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DENSE RANGE PERTURBATIONS OF HYPERCYCLIC OPERATORS

BY

LUIS BERNAL-GONZÁLEZ (Sevilla)

Abstract. We show that if (Tn) is a hypercyclic sequence of linear operators on a
locally convex space and (Sn) is a sequence of linear operators such that the image of each
orbit under every linear functional is non-dense then the sequence (Tn + Sn) has dense
range. Furthermore, it is proved that if T, S are commuting linear operators in such a
way that T is hypercyclic and all orbits under S satisfy the above non-denseness property
then T −S has dense range. Corresponding statements for operators and sequences which
are hypercyclic in a weaker sense are shown. Our results extend and improve a result on
denseness due to C. Kitai.

1. Introduction and notation. It is evident that every hypercyclic
operator has dense range. In this paper we study the preservation of this
property under suitable perturbations. Therefore, this note can be placed in
the general setting of the research of properties which are stable for opera-
tors whenever a “small” change is performed on them. Perturbation theory
for linear operators was created by Rayleigh and Schrödinger and it still
attracts the attention of many mathematicians. The topics that have been
dealt with under the optics of that theory are diverse: spectrum, normal
operators, compact operators, semi-Fredholm operators, surjectivity, dense-
ness of range, convergence problems, semigroups of operators, . . . A detailed
treatment of the topic can be found in the classical book [Ka]. For a recent
paper that deals with dense perturbations of operators with dense range,
see [CK].

Let us fix some notation and terminology. Throughout this paper X will
be a (Hausdorff) topological linear space over K, K being either the real
line R or the complex plane C. N denotes the set of positive integers. By an
operator on X we will mean a continuous linear selfmapping on X. A se-
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quence (Tn) of operators is said to be hypercyclic (resp. densely hypercyclic)
if the set HC((Tn)) = {hypercyclic vectors for (Tn)} := {x ∈ X : the orbit
{Tnx : n ∈ N} is dense} is not empty (is dense in X, respectively). An
operator T on X is called hypercyclic whenever the sequence of powers (Tn)
is hypercyclic, where T 1 = T , T 2 = T ◦ T , and so on; a vector x ∈ X is said
to be hypercyclic for T if and only if it is hypercyclic for (Tn). We denote
by HC(T ) the set of hypercyclic vectors for T . It is easy to see that (Tn) is
densely hypercyclic whenever T is hypercyclic. For a good up-to-date survey
of concepts and results on hypercyclicity, the reader is referred to [Gr].
It cannot be expected that the sum of a hypercyclic operator and a non-

hypercyclic one is hypercyclic. Indeed, on any separable infinite-dimensional
Banach spaceX there is a hypercyclic operator of the form T = I+K, where
I is the identity operator and K is a compact operator (see [An] or [B1]).
Then I = T − K has dense range but it is not hypercyclic, and K is not
hypercyclic because it is compact (see [Ki]). In fact, in the complex case, K
is quasi-nilpotent, i.e., its spectrum σ (K) reduces to {0} or, equivalently, by
Gelfand’s formula, its sequence of norms satisfies ‖Kn‖1/n → 0 (n → ∞).
In particular, each orbit {Knx : n ∈ N} (x ∈ X) is bounded. In this order
of ideas, we recall that in 1982 C. Kitai [Ki] essentially showed that if T is
hypercyclic on a complex locally convex space X and λ ∈ C then T + λI
has dense range. In fact, P (T ) has dense range for every polynomial P on C

(see [Bo]). (We point out that the latter result holds for real locally convex
spaces [Be].) Moreover, if X is a real or complex Banach space then f(T )
also has dense range for every non-constant entire function f ; under certain
conditions, f can even be assumed only analytic on certain sets [B2].
Consequently, it is natural to ask whether the property of dense range is

preserved under the addition of certain “soft” operators. This problem will
be treated in this paper both for operators and for sequences of operators.
The hypothesis of hypercyclicity can be weakened. For this, we will introduce
the notion of “almost hypercyclicity”.

2. Generalized kernel, dense range and almost hypercyclic-

ity. We start this section with a purely set-theoretic concept, which will
be needed later. If Tn : A→ B (n ∈ N) are mappings between two arbitrary
sets A,B then we say that the sequence (Tn) is one-to-one if given x, y ∈ A
with x 6= y there exists n ∈ N such that Tjx 6= Tjy for every j ≥ n.
We recall that if T is an operator on X, its generalized kernel is

K(T ) =
∞⋃

n=1

Ker(Tn) =
∞⋃

n=1

{x ∈ X : Tnx = 0}.

This notion appears in connection to hypercyclicity in, for instance, [BM],
[BP] and [HS]. If (Tn) is a sequence of operators then we define its generalized
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kernel as

K((Tn)) = lim inf
n→∞

(Ker(Tn)) =
∞⋃

n=1

∞⋂

j=n

Ker(Tj).

It is clear that K((Tn)) is always a linear submanifold ofX, and that K(T ) =
K((Tn)). Observe also that (Tn) is one-to-one if and only if K((Tn)) = {0}.
The range of an operator S on X is R(S) = {Sx : x ∈ X}, and S is said to
have dense range if R(S) = X, where A denotes the closure of any subset

A ⊂ X. Observe that T has dense range if and only if span (
⋃
∞

j=nR(T
j)) =

X (n ∈ N), because if R(T ) = X then also R(Tm) = X for each m ∈ N

and, trivially, span (
⋃
∞

j=mR(T
j)) = R(Tm) for every m. Accordingly, we

say that a sequence (Tn) of operators on X has dense range whenever

span
( ∞⋃

j=n

R(Tj)
)
= X (∀n ∈ N).

Note that if (Tn) has dense range, m ∈ N and S is an operator with dense
range, then the sequences {Tn : n ≥ m} and (STn) also have dense range.

Proposition 1. If (Tn) is a hypercyclic sequence of operators then it
has dense range.

Proof. Choose a vector x ∈ HC((Tn)). Then its orbit {Tnx : n ∈ N} is
dense and, due to the fact that each finite set {T1x, . . . , Tnx} is closed and
with empty interior, one sees that {Tjx : j ≥ n} (n ∈ N) is also dense. But,
trivially, {Tjx : j ≥ n} ⊂ span(

⋃
∞

j=nR(Tj)), so the closure of the latter set
is X for all n ∈ N, as required.

Stronger versions of Proposition 1 will be given in Theorem 3(4) and
Corollary 5.
It is well known (see, for instance, [Ho]) that if X is locally convex then

T has dense range if and only if its adjoint operator T ∗ on the topological
dual space X∗ is one-to-one. The same is true for sequences of operators, as
the following lemma asserts. It will be employed in Section 3.

Lemma 2. If (Tn) is a sequence of operators on a locally convex space
X, then (Tn) has dense range if and only if the sequence (T

∗

n) is one-to-one.

Proof. Firstly, assume that (Tn) has dense range and that, to obtain a
contradiction, (T ∗n) is not one-to-one. Then there exists ϕ ∈ X

∗ \ {0} such
that ϕ ∈ K((T ∗n)). Therefore a positive integer m can be found in such a
way that T ∗j ϕ = 0 for all j ≥ m, i.e., ϕ(Tjx) = 0 for all j ≥ m and all

x ∈ X. Hence ϕ is zero on
⋃
∞

j=mR(Tj), so it is also zero on the closure A
of the linear span of the latter set by linearity and continuity. Then A 6= X
because ϕ is not identically zero. This is absurd since (Tn) has dense range.
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Conversely, suppose that (T ∗n) is one-to-one. Again to obtain a contradic-
tion, suppose that (Tn) does not have dense range. Then there exists m ∈ N

such that A 6= X, where A is as before. Pick a vector x0 ∈ X \ A. Since A
is closed and convex, the Hahn–Banach theorem guarantees the existence of
ϕ ∈ X∗ with ϕ(x0) = 1 and ϕ(y) = 0 for all y ∈

⋃
∞

j=mR(Tj), which tells us
that ϕ 6= 0 and ϕ(Tjx) = 0 for every x ∈ X and every j ≥ m, i.e., T

∗

j ϕ = 0
(j ≥ m). Thus,

ϕ ∈
∞⋂

j=m

Ker(T j) ⊂ K((Tn)),

which is absurd.

In another order of ideas, A. Peris [Pe] has proposed the following in-
teresting problem, related to multi-hypercyclicity: If x ∈ X and T is an
operator on X such that {Tnx : n ∈ N} has nonempty interior, does this set
equal the whole space X? As far as I know, this problem remains unsolved to
date. Consequently, we introduce the following definition. Assume that (Tn)
is a sequence of operators on X. Then we say that (Tn) is almost hypercyclic
whenever there is some vector x ∈ X whose orbit under (Tn) is somewhere
dense. Similarly, an operator T on X is almost hypercyclic whenever its se-
quence of powers (Tn) is almost hypercyclic. We could define accordingly
the corresponding almost hypercyclic vectors, denoting by AHC((Tn)) and
AHC(T ) their respective sets. Trivially, hypercyclicity implies almost hyper-
cyclicity. The example Tn : x ∈ R 7→ qnx ∈ R (n ∈ N), where (qn) is an
enumeration of the rational numbers in [0, 1], shows that the converse is false.
In order to state our results, two new concepts are needed. If A ⊂ X

then we say that A is totally weakly non-dense (resp. totally weakly nowhere
dense) whenever ϕ(A) is non-dense (nowhere dense, resp.) in K for every
ϕ ∈ X∗. Clearly, if A is totally weakly nowhere dense then it is totally weakly
non-dense. For instance, every bounded set is totally weakly non-dense (but
not necessarily totally weakly nowhere dense), and every sequence of the
form {λnx0 : n ∈ N} (x0 ∈ X and λ ∈ K are fixed) is totally weakly
nowhere dense: take into account the continuity of each ϕ together with the
fact that no sequence (λn) is somewhere dense in K. But even a nowhere
dense set does not need to be totally weakly non-dense; for instance, the set
A := {(x, 0) : x ∈ R} is nowhere dense in X := R

2 but ϕ(A) is, trivially,
dense in R for all ϕ inX∗ with the sole exception of ϕ being a scalar multiple
of the x-projection (x, y) 7→ x.
To finish this section, we recall that a subset A of a topological space Y is

said to be of first category whenever it is a countable union of nowhere dense
subsets. A is said to be of second category if it is not of first category. Y is
called a Baire space if each non-empty open subset is of second category. In
a Baire space Y , a subset A is said to be residual whenever its complement
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Y \A is of first category. For instance, every complete metric space is a Baire
space (see [Ox, Chap. 9]).

3. Dense range perturbations. We are now ready to establish our
main results.

Theorem 3. Assume that (Tn), (Sn) are two sequences of operators on
a locally convex space X. We have:

(1) If (Tn) is hypercyclic and every orbit {Snx : n ∈ N} (x ∈ X) is
totally weakly non-dense then the sequence (Tn + Sn) has dense range.
(2) If (Tn) is densely hypercyclic, X is Baire metrizable and there is

a subset M ⊂ X of second category such that every orbit {Snx : n ∈ N}
(x ∈M) is totally weakly non-dense then the sequence (Tn + Sn) has dense
range.

(3) If (Tn) is almost hypercyclic and every orbit {Snx : n ∈ N} (x ∈ X)
is totally weakly nowhere dense then the sequence (Tn+Sn) has dense range.
(4) If (Tn) is almost hypercyclic then it has dense range.

Proof. Part (4) is a consequence of (3), just by taking Sn = 0 (n ∈ N). As
for (1)–(3), it is clear that we may replace (Tn+Sn) by (Tn−Sn). Suppose
that (Tn − Sn) does not have dense range. Then the sequence (T

∗

n − S
∗

n)
is not one-to-one by Lemma 2, so there exists a non-zero linear functional
ϕ ∈ K((T ∗n − S

∗

n)). This leads to the existence of a positive integer m with
ϕ(Tjx)− ϕ(Sjx) = 0 (x ∈ X, j ≥ m).
Under the hypothesis of (1), we choose a vector z ∈ HC((Tn)). Then

ϕ(Tjz) = ϕ(Sjz) (j ≥ m). But the set {ϕ(Sjz) : j ≥ m} is not dense in K,
by hypothesis. However, ϕ is onto since ϕ 6= 0, and {Tjz : j ≥ m} is dense
(see beginning of the proof of Proposition 1). Hence the set {ϕ(Tjz) : j ≥ m}
is dense in K. This contradiction proves the result.
Under the hypothesis of (2), we know that X is metrizable and sepa-

rable (this is guaranteed by the existence of a hypercyclic vector), so that
HC((Tn)) is a Gδ-subset (see [Gr, p. 349]). Since it is, in addition, dense, it
turns out that it is residual in the Baire space X. ThereforeM ∩HC((Tn)) is
non-empty. If we choose a vector z in that intersection then we can conclude
the desired result in the same way as above.
If we start from (3) then we can choose a vector z ∈ AHC((Tn)). Then

ϕ(Tjz) = ϕ(Sjz) (j ≥ m). This time the set {ϕ(Sjz) : j ≥ m} is nowhere
dense. But the closure of {Tjz : j ∈ N} contains some non-empty open set
U , so the closure of {Tjz : j ≥ m} also does. Since ϕ 6= 0, it is an open
mapping, so ϕ(U) is a non-empty subset of K. The continuity of ϕ yields

ϕ({Tjz : j ≥ m}) ⊃ ϕ({Tjz : j ≥ m}) ⊃ ϕ(U),

which contradicts the hypothesis. The proof is finished.
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Note that Theorem 3 can be applied if, for instance, Sn = λnI (n ∈ N)
with (λn) a non-dense/nowhere dense sequence of scalars (for (1), (3), resp.),
or if every orbit {Snx : n ∈ N} (x ∈ X) is bounded (for (1)), which in turn
holds whenever X is a normed space and the sequence (‖Sn‖) of norms is
bounded. In order to illustrate Theorem 3, let us give the following rather
natural example. Let X be a separable normed space and fix a vector u ∈ X
with norm ‖u‖ = 1. Then each vector x in X can be uniquely written as
x = au+ y with a ∈ K, y ∈ Y , where Y is a complementary linear subspace
to 〈u〉, the set of scalar multiples of u. The projection Px := au is an
operator on X. Fix a dense sequence (xn) in X. Define the sequence (Tn)
of operators by Tnx = axn, that is, Tn is the rank-one operator projecting
u to xn. It is clear that (Tn) is hypercyclic; it is in fact densely hypercyclic
since HC((Tn)) ⊃ {au+y : a ∈ K\{0}, y ∈ Y }. Now, consider the sequence
n1 < n2 < n3 < . . . of positive integers satisfying

{xnj : j ∈ N} = {xn : n ∈ N} ∩ {x ∈ X : ‖x‖ ≤ 1}.

Define the sequence (Sn) of operators by

Sn =

{
−Tnj if n = nj ,
0 if n 6= nj for all j ∈ N.

Evidently, ‖Sn‖ ≤ ‖P‖ for all n ∈ N. Therefore the sequence (Tn + Sn) has
dense range by Theorem 3(1). Nevertheless, it is not hypercyclic, because if
x = 0 ·u+ y then x is trivially non-hypercyclic and if x = au+ y with a 6= 0
then the orbit (Tnx+ Snx) cannot approximate any non-zero vector in the
ball {‖x‖ < |a|}.
In our next result, we deal with preservation of the dense range property

of a single operator T if the “perturbing” operator S commutes with T (see
parts (1)–(4)). Part (5) improves some of the results contained in Theorems
3–4 of [B2]. We denote, as usual, by σ(T ) the spectrum of T and by σP(T )
the point spectrum of T , that is, σP(T ) is the set of eigenvalues of T .

Theorem 4. Assume that T, S are commuting operators on a locally
convex space X. We have:

(1) If T is hypercyclic and for every x ∈ X the orbit {Snx : n ∈ N} is
totally weakly non-dense then T − S has dense range.
(2) If X is Baire metrizable, T is hypercyclic and there exists a subset

M ⊂ X of second category such that for every x ∈ M the orbit {Snx :
n ∈ N} is totally weakly non-dense then T − S has dense range.
(3) If T is almost hypercyclic and for every x ∈ X the orbit {Snx :

n ∈ N} is totally weakly nowhere dense then T − S has dense range.
(4) If X is an F-space, T is onto and almost hypercyclic and there exists

a residual subset M ⊂ X such that for every x ∈M the orbit {Snx : n ∈ N}
is totally weakly nowhere dense, then T − S has dense range.
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(5) Assume that X is a Banach space and that T is almost hypercyclic. If
X is complex and f is an analytic function on an open set Ω ⊂ C containing

σ(T ) and f is non-constant on every connected component of Ω then f(T )
has dense range. If X is real and f is a real-analytic function that extends

holomorphically to some open set Ω ⊂ C containing σ(T̃ ), where T̃ is the
complexification of T , and f is non-constant on every component of Ω, then
f(T ) has dense range.

Proof. Let us prove (1). To obtain a contradiction, assume that T − S
does not have dense range, so its adjoint operator T ∗−S∗ is not one-to-one.
Consequently, there is ϕ ∈ X∗\{0} with (T ∗−S∗)ϕ = 0, i.e., ϕ(Tx) = ϕ(Sx)
for all x ∈ X. Since T and S commute, we obtain

ϕ(T 2x) = ϕ(TTx) = ϕ(STx) = ϕ(TSx) = ϕ(SSx) = ϕ(S2x),

so ϕ(T 2x) = ϕ(S2x) for all x ∈ X. An induction procedure leads to
ϕ(Tnx) = ϕ(Snx) for all n ∈ N. Pick a hypercyclic vector z for T . Then the
set {ϕ(Snz) : n ∈ N} is not dense in K, the orbit {Tnz : n ∈ N} is dense in
X and ϕ(Tnz) = ϕ(Snz) (n ∈ N). This gives us the desired contradiction
because ϕ 6= 0 (hence onto) and, consequently, the set {ϕ(Snx) : n ∈ N}
should be dense in K.
The proof of (2) is analogous, just by taking into account that X must be

separable and, as in the proof of Theorem 3, the set HC(T ) of T -hypercyclic
vectors is dense and Gδ, so residual in the Baire space X. Then the vector z
can be chosen inM and the remainder of the argument is similar to case (1).
As for (3), by following the way of contradiction of (1), we would obtain

ϕ(Tnz) = ϕ(Snz) for all n ∈ N, where z ∈ AHC(T ). Since ϕ 6= 0, it is open.
This property together with the continuity of ϕ shows that the closure of
{ϕ(Tnz) : n ∈ N} contains a non-empty open set, which contradicts the fact
that the closure of {ϕ(Snz) : n ∈ N} has empty interior.
Assume now that the hypotheses of (4) are fulfilled, and let z ∈ AHC(T ).

Then there is a non-empty open subset U with {Tnz : n ∈ N} ⊃ U . Ifm ∈ N,
we have

{Tn(Tmz) : n ∈ N} = {Tm(Tnz) : n ∈ N} ⊃ Tm({Tnz : n ∈ N}) ⊃ Tm(U).

Since T is onto, Tm is also onto, so it is open by the Open Mapping Theorem,
because X is an F-space. Then Tm(U) is a non-empty open set, whence
Tmz ∈ AHC(T ) for every m. Therefore AHC(T ) contains the orbit of z,
so AHC(T ) is somewhere dense; in particular, it is of second category. This
implies that M ∩ AHC(T ) 6= ∅. Thus, we can choose a vector z in that
intersection, and the remainder of the argument is as in case (3).
Finally, assume that T is almost hypercyclic on a complex Banach space

X, and that f is as in the hypothesis of (5). We follow the steps of [B2].
By a special version of the spectral mapping theorem [Ru, Theorem 10.33],
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σP(f(T
∗)) = f(σP(T

∗)). From part (3) (see Corollary 5) we see that T −λI
has dense range for any scalar λ. Then σP(T

∗) cannot contain any scalar λ,
i.e., σP(T

∗) = ∅. Hence σP(f(T
∗)) = ∅. But f(T ∗) = f(T )∗, so σP(f(T )

∗)
= ∅. In particular, 0 6∈ σP(f(T )

∗), so f(T )∗ is one-to-one. Consequently,
f(T ) has dense range.

Assume now that X is real and that f is a real-analytic function as in
the hypothesis. Recall that if X̃ = X+ iX is the complexification of X then
the complexification T̃ of T is defined on X̃ as T̃ (x+ iy) = Tx+ iTy. Since

T is almost hypercyclic, we have σP((T̃ )
∗) = ∅. Indeed, if λ ∈ C, ϕ ∈ (X̃)∗

are an eigenvalue and a corresponding eigenvector of (T̃ )∗ and x ∈ AHC(T ),

then {|ϕ(Tnx)| : n ∈ N} = {|ϕ(T̃nx)| : n ∈ N} = {|(T̃ )∗nϕ(x)| : n ∈ N}
= {|λ|n|ϕ(x)| : n ∈ N} and, while the closure of the first set contains a
non-empty open set of (0,∞) (because ϕ is open), the closure of the latter
is obviously empty (at this step we have mimicked the proof of a recent
result of Bonet and Peris [Bn, p. 592]). Thus, again by the spectral mapping
theorem,

σP(f((T̃ )
∗)) = f(σP((T̃ )

∗)) = ∅.

In particular, f(T̃ )∗ = f((T̃ )∗) is one-to-one, and so f̃(T ) = f(T̃ ) has dense
range. Thus, f(T ) also has dense range, which concludes the proof.

Observe that we recover and even improve Kitai’s result on denseness (see
Section 1). It suffices to take S = −λI in part (3). The following corollary
is obtained (compare [Mi, Theorem 4]).

Corollary 5. If T is an almost hypercyclic operator on a locally convex
space, then T +λI has dense range for every scalar λ. In particular , T itself
has dense range.

As before, Theorem 4 can be applied if X is a normed space and {‖Sn‖ :
n ∈ N} is bounded (for (1)–(2)), which in turn is satisfied if X is a complex
Banach space and σ(S) is contained in the open unit disk (in particular,
this holds whenever S is quasi-nilpotent). In the latter case, (3)–(4) might
be applied: indeed, (Snx) converges to zero for all x ∈ X, so (ϕ(Snx)) tends
to zero for all ϕ ∈ X∗, hence each orbit would be totally nowhere dense.

We point out that the statement of Theorem 4 does not hold if X is
not locally convex. For instance, if 0 < p < 1 and X = Lp[0, 1] then there
are continuous selfmappings ϕ : [0, 1] → [0, 1] such that the composition
operator Tf = f ◦ ϕ is hypercyclic (see [Gr, Remark 4(b)]). Here X is a
metrizable non-locally convex topological linear space with X∗ = {0} (see,
for instance, [PU]). Hence, trivially, every subset of X is totally weakly
non-dense and by taking S = T in Theorem 4 we would find that the null
operator has dense range, which is absurd.
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To finish, let us remark that an analogous theorem in the setting of
supercyclicity is not possible. We recall that an operator T on a topological
linear space is called supercyclic whenever the set {λTnx : n∈N, λ∈K} is
dense in X. It is trivial that supercyclic operators also have dense range.
G. Herzog [He] showed that every infinite-dimensional separable Banach
space supports a compact supercyclic operator T . But for this operator,
I+T is hypercyclic (see [An] or [B1]), so T is quasi-nilpotent. Thus, the null
operator, which trivially does not have dense range, equals T (supercyclic)
minus T (quasi-nilpotent).
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[Ox] J. C. Oxtoby, Measure and Category, 2nd ed., Springer, New York, 1980.
[Pe] A. Peris,Multi-hypercyclic operators are hypercyclic, Math. Z. 236 (2001), 779–786.
[PU] E. Pflaumann and H. Unger, Funktionalanalysis–I , Bibliographisches Institut AG,

Mannheim, 1968.
[Ru] W. Rudin, Functional Analysis, McGraw-Hill, New York, 1991.

Departamento de Análisis Matemático
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