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UNCONDITIONAL BIORTHOGONAL WAVELET BASES IN Lp(Rd)

BY

WALDEMAR POMPE (Darmstadt)

Abstract. We prove that a biorthogonal wavelet basis yields an unconditional basis
in all spaces Lp(Rd) with 1 < p < ∞, provided the biorthogonal wavelet set functions
satisfy weak decay conditions. The biorthogonal wavelet set is associated with an arbitrary
dilation matrix in any dimension.

0. Introduction. The most common and known wavelet sets are those
constructed from the dilation matrix A = 2 · Id. It seems, however, that the
existence of wavelet sets for an arbitrary dilation matrix A is also of practi-
cal interest. In recent years many such constructions have been found. For
instance, in [CD] the multiresolution analysis is used to build bidimensional
compactly supported wavelets, provided |detA| = 2 and A has integer en-
tries. In [Ma] there is a construction of a Cr multiresolution analysis for an
arbitrary dilation matrix A with integer entries. This gives a (|detA| − 1)-
element wavelet set associated to A. Another construction of a wavelet set
for any dilation matrix A is shown in [DLS], which actually gives an ex-
ample of a single wavelet (i.e. the wavelet set has one element). If the dila-
tion matrix A with integer entries has a self-affine tiling, it is possible (see
[GM]) to find a wavelet set whose elements take only a finite number of val-
ues. This generalizes the classical Haar wavelet in one dimension. With the
same assumption on A, the paper [Str] contains a construction of a wavelet
set which is r-regular. Although there exist dilation matrices having integer
entries and no self-affine tilings (see [LW1] and [LW2]), it is nonetheless pos-
sible to construct r-regular wavelets associated to those matrices (see [Bo]).
For practical reasons, biorthogonal wavelets are sometimes considered

instead of orthogonal ones. The paper [LG] explains in detail why this gener-
alization is of interest. Some examples of biorthogonal compactly supported
wavelets in two dimensions (with A 6= 2 · Id) are given in [CD] and [CS].
It has been proved that, under some (decay) assumptions on the wavelet

set functions, (bi)orthogonal wavelet sets yield unconditional bases in all Lp

spaces (1 < p < ∞) (see [Gr], [Me], [W1], [W2], [FW]). However, all those
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papers consider only the case A = 2 · Id, and most of them are in dimension
d = 1. A theorem which applies to the widest class of one-dimensional
examples is given in [W2]. Its biorthogonal version has been proved in [FW].
The aim of this paper is to extend this theorem to any dimension d and any
dilation matrix A, so that the resulting theorem applies to the recently
constructed examples (quoted above) and proves their unconditionality in
all Lp(Rd) spaces with 1 < p < ∞. We will only require a weak decay
condition on the wavelet set functions (condition (2.2)), similar to one used
in [W2]. Although the general scheme of our proof follows in fact [W2] and
[FW], we had to overcome several (technical) difficulties arising from the
geometry of A as well as from the dimension d being >1. As a result, we
obtain a theorem which generalizes that of [W2]. Moreover it easily applies
to the examples constructed in [Bo], [GM], [Str], [CD] and [CS] and proves
their unconditionality in all Lp(Rd) spaces, which has been an open question.

Acknowledgements. This paper is an extension of my 1998 master’s
thesis at Warsaw University written under the supervision of Prof. P. Woj-
taszczyk. I would like to offer him my cordial thanks for plenty of hours
of conversation as well as for reading the manuscript and correcting errors.
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improvements.

1. Basic definitions and theorems. In order to make this paper self-
contained, we recall/introduce some definitions and a theorem which we will
use.

Definition 1.1. A real matrix A is called a dilation matrix if every
eigenvalue λ of A satisfies the inequality |λ| > 1.

In the theory of wavelets an additional assumption on A is usually made:
The entries of A are integers. This assumption allows one to use the method
of multiresolution analysis to construct examples of wavelet sets. Since we
will not be using this additional condition in what follows, nor does it sim-
plify the proof, we have not included it in the definition.

Definition 1.2. Let A be a d × d dilation matrix. An n-element set of
pairs of complex-valued functions (Ψ1(x), Φ1(x)), . . . , (Ψn(x), Φn(x)) from
L2(Rd) is called a biorthogonal wavelet set if:

(i) the families {Ψmjk}, {Φ
m
jk}, with j ∈ Z, k ∈ Zd, m ∈ {1, . . . , n}, form

Riesz bases in L2(Rd), where

Ψmjk(x) = |detA|
j/2Ψm(Ajx− k), Φmjk(x) = |detA|

j/2Φm(Ajx− k);
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(ii) the system (Ψmjk, Φ
m
jk) is biorthogonal, that is,

〈Ψmjk, Φ
m′

j′k′〉 =
\

Rd

Ψmjk(x)Φ
m′

j′k′(x) dx =
{
1 if (j, k,m) = (j′, k′,m′),
0 otherwise.

If Ψm = Φm then the set Ψ1, . . . , Ψn is called a wavelet set. In case d = 1,
n = 1, A = [2] the function ψ(x) = Ψ1(x) is called a wavelet.

Definition 1.3. A biorthogonal system (xn, x
∗
n) in a Banach space X

is called an unconditional basis if for every x ∈ X the series
∑∞
n=1〈x, x

∗
n〉xn

converges to x unconditionally in norm.

The following theorem gives a very useful characterization of an uncon-
ditional basis.

Theorem 1.4. Let (xn, x
∗
n) be a biorthogonal system in a Banach space

X such that the set {xn} is linearly dense in X. Assume that there exists a
constant c such that for all finite subsets S ⊂ N and x ∈ X,

∥∥∥
∑

n∈S

〈x, x∗n〉xn

∥∥∥ ≤ c‖x‖.

Then (xn, x
∗
n) is an unconditional basis in X.

The proof can be found in [W1, p. 174, Theorem 7.7(i)].

2. The main theorem. Before we state our main theorem, we need a
few definitions.

Definition 2.1. Let A be a d× d dilation matrix. We will say that the
set B ⊂ Rd is A-balanced if it is bounded, open, convex, centrally symmetric
about 0 and there exists 0 < q < 1 such that B ⊆ qAB.

The question arises whether for every dilation matrix A there exists an
A-balanced set. The answer turns out to be affirmative and the proof follows
immediately from the following theorem:

Theorem 2.2. Let L be a d× d matrix with real entries. Then

̺(L) = inf ‖L‖,

where ‖ · ‖ denotes the norm of L as a linear mapping L : Rd → Rd; the
infimum is taken over all norms on Rd, and ̺(L) denotes the spectral radius
of the matrix L.

We omit the proof of this theorem; it can be found in [BL, Theorem 2.1.2,
p. 33].
Applying Theorem 2.2 to L = A−1, we infer that there exist 0 < q < 1

and a norm | · | on Rd such that |u| ≤ q|Au| for u ∈ Rd. Then the set
B = {x ∈ Rd : |x| < 1} is A-balanced.
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We will use the following notation: If B is an A-balanced set, then we
put

Bj = A
j+1B \AjB for j ∈ N0 := {0, 1, 2, . . .}.

Since B ⊂ AB, the sets Bj are disjoint. From the assumption B ⊆ qAB it
follows that q−jB ⊆ AjB for j ≥ 0, which gives

⋃
j∈N0

Bj = Rd \B.

Definition 2.3. Let A be a d× d dilation matrix. We will say that the
function ϕ : Rd → R is A-radial if it is integrable, non-negative and for some
A-balanced set B, the function ϕ is constant on the sets B,B0, B1, B2, . . .
and non-increasing in the following sense:

(2.1) if x ∈ R
d and i ≥ j, then ϕ(Aix) ≤ ϕ(Ajx).

Now we are ready to formulate the main theorem of this paper.

Theorem 2.4. Let (Ψ1(x), Φ1(x)), . . . , (Ψn(x), Φn(x)) be a biorthogonal
wavelet set in L2(Rd) associated with a dilation matrix A. Let ϕ be an A-
radial function satisfying

(2.2)
\

Rd

ϕ(u) ln(|u|e + 1) du <∞,

where |u|2e = u21 + . . . + u
2
d for u = (u1, . . . , ud). If |Ψ

m(x)| ≤ ϕ(x) and
|Φm(x)| ≤ ϕ(x) for x ∈ Rd and every m ∈ {1, . . . , n}, then the biorthogonal
system (Ψmjk, Φ

m
jk) form an unconditional basis in all L

p(Rd) spaces with
1 < p <∞.

Remarks. Since all norms in Rd are equivalent, the condition (2.2) is
equivalent to

(2.3)
\

Rd

ϕ(u) ln(|u|+ 1) du <∞,

where | · | is an arbitrary norm of Rd. The function ϕ is bounded and inte-
grable on Rd, so the condition (2.3) can also be restated in the form

(2.4)
\

Rd\B′

ϕ(u)(1 + ln |u|) du <∞,

where B′ = {u ∈ Rd : |u| < 1}.

The size of the A-balanced set B associated with ϕ depends on the given
A-radial function ϕ. However, redefining ϕ(x) to be ϕ(Asx) and taking s
sufficiently small, we may assume that the A-balanced set B associated with
ϕ is arbitrarily large. In particular, we will assume that

(2.5)
⋃

k∈Zd

(B + k) = R
d.
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3. Proof of Theorem 2.4. In what follows, we use the following no-
tation. For an A-balanced set B, we put

B(y, r) = ArB + y (y ∈ R
d, r ∈ Z).

If x ∈ Rd, we set |x| = |x|B = inf{t > 0 : t
−1x ∈ B}. Then | · | is a norm in

Rd. For a measurable set X ⊂ Rd, |X| denotes the Lebesgue measure of X.

Lemma 3.1. Let B be an A-balanced set with B ⊆ qAB (0 < q < 1).
Then there exists a positive integer ℓ such that for all y, y ∈ Rd and r ∈ Z

the following condition holds:

(3.1) if B(y, r) ∩B(y, r) 6= ∅, then B(y, r) ⊂ B(y, r + ℓ).

Moreover , the number ℓ depends only on q.

Proof. Define ℓ to be a positive integer such that qℓ ≤ 1/3. Since B(y, r)
∩B(y, r) 6= ∅, we obtain (B+A−r(y−y))∩B 6= ∅. Therefore B+A−r(y−y)
⊂ 3B ⊆ q−ℓB ⊆ AℓB. This gives the inclusion B(y, r) ⊂ B(y, r + ℓ).

In this paper, ℓ always denotes the positive integer satisfying (3.1).

Theorem 3.2 (Calderón–Zygmund decomposition). Let B be a fixed A-
balanced set. Then for every f ∈ L1(Rd) and λ > 0, there exists an at most
countable set I ⊂ Rd×Z and a constant c > 0, independent of f and λ, such
that :

(i) |B(y, r)|−1
T
B(y,r)

|f(t)| dt ≤ cλ for (y, r) ∈ I,

(ii) |f(x)| ≤ λ almost everywhere on Rd \
⋃
(y,r)∈I

B(y, r),

(iii)
∑
(y,r)∈I

|B(y, r)| ≤ (c/λ)‖f‖1.

Moreover , there exists a positive integer κ, independent of f and λ, such
that for (y, r) ∈ I the sets B(y, r − κ) are disjoint.

Proof. For y ∈ Rd and δ > 0 set B(y, δ) = B(y, [log2 δ]). Then the
following conditions hold:

(a) B(y, δ1) ⊆ B(y, δ2) for δ1 < δ2;

(b)
⋃
δ>0 B(y, δ) = Rd,

⋂
δ>0 B(y, δ) = {y};

(c) B(y, δ) ∩ B(y, δ) 6= ∅ ⇒ B(y, δ) ⊂ B(y, 2ℓδ);

(d) |B(y, 2δ)| = |detA| · |B(y, δ)|;

(e) for a fixed measurable set U and δ > 0 the function y 7→ |B(y, δ)∩U |
is continuous.

Indeed, (a) follows immediately from B ⊂ AB; the equalities in (b) are
simple consequences of

q−rB+y ⊆ ArB+y = B(y, r), B(y,−r) = A−rB+y ⊆ qrB+y (r > 0),
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respectively. Part (c) is just a rewording of Lemma 3.1; (d) follows at once
from the definitions of the sets B(y, r) and B(y, δ). To see (e) note that

|B(y, δ) ∩ U | = 1B(0,δ) ∗ 1U (y),

which is clearly continuous.
Therefore for the sets B(y, δ) with y ∈ Rd and δ > 0 the conditions

(i)–(iv) of [St, pp. 8–9] are satisfied. Thus the assertion of the theorem
follows immediately from [St, Lemma 2 (p. 15), Theorem 2 (p. 17) and the
construction in the proof of Theorem 2 (pp. 17–18)]. (We remark that taking
a closer look at the proof of [St, Lemma 2 (p. 15)] one may put κ = 2ℓ.)

Lemma 3.3. For every A-radial function β and every j ≥ 0, there exists
a constant c = c(β, j) such that for every x ∈ Rd,

∑

k∈Zd

β(x−A−jk) ≤ c.

Proof. Let B be the A-balanced set associated with β. Fix x ∈ Rd and
choose 0 < t < 1 such that the sets Ck = tB − (A

jx− k) are pairwise
disjoint. By Lemma 3.1, each A−jCk may intersect at most ℓ + 1 different
sets among B,B0, B1, B2, . . . , whence taking into account the form of β, we
have the estimate

β(x−A−jk) ≤ inf
u∈A−(j+ℓ)Ck

β(u) for k ∈ Z
d.

The sets A−(j+ℓ)Ck are disjoint, so

|tA−(j+ℓ)B|
∑

k∈Zd

β(x−A−jk) ≤
∑

k∈Zd

|A−(j+ℓ)Ck| inf
u∈A−(j+ℓ)Ck

β(u)

≤
\

Rd

β(u) du,

which completes the proof.

Lemma 3.4. Let β(x) be an A-radial function and put β̃(x) = β(x/2).
Then for all t, u ∈ Rd the following inequality holds:

∑

k∈Zd

β(t− k)β(u− k) ≤ cβ̃(t− u),

where c does not depend on t and u.

Proof. Let B be the A-balanced set associated with β. Let p be the
largest integer such that the set B(t, p) does not contain the vector 12 (t+u).
Since the sets B(y, r) have centers of symmetry, p is the largest integer such
that B(u, p) does not contain 12 (t + u). The sets B(y, r) are also convex,
so there exists a hyperplane π1 of dimension d − 1 separating B(t, p) and
B(u, p). Let π2 be the hyperplane symmetrical to π1 with respect to the point
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1
2 (t + u); then π2 is parallel to π1 and also separates B(t, p) and B(u, p).
Therefore the hyperplane parallel to π1 and π2, passing through

1
2 (t + u),

separates B(t, p), B(u, p) as well and divides Rd into two disjoint half-spaces
H1 and H2 with B(t, p) ⊂ H1, B(u, p) ⊂ H2. Then

β(u− k) ≤ β
(
u− 12 (t+ u)

)
= β
(
1
2 (t− u)

)
for k ∈ H1,

β(t− k) ≤ β
(
t− 12 (t+ u)

)
= β
(
1
2 (t− u)

)
for k ∈ H2.

Thus we obtain
∑

k∈Zd

β(t− k)β(u− k) ≤
∑

k∈H1

β(t− k)β
(
1
2 (t− u)

)
+
∑

k∈H2

β
(
1
2 (t− u)

)
β(u− k)

≤ 2cβ̃(t− u),

where c is the constant from Lemma 3.3.

From now on, let B denote the A-balanced set associated with ϕ. We set
B̃j = 2Bj for j ∈ N0, B̃ = 2B, ϕ̃(u) = ϕ(u/2) for u ∈ Rd and

η̃(u) = 1
Rd\B̃(u)

∑

j≥0

|detA|jϕ̃(Aju).

We show below (Lemma 3.5) that the above series is convergent for u 6∈ B̃,
so the above definition makes sense.

Since the function ϕ̃(u) is constant on the sets B̃, B̃j (j ∈ N0), the func-
tion η̃(u) is also constant on these sets and satisfies the condition analogous
to (2.1):

if x ∈ R
d \ B̃ and i ≥ j ≥ 0, then η̃(Aix) ≤ η̃(Ajx).

Lemma 3.5. η̃ ∈ L1(Rd).

Proof. Let η(u) = η̃(2u) for u ∈ Rd. We show that η ∈ L1(Rd). We have

η(u) = 1Rd\B(u)
∑

j≥0

|detA|jϕ(Aju).

Fix j ≥ 0 and assume that u ∈ Bj . Then A
jt = u for some t ∈ B0. Since

B ⊆ qAB,

‖A−1‖ = sup
|x|=1

|A−1x| ≤ q < 1,

whence we get 1 ≤ |t| = |A−jAjt| ≤ ‖A−1‖j · |Ajt| ≤ qj |u|.

Thus we have shown that there exists a constant c > 0 such that if
u ∈ Bj (for some j ≥ 0), then e

cj ≤ |u|. Therefore
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Rd

η(u) du =
∑

j≥0

\
Rd\B

|detA|jϕ(Aju) du =
∑

j≥0

\
Rd\AjB

ϕ(u) du

=
∑

j≥0

\
Bj

(j + 1)ϕ(u) du ≤ c−1
∑

j≥0

\
Bj

ϕ(u)(1 + ln |u|) du

= c−1
\

Rd\B

ϕ(u)(1 + ln |u|) du,

which is finite according to (2.4).

Let S be an arbitrary subset of {1, . . . , n} × Z× Zd. Define

(3.2) USf =
∑

(m,j,k)∈S

〈f, Φmjk〉Ψ
m
jk.

Then for every finite set S the operator US is bounded on L
p(Rd) where

1 ≤ p ≤ ∞. If S is an arbitrary set, not necessarily finite, then the above
series, understood as a limit in L2(Rd), is well defined and it follows from
Definition 1.2 that ‖USf‖2 ≤ c‖f‖2 for f ∈ L

2(Rd). Here c is a constant
independent of S.

As a special case, fix r ∈ Z and consider

S(r) = {(m, j, k) ∈ {1, . . . , n} × Z× Z
d : j < −r},

T (r) = {(m, j, k) ∈ {1, . . . , n} × Z× Z
d : j ≥ −r}.

Set Prf = US(r)f , Qrf = UT (r)f . Then Prf +Qrf = f for f ∈ L
2(Rd).

If y ∈ Rd, r ∈ Z, then we define

B∗(y, r) = B(y, r) + 2B(0, r) = {x+ 2t : x ∈ B(y, r), t ∈ B(0, r)}

and analogously B∗ = B + 2B (= B + B̃).

Lemma 3.6. There exists an A-radial function α such that for all func-
tions f ∈ L1(Rd) ∩ L2(Rd) satisfying f(u) = 0 for u 6∈ B(y, r), and every
S ⊆ {1, . . . , n} × Z× Zd,

(3.3) |USQrf(x)|

≤ ‖f‖1 · |detA|
−rα(A−rx−A−ry) for x ∈ R

d \B∗(y, r),

(3.4) |Prf(x)| ≤ ‖f‖1 · |detA|
−rα(A−rx−A−ry) for x ∈ R

d.

Moreover , α is constant on the sets AℓB̃, B̃ℓ, B̃ℓ+1, B̃ℓ+2, . . .

Proof. Using the substitution formula for integration, it suffices to prove
(3.3) for r = 0, y = 0. Since f ∈ L1(Rd) ∩ L2(Rd),

|USQ0f(x)| ≤
\

Rd

|f(t)| ·K(x, t) dt (x ∈ R
d),
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where

K(x, t) =
n∑

m=1

∑

j≥0

|detA|j
∑

k∈Zd

|Φm(Ajx− k)Ψm(Ajt− k)|.

Assume that x 6∈ B∗ and t ∈ B. Then x− t 6∈ B̃, which by Lemma 3.4 gives

K(x, t) ≤ n
∑

j≥0

|detA|j
∑

k∈Zd

ϕ(Ajx− k)ϕ(Ajt− k)

≤ 2cn
∑

j≥0

|detA|jϕ̃(Aj(x− t)) = 2cnη̃(x− t),

where c is the constant from Lemma 3.3.

Define

α(x) =

{
2cnβ for x ∈ AℓB̃,
2cnη̃(A−ℓx) otherwise,

where

β = max

(
the value of η̃ on B̃0;

ϕ̃(0)

|detA| − 1

)
.

Then α is an A-radial function. By Lemma 3.1, each of the sets

x+B = {x+ u : u ∈ B}, where x ∈ R
d,

may intersect at most ℓ+1 of the sets B̃, B̃0, B̃1, B̃2, . . . Therefore we obtain

2cn sup
t∈x+B

η̃(t) ≤ α(x) for x ∈ R
d.

Moreover B∗ ⊂ AℓB ⊂ AℓB̃, whence α(x) = 2cnβ for x ∈ B∗.

We know that f(u) = 0 for u 6∈ B, so if x 6∈ B∗ we get

|USQ0f(x)| ≤
\
B

|f(t)| ·K(x, t) dt ≤ 2cn
\

Rd

|f(t)|η̃(x− t) dt

≤ ‖f‖1 · 2cn sup
t∈x+B

η̃(t) ≤ ‖f‖1 · α(x),

which completes the proof of (3.3).

To prove (3.4), it suffices to take r = 0, y = 0. Using (3.3) for S =
{1, . . . , n} × Z× Zd, r = 0, y = 0 and recalling that f(u) = 0 for u 6∈ B we
obtain

|P0f(x)| = |Q0f(x)| ≤ ‖f‖1 · α(x) for x 6∈ B∗.

For x ∈ Rd we have

|P0f(x)| ≤
\

Rd

|f(t)| ·K(x, t) dt,
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where

K(x, t) =
n∑

m=1

∑

j<0

|detA|j
∑

k∈Zd

|Φm(Ajx− k)Ψm(Ajt− k)|.

Thus

K(x, t) ≤ n
∑

j<0

|detA|j
∑

k∈Zd

ϕ(Ajx− k)ϕ(Ajt− k)

≤ 2cn
∑

j<0

|detA|jϕ̃(Aj(x− t)) ≤ 2cn
ϕ̃(0)

|detA| − 1
≤ 2cnβ,

whence |P0f(x)| ≤ ‖f‖1 ·α(x) for x ∈ B
∗, which completes the proof of (3.4).

Theorem 3.7. If S is a finite subset of {1, . . . , n} × Z × Zd, then the
operators US defined by (3.2) are of weak type (1, 1) with the weak-type con-
stant independent of S; i.e. there exists a constant c such that for every
finite set S and every f ∈ L1(Rd),

|{x ∈ R
d : |USf(x)| > λ}| ≤

c

λ
‖f‖1.

Proof. Fix λ > 0 and assume first that f ∈ L1(Rd) ∩ L2(Rd). We find
an at most countable subset I ⊂ Rd × Z, sets B(y, r) ((y, r) ∈ I) and a
positive integer κ such that the conclusion of Theorem 3.2 is satisfied. Then
there exist disjoint measurable sets R(y, r) such that B(y, r−κ) ⊆ R(y, r) ⊆
B(y, r) for (y, r) ∈ I and

⋃

(y,r)∈I

R(y, r) =
⋃

(y,r)∈I

B(y, r).

Put
fyr = f · 1R(y,r), F = R

d \
⋃

(y,r)∈I

R(y, r).

Let moreover (IN )N∈N be a non-decreasing family of finite subsets of I such
that
⋃
N∈N

IN = I. Set

fN = f ·1F+
∑

(y,r)∈IN

fyr = f ·1F+
∑

(y,r)∈IN

Qrfyr+
∑

(y,r)∈IN

Prfyr =: g1+g2+g3.

Since US is linear,

{x ∈ R
d : |USfN (x)| > λ/4} ⊆

3⋃

j=1

{x ∈ R
d : |USgj(x)| > λ/12},

whence

(3.5) |{x ∈ R
d : |USfN (x)| > λ/4}| ≤

3∑

j=1

|{x ∈ R
d : |USgj(x)| > λ/12}|.

Using Chebyshev’s inequality, the inequality ‖USg1‖2 ≤ c‖g1‖2 and Theo-
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rem 3.2(ii) we obtain

|{x ∈ R
d : |USg1(x)| > λ/12}| ≤

144

λ2

\
Rd

|USg1(x)|
2 dx(3.6)

≤
c

λ2

\
F

|f(x)|2 dx ≤
c

λ

\
F

|f(x)| dx

≤
c

λ
‖f‖1.

Set F ∗ = Rd \
⋃
(y,r)∈I

B∗(y, r). From Lemma 3.6 we have\
F∗

∣∣∣US
∑

(y,r)∈IN

Qrfyr(x)
∣∣∣ dx ≤

∑

(y,r)∈IN

\
Rd\B∗(y,r)

|USQrfyr(x)| dx

≤
∑

(y,r)∈IN

‖fyr‖1
\

Rd\B∗(y,r)

|detA|−rα(A−rx−A−ry) dx

≤
∑

(y,r)∈IN

‖fyr‖1
\

Rd

α(x) dx ≤ c‖f‖1,

whence from Chebyshev’s inequality we get

(3.7) |{x ∈ F ∗ : |USg2(x)| > λ/12}| ≤
12

λ

\
F∗

|USg2(x)| dx ≤
c

λ
‖f‖1.

Since |B∗(y, r)| = 3d|B(y, r)|, using Theorem 3.2(iii) we obtain

(3.8) |Rd \ F ∗| ≤
∑

(y,r)∈I

|B∗(y, r)| = 3d
∑

(y,r)∈I

|B(y, r)| ≤
c

λ
‖f‖1.

Inequalities (3.7) and (3.8) give

(3.9) |{x ∈ R
d : |USg2(x)| > λ/12}|

≤ |Rd \ F ∗|+ |{x ∈ F ∗ : |USg2(x)| > λ/12}| ≤
c

λ
‖f‖1.

We now prove that

(3.10)
∥∥∥
∑

(y,r)∈IN

Prfyr

∥∥∥
2

2
≤ cλ‖f‖1,

where c is a constant independent of f , λ and N . Using (3.4) and Theo-
rem 3.2(i), we obtain

∥∥∥
∑

(y,r)∈IN

Prfyr

∥∥∥
2

2
≤

∑

(y′,r′)∈IN

∑

(y,r)∈IN

|〈Pr′fy′r′ , Prfyr〉|

≤ 2
∑

(y′,r′)∈IN

∑

(y,r)∈IN

r≤r′

|〈Pr′fy′r′ , Prfyr〉|
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≤ 2
∑

(y′,r′)∈IN

∑

(y,r)∈IN

r≤r′

\
Rd

|Pr′fy′r′(x)| · |Prfyr(x)| dx

≤ 2
∑

(y′,r′)∈IN

‖fy′r′‖1 · |detA|
−r′

∑

(y,r)∈IN

r≤r′

‖fyr‖1 · |detA|
−r

×
\

Rd

α(A−r
′

x−A−r
′

y′)α(A−rx−A−ry) dx

≤ cλ
∑

(y′,r′)∈IN

‖fy′r′‖1 · |detA|
−r′

×
∑

(y,r)∈IN

r≤r′

\
Rd

α(A−r
′

x−A−r
′

y′)α(A−rx−A−ry) dx = I1

Substituting u = A−r
′

x−A−r
′

y′ we get

I1 ≤ cλ
∑

(y′,r′)∈IN

‖fy′r′‖1
∑

(y,r)∈IN

r≤r′

\
Rd

α(u)α(Ar
′−ru−A−r(y − y′)) du.

To complete the proof of (3.10) it suffices to show that there exists a constant
c, independent of y′, r′ and N , such that

(3.11)
∑

(y,r)∈IN

r≤r′

\
Rd

α(u)α(Ar
′−ru−A−r(y − y′)) du ≤ c.

Put z = A−r
′

(y−y′), s = r−r′.With this notation, we say that (z, s) ∈ JN

if and only if (y, r) ∈ IN . In other words, the sets B(y, r) with (y, r) ∈ IN

are the images of the sets B(z, s) with (z, s) ∈ JN under the mapping
x 7→ Ar

′

x+ y′. Now (3.11) may be rewritten as

(3.12)
∑

(z,s)∈JN
s≤0

\
Rd

α(u)α(A−su−A−sz) du ≤ c.

For k ∈ Zd, let Lk be the set of those (z, s) ∈ JN such that s ≤ 0 and B̃(z, s)

intersects B̃ + k. Then
∑

(z,s)∈Lk

|B̃(z, s)| = |detA|κ
∑

(z,s)∈Lk

|B̃(z, s− κ)| ≤ |detA|κ · |AℓB̃ + k|(3.13)

= |detA|κ+ℓ · |B̃| ≤ c,

where c does not depend on k. To prove (3.12), it is enough, in view of (2.5),
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to show that

I2 + I3 :=
∑

k∈Zd

∑

(z,s)∈Lk

\
A2ℓB̃+k

α(u)α(A−su−A−sz) du

+
∑

k∈Zd

∑

(z,s)∈Lk

\
Rd\(A2ℓB̃+k)

α(u)α(A−su−A−sz) du ≤ c.

We first estimate I2. By Lemma 3.1, each A
2ℓB̃ + k may intersect at

most 2ℓ+1 of the sets AℓB̃, B̃ℓ+1, B̃ℓ+2, . . . Therefore, taking into account
the form of the function α developed in Lemma 3.6, we get

α(u) ≤ α(A−2ℓk) for u ∈ A2ℓB̃ + k.

From this, (3.13) and Lemma 3.3 we obtain

I2 ≤
∑

k∈Zd

α(A−2ℓk)
∑

(z,s)∈Lk

\
Rd

α(A−su−A−sz) du

=
∑

k∈Zd

α(A−2ℓk)
∑

(z,s)∈Lk

|detA|s
\

Rd

α(u) du

≤
c

|B̃|

∑

k∈Zd

α(A−2ℓk)
∑

(z,s)∈Lk

|B̃(z, s)| ≤ c.

Now we estimate I3. Define γ(x) = α(A
−ℓx). If (z, s) ∈ Lk then B̃(k, r)

intersects B̃(z, r). Therefore by Lemma 3.1,

ArB̃ + z ⊂ Ar+ℓB̃ + k for r ≥ 0,

which according to the definition of γ(x) gives

(3.14) α(A−su−A−sz) ≤ γ(A−su−A−sk) for (z, s) ∈ Lk, u ∈ R
d.

By the formula for α(x), given in the proof of Lemma 3.6, we obtain

γ(x) =
∑

j≥0

|detA|jϕ̃(Aj−2ℓx) for x 6∈ A2ℓB̃,

whence

|detA|−sγ(A−sx) =
∑

j≥−s

|detA|jϕ̃(Aj−2ℓx)(3.15)

≤ γ(x) for x 6∈ A2ℓB̃, s ≤ 0.

Now using (3.14) and (3.15) we have

I3 ≤
∑

k∈Zd

∑

(z,s)∈Lk

\
Rd\(A2ℓB̃+k)

α(u)γ(A−su−A−sk) du

=
∑

k∈Zd

∑

(z,s)∈Lk

\
Rd\A2ℓB̃

α(u+ k)γ(A−su) du
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≤
∑

k∈Zd

∑

(z,s)∈Lk

|detA|s
\

Rd

α(u+ k)γ(u) du

=
∑

k∈Zd

m(k)
\

Rd

α(u+ k)γ(u) du = I4,

where m(k) denotes the sum of the measures of the sets B̃(z, s) with (z, s)
∈ Lk. Therefore by (3.13) and Lemma 3.3 we get

I4 ≤ c
\

Rd

∑

k∈Zd

α(u+ k)γ(u) du ≤ c,

which completes the proof of the inequality (3.10).

Thus we have

|{x ∈ R
d : |USg3(x)| > λ/12}| ≤

144

λ2

\
Rd

|USg3(x)|
2 dx(3.16)

≤
144

λ2

∥∥∥
∑

(y,r)∈IN

Prfyr

∥∥∥
2

2
≤
c

λ
‖f‖1.

From (3.5), (3.6), (3.9) and (3.16) we get

|{x ∈ R
d : |USfN (x)| > λ/4}| ≤

c

λ
‖f‖1

for some constant c. Therefore

|{x ∈ R
d : |USf(x)| > λ/2}|

≤ |{x ∈ R
d : |US(f − fN )(x)| > λ/4}|+ |{x ∈ R

d : |USfN (x)| > λ/4}|

≤
16

λ2
‖f − fN‖

2
2 +

c

λ
‖f‖1.

Letting N →∞, we infer that there exists a constant c such that for every
finite set S,

|{x ∈ R
d : |USf(x)| > λ/2}| ≤

c

λ
‖f‖1 for f ∈ L1(Rd) ∩ L2(Rd).

Let now f be an arbitrary function from L1(Rd) and let fN be this time
a sequence of functions from L1(Rd) ∩ L2(Rd) convergent to f in the norm
of L1(Rd). For a fixed finite set S, there exists a constant cS such that
‖USf‖1 ≤ cS‖f‖1 for f ∈ L

1(Rd). Hence

|{x ∈ R
d : |USf(x)| > λ}|

≤ |{x ∈ R
d : |US(f − fN )(x)| > λ/2}|+ |{x ∈ R

d : |USfN (x)| > λ/2}|

≤
2

λ
‖US(f − fN )‖1 +

c

λ
‖fN‖1 ≤

2cS
λ
‖f − fN‖1 +

c

λ
‖fN‖1.
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Letting N →∞ we obtain

|{x ∈ R
d : |USf(x)| > λ}| ≤

c

λ
‖f‖1 for f ∈ L1(Rd),

which completes the proof.

Proof of Theorem 2.4. For an arbitrary subset S of {1, . . . , n} × Z× Zd

the operator US is of type (2, 2). Thus Theorem 3.7 and the Marcinkiewicz
interpolation theorem imply that there exists a constant c = cp (1 < p < 2)
such that for every finite set S,

(3.17) ‖USf‖p ≤ c‖f‖p for f ∈ Lp(Rd).

Fix f ∈ L1(Rd) ∩ L2(Rd). Let (SN ) be an increasing family of subsets
of {1, . . . , n} × Z × Zd such that SN has N elements and

⋃
N∈N

SN =

{1, . . . , n} ×Z×Zd. Then ‖USN f − f‖2 → 0 as N →∞. Fix 1 < p < 2 and
choose an arbitrary 1 < p′ < p. Let

r =
2− p′

2− p
, s =

2− p′

p− p′
, α =

p′

r
, β =

2

s
.

Then
1

r
+
1

s
= 1 and α+ β = p.

From Hölder’s inequality and from (3.17) we obtain\
Rd

|USN f − f |
p ≤
(\

Rd

|USN f − f |
p′
)1/r
·
(\

Rd

|USN f − f |
2
)1/s

≤ c
(\

Rd

|USN f − f |
2
)1/s

,

where c = c(p, p′, f) is a constant independent of N . Letting N → ∞ in
the above inequalities we get ‖USN f − f‖p → 0. This means that the set of
functions

Ψmjk(x) = |detA|
j/2Ψm(Ajx− k), where j ∈ Z, k ∈ Z

d, m = 1, . . . , n,

is linearly dense in Lp(Rd). This, together with (3.17) and Theorem 1.4,
shows that the biorthogonal system (Ψmjk, Φ

m
jk) is an unconditional basis in

all Lp(Rd) spaces with 1 < p < 2.

The spaces Lp(Rd) with 1 < p < 2 are reflexive, so by duality (see for
example Proposition 7.12 in [W1]) the system (Ψmjk, Φ

m
jk) is an unconditional

basis in Lp(Rd) with 2 < p <∞.

This completes the proof of Theorem 2.4.
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