|\xi\|.\\ But \ [c_{0}(Y_{0}), \, l_{\infty}(Y_{1})]_{\theta} &= c_{0}([Y_{0},Y_{1}]_{\theta}) \ (\text{see [12], 1.18, Observation 3), thus}\\ &h_{\xi} : [R_{\alpha}(X,Y_{0}), L(X,Y_{1})]_{\theta} \to c_{0}([Y_{0},Y_{1})]_{\theta}) \end{split}$$

is also a continuous linear operator, i.e. for each $U \in [R_{\alpha}(X, Y_0), L(X, Y_1)]_{\theta}$ and each $\xi = (x_n)_{n \in \mathbb{N}} \in E_{\alpha}(X), h_{\xi}(U) = (Ux_n)_{n \in \mathbb{N}} \in c_0([Y_0, Y_1)]_{\theta})$ and

$$\|h_{\xi}(U)\| = \|(Ux_n)\|_{c_0([Y_0,Y_1)]_{\theta}} \le \|\xi\| \cdot \|U\|_{[R_{\alpha}(X,Y_0),L(X,Y_1)]_{\theta}}.$$

Thus $U \in R_{\alpha}(X, [Y_0, Y_1]_{\theta})$ and $\|U\|_{R_{\alpha}(X, [Y_0, Y_1]_{\theta})} \le \|U\|_{[R_{\alpha}(X, Y_0), L(X, Y_1)]_{\theta}}$.

For Banach spaces X and Y we denote by $X \bigotimes_{\varepsilon} Y$ the injective tensor product of X and Y, i.e. the completion of the algebraic tensor product $X \otimes Y$ with respect to the injective cross-norm $\varepsilon(u) = \sup\{|\langle x^* \otimes y^*, u \rangle| \mid |\|x^*\| \leq 1,$ $\|y^*\| \leq 1\}$ for $u \in X \otimes Y$ (see [5], Chapter VIII). If $U \in L(Z \bigotimes_{\varepsilon} X, Y)$, for each $z \in Z$ we consider the operator $U^{\#}z : X \to Y$ given by $(U^{\#}z)(x) = U(z \otimes x)$ for $x \in X$; evidently, $U^{\#} : Z \to L(X, Y)$ is linear and continuous.

PROPOSITION 7. If $U \in R_{\alpha}(Z \otimes_{\varepsilon} X, Y)$, then $U^{\#} \in R_{\alpha}(Z, R_{\alpha}(X, Y))$.

Proof. For $z \in Z$, define $V_z : X \to Z \bigotimes_{\varepsilon} X$ by $V_z(x) = z \otimes x$. Then by the hypothesis and the ideal property of the rank α operators it follows that $U^{\#}z = UV_z$ is a rank α operator. Let $z_n \xrightarrow{\tau_{\alpha}} 0$. For $n \in \mathbb{N}$, let $||x_n|| \leq 1$ be such that

$$||U^{\#}z_{n}|| - 1/n < ||(U^{\#}z_{n})(x_{n})|| = ||U(z_{n} \otimes x_{n})||.$$

For every finite subset $B \subset \mathbb{N}$ we have

$$\varepsilon\Big(\sum_{n\in B} z_n \otimes x_n\Big) = \sup_{\|x^*\| \le 1} \left\|\sum_{n\in B} z_n x^*(x_n)\right\| \le c|B|^{\alpha},$$

since $|x^*(x_n)| \leq 1$, hence $z_n \otimes x_n \xrightarrow{\tau_\alpha} 0$. As U is a rank α operator, we have $||U(z_n \otimes x_n)|| \to 0$, so $||U^{\#}z_n|| \to 0$ and hence $U^{\#} \in R_{\alpha}(Z, R_{\alpha}(X, Y))$.

If T is a compact Hausdorff space and X is a Banach space we denote by C(T, X) the Banach space of all continuous X-valued functions defined on T, equipped with the supremum norm. Also if T is a compact space, we denote by Σ the σ -field of Borel subsets of T, and if X is Banach space, $B(\Sigma, X)$ is the Banach space of totally measurable X-valued functions equipped with the supremum norm. It is well known that every continuous linear operator $U: C(T, X) \to Y$ has a representing measure $G: \Sigma \to L(X, Y^{**})$ such that $U(f) = \int_T f \, dG$ for $f \in C(T, X)$ and there is a canonical extension $\hat{U}: B(\Sigma, X) \to Y^{**}$ of U to the space $B(\Sigma, X)$ given by $\hat{U}(f) = \int_T f \, dG$ for $f \in B(\Sigma, X)$ (see [3], Representation Theorem 2.2, or [6], Theorem 9, p. 398).

Also we denote by $||G||(E) = \sup\{|G_{y^*}(E)| \mid ||y^*|| \leq 1\}$ the semivariation of the representing measure G, for $E \in \Sigma$, where $G_{y^*}(E) = \langle y^*, G(E)x \rangle$; we say that the semivariation ||G|| is *continuous at* \emptyset if $||G||(E_k) \to 0$ for $E_k \searrow \emptyset$, $E_k \in \Sigma$. As is well known, ||G|| is continuous at \emptyset if and only if there exists a Borel measure $\alpha \geq 0$ on Σ such that $\lim_{\alpha(E)\to 0} ||G(E)|| = 0$.

Since $C(T, X) = C(T) \otimes_{\varepsilon} X$, from Proposition 7 we have:

COROLLARY 8. If $U \in R_{\alpha}(C(T, X), Y)$, then $G(E) \in R_{\alpha}(X, Y)$ for each $E \in \Sigma$ and the semivariation ||G|| is continuous at \emptyset .

Proof. Using Propositions 7 and 3 we infer that

 $U^{\#} \in R_{\alpha}(C(T), R_{\alpha}(X, Y)) = W(C(T), R_{\alpha}(X, Y)),$

hence the representing measure F of $U^{\#}$ is countably additive ([5], Theorem 5 (Bartle–Dunford–Schwartz), p. 153), so F has the semivariation continuous at \emptyset . But the representing measure F of $U^{\#}$ under our hypothesis coincides with that of U ([3], Theorem 4.4), hence G takes its values in $R_{\alpha}(X,Y)$ and the semivariation ||G|| is continuous at \emptyset .

With the help of Corollary 8 the proof of the following proposition is analogous to that of Theorem 3 from [2], so we omit it.

PROPOSITION 9. Let X, Y be Banach spaces, T a compact Hausdorff space, $U: C(T, X) \to Y$ a continuous linear operator, and $\widehat{U}: B(\Sigma, X) \to$ Y^{**} the canonical extension of U. Then $U \in R_{\alpha}(C(T, X), Y)$ if and only if \widehat{U} takes its values in Y and $\widehat{U} \in R_{\alpha}(B(\Sigma, X), Y)$.

Now for a given closed operator ideal \mathcal{A} we indicate a way to construct a continuous linear operator on C(T, X) with representing measure having natural properties. Compare this result with that of [10], Proposition 1.

PROPOSITION 10. Let \mathcal{A} be a closed operator ideal, and $(U_n)_{n\in\mathbb{N}} \subset \mathcal{A}(X,Y)$ a sequence such that $\sum_{n=1}^{\infty} \|y^*U_n\| < \infty$ for each $y^* \in Y^*$. If T is a compact space on which there exists a purely non-atomic regular probability Borel measure λ , and $(r_n)_{n\in\mathbb{N}}$ is an orthonormal sequence in $L_2(\lambda)$ with $\sup_{n\in\mathbb{N}} \sup_{t\in T} |r_n(t)| < \infty$, then the operator $U : C(T,X) \to Y$ given by $U(f) = \sum_{n=1}^{\infty} U_n(\int_T fr_n d\lambda)$ is linear and continuous and its representing measure G has the properties: $G(E) \in \mathcal{A}(X,Y)$ for each Borel subset E and $\|G\|$ is continuous at \emptyset .

Proof. First observe that the hypothesis and the closed graph theorem imply that

$$\sup_{\|y^*\| \le 1} \sum_{n=1}^{\infty} \|y^* U_n\| = M < \infty.$$

For $f \otimes x \in C(T) \otimes X$, we have

$$U(f \otimes x) = \sum_{n=1}^{\infty} U_n(x) \int_T fr_n \, d\lambda.$$

Using the orthonormality of the sequence $(r_n)_{n\in\mathbb{N}}$ it follows that for each $E \in \Sigma$, $\int_E r_n d\lambda \to 0$. Since

$$\sum_{n=1}^{\infty} |y^*(U_n x)| \le M ||y^*|| \cdot ||x|| < \infty$$

for each $y^* \in Y^*$, $x \in X$, the series $\sum_{n=1}^{\infty} U_n(x) \int_T fr_n d\lambda$ is norm convergent (see [4], Theorem 6, p. 44). Also for $f \in C(T, X)$ and $n \in \mathbb{N}$ we have

$$\left\|\sum_{k=1}^{n} U_{k}\left(\int_{T} fr_{k} \, d\lambda\right)\right\| \leq L \|f\| \sup_{\|y^{*}\| \leq 1} \sum_{k=1}^{n} \|y^{*}U_{k}\| \leq LM \|f\|,$$

where $L = \sup_{n \in \mathbb{N}} \sup_{t \in T} |r_n(t)|$. Now the Banach–Steinhaus theorem assures that the series $\sum_{n=1}^{\infty} U_n(\int_T fr_n d\lambda)$ is norm convergent for each $f \in C(T, X)$ and the operator U is linear and continuous.

If G is the representing measure of U then

$$G(E)(x) = \sum_{n=1}^{\infty} \left(\int_{E} r_n \, d\lambda \right) U_n(x),$$

i.e. $G(E) = \sum_{n=1}^{\infty} \alpha_n(E) U_n$, where $\alpha_n(E) = \int_E r_n d\lambda$. Also for $E \in \Sigma$ and $x \in X$ with $||x|| \le 1$ we have

$$\left\| G(E)x - \sum_{k=1}^{n} \alpha_{k}(E)U_{n}(x) \right\| \leq \left(\sup_{k \geq n} |\alpha_{k}(E)| \right) \sup_{\|y^{*}\| \leq 1} \sum_{n=1}^{\infty} \|y^{*}U_{n}\|$$
$$= M \sup_{k \geq n} |\alpha_{k}(E)|,$$

i.e. $||G(E) - \sum_{k=1}^{n} \alpha_k(E)U_k|| \leq M \sup_{k \geq n} |\alpha_k(E)| \to 0$. Since the ideal \mathcal{A} is closed it follows that $G(E) \in \mathcal{A}(X, Y)$. Also, the well known Nikodym convergence theorem implies that $G : \Sigma \to L(X, Y)$ is countably additive and so ||G|| is continuous at \emptyset .

REMARK 11. Let $(x_n)_n \subset X^*$ be a bounded sequence, and let $(y_n)_{n \in \mathbb{N}} \subset Y$ with $\sum_{n=1}^{\infty} |y^*(y_n)| < \infty$ for each $y^* \in Y^*$. Then taking $U_n = x_n^* \otimes y_n$, we have

$$\sum_{n=1}^{\infty} \|y^* U_n\| \le (\sup_{n \in \mathbb{N}} \|x_n^*\|) \sum_{n=1}^{\infty} |y^*(y_n)| < \infty$$

for each $y^* \in Y^*$, so we can apply Proposition 10.

PROPOSITION 12. The following assertions about a Banach space X are equivalent:

(i) X has rank α .

(ii) For any compact Hausdorff space T and any Banach space Y, a continuous linear operator $U : C(T, X) \to Y$ has rank α if and only if its representing measure G has the properties: $G(E) \in R_{\alpha}(X, Y)$ for each $E \in \Sigma$ and ||G|| is continuous at \emptyset .

Proof. (i) \Rightarrow (ii). Using Corollary 8 we have to prove that if X has rank α and $U: C(T, X) \to Y$ is linear and continuous with $G(E) \in R_{\alpha}(X, Y)$ for each $E \in \Sigma$ and with ||G|| continuous at \emptyset , then U is a rank α operator. Let $(f_n)_{n \in \mathbb{N}} \subset C(T, X)$ with $f_n \xrightarrow{\tau_{\alpha}} 0$. Then for each $t \in T$ and a finite subset $B \subset \mathbb{N}$ we have

$$\left\|\sum_{n\in B} f_n(t)\right\| \le \left\|\sum_{n\in B} f_n\right\| \le c|B|^{\alpha},$$

 $f_n(t) \xrightarrow{\tau_{\alpha}} 0$ and since X has rank α , $f_n(t) \to 0$ in norm for each $t \in T$.

Now the proof is similar to that of Theorem 2.1 of [11], and uses the fact that if the semivariation ||G|| is continuous at \emptyset , then G has a positive control measure; we omit the details.

(ii) \Rightarrow (i). Let $x_n \xrightarrow{\tau_{\alpha}} 0$. Then there exist $x_n^* \in X^*$ with $||x_n^*|| \leq 1$ and $x_n^*(x_n) = ||x_n||$. Let T be a non-dispersed compact Hausdorff space. Then there is a purely non-atomic regular probability Borel measure λ on T (see [7], Theorem 2.8.10). Now we can construct a Haar system $\{A_i^n \mid 1 \leq i \leq 2^n, n \geq 0\}$ in Σ (that is, $A_1^0 = T$; for each n, $\{A_i^n \mid 1 \leq i \leq 2^n\}$ is a partition of T; $A_i^n = A_{2i}^{n+1} \cup A_{2i+1}^{n+1}$ and $\lambda(A_i^n) = 1/2^n$ for $1 \leq i \leq 2^n$ and $n \geq 0$). Let $r_n = \sum_{i=1}^{2^n} (-1)^i \chi_{A_i^n}$. Clearly $(r_n)_{n \in \mathbb{N}}$ is an orthonormal sequence in $L_2(\lambda)$. Now by Remark 11 we can construct a $U : C(T, X) \to c_0$ associated to $(x_n^*)_{n \in \mathbb{N}} \subset X^*$ and $(e_n)_{n \in \mathbb{N}} \subset c_0$, i.e.

$$U(f) = \left(\int_{T} x_n^* fr_n \, d\lambda\right)_{n \in \mathbb{N}}, \quad f \in C(T, X).$$

By (ii), U is a rank α operator, hence by Proposition 9, the canonical extension $\widehat{U} : B(\Sigma, X) \to c_0$ of U is also a rank α operator. But $\widehat{U}(f) = (\int_T x_n^* fr_n \, d\lambda)_{n \in \mathbb{N}}$ for $f \in B(\Sigma, X)$ and obviously $r_n \otimes x_n \xrightarrow{\tau_\alpha} 0$, hence $\|\widehat{U}(r_n \otimes x_n)\| \to 0$. Now by the orthonormality of the sequence $(r_n)_{n \in \mathbb{N}}$ we have $\widehat{U}(r_n \otimes x_n) = \|x_n\| e_n$, hence $\|x_n\| \to 0$, i.e. X has rank α .

OBSERVATION 13. In Proposition 12, we can replace the non-dispersed compact Hausdorff space T by the Cantor group $\Delta = \{-1, 1\}^N$ and let λ be the Haar measure on Δ and $r_n \in C(\Delta)$ the *n*th Rademacher function on Δ , i.e. $r_n(\delta) = \delta_n$ for each $\delta \in \Delta$. In this case, it is not necessary to use the space $B(\Sigma, X)$ to prove the result. Acknowledgments. We thank the referee for his very careful reading of the manuscript, many useful suggestions and remarks.

REFERENCES

- R. Alencar and K. Floret, Weak-strong continuity of multilinear mappings and the Pelczyński-Pitt theorem, J. Math. Anal. Appl. 206 (1997), 532–546.
- [2] F. Bombal and P. Cembranos, Characterizations of some classes of operators on spaces of vector valued continuous functions, Math. Proc. Cambridge Philos. Soc. 97 (1985), 137–146.
- [3] J. Brooks and P. Lewis, *Linear operators and vector measures*, Trans. Amer. Math. Soc. 192 (1974), 139–162.
- [4] J. Diestel, Sequences and Series in Banach Spaces, Grad. Texts in Math. 92, Springer, 1984.
- [5] J. Diestel and J. J. Uhl, Vector Measures, Math. Surveys 15, Amer. Math. Soc., 1977.
- [6] N. Dinculeanu, Vector Measures, Deutscher Verlag Wiss., Berlin, 1967.
- [7] H. E. Lacey, The Isometric Theory of Classical Banach Spaces, Springer, 1974.
- [8] A. Pełczyński, A property of multilinear operations, Studia Math. 16 (1957), 173– 182.
- [9] A. Pietsch, Operator Ideals, Deutscher Verlag Wiss., Berlin, 1978; North-Holland, Amsterdam, 1980.
- [10] D. Popa, 2-absolutely summing operators on the space C(T, X), J. Math. Anal. Appl. 239 (1999), 1–6.
- [11] P. Saab, Weakly compact, unconditionally converging, and Dunford-Pettis operators on spaces of vector valued continuous functions, Math. Proc. Cambridge Philos. Soc. 95 (1984), 101–108.
- [12] H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, Deutscher Verlag Wiss., Berlin, 1978.

Department of Mathematics University of Constanța 8700 Constanța, Romania E-mail: dpopa@univ-ovidius.ro

> Received 15 March 2000; revised 12 April 2001

(3897)