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RIGIDITY OF GENERALIZED VERMA MODULES

BY

OLEKSANDR KHOMENKO (Freiburg)

and VOLODYMYR MAZORCHUK (Bonn)

Abstract. We prove that generalized Verma modules induced from generic Gelfand–
Zetlin modules, and generalized Verma modules associated with Enright-complete mod-
ules, are rigid. Their Loewy lengths and quotients of the unique Loewy filtrations are
calculated for the regular block of the corresponding category O(p, Λ).

1. Introduction. Let g be a semisimple complex finite-dimensional Lie
algebra with a fixed triangular decomposition, g = n− ⊕ h ⊕ n+, and let
p ⊃ h ⊕ n+ be its parabolic subalgebra. In what follows there will be a
distinguished special case, namely when the semisimple part a of the Levi
factor a′ is isomorphic to a direct product of some sl(ni,C). This will be
assumed all the time when we will discuss generic Gelfand–Zetlin modules.
Let n be the nilpotent radical of p.

This paper continues the study of certain parabolic generalizations,
O(p, Λ), of the celebrated BGG category O of g-modules ([BGG2]). These
categories, associated with p and a certain admissible category Λ of a-
modules, were introduced in [FKM1], where it was shown that their blocks
correspond to the so-called standardly stratified algebras in the sense of
[CPS] (and even to the smaller class of properly stratified algebras, which
was recently introduced in [Dl]). In particular, there is an analogue of the
BGG-reciprocity formula, which involves besides the indecomposable pro-
jective modules and simple modules a class of intermediate modules, which
are called generalized Verma modules. Later in [FKM2, FKM3] the alge-
bra of the principal block of O(p, Λ) was given a combinatorial description,
analogous to Soergel’s description of O (see [S]).

The basic example of O(p, Λ) was constructed in terms of the so-called
generic Gelfand–Zetlin modules (see [DOF1]). In [KM1, KM2] this example
was related to a certain subcategory of O, which can be described in terms
of Enright’s completion functors ([E]). The last categories carry a “strange”
abelian structure, which is not inherited from that on O. Where this struc-
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ture comes from was explained in [KM2] after realizing (Mathieu’s [M] ver-
sion of) Enright’s completion functor via the approximation functor with
respect to a suitably chosen injective module in O.

From [I2, I3] (combined with the reduction to the integral case in [S]) it
is known that all Verma modules and big projective modules in the principal
blocks of O (this can be viewed as the first extremal case of O(p, Λ), which
corresponds to a = 0) are rigid, i.e. their socle and radical filtrations coincide
and form the unique Loewy filtration (the shortest filtration with semi-
simple quotients). In [BGS] this rigidity result was reobtained and extended
to all Verma modules using the machinery of Koszul rings and some deep
geometrical results. Let O(p, Λ) be the basic example mentioned above. The
blocks of O(p, Λ) contain generalized Verma modules induced from generic
Gelfand–Zetlin modules and big projective modules. So, a natural question
arises: are these modules also rigid? By [KM1] there is a full functor, say
F , from O(p, Λ) to O, which sends each generalized Verma module to a
Verma module and each big projective (in O(p, Λ)) to a big projective in O.
The main problem is that the abelian structure on the image of F does not
coincide with the abelian structure on O. Hence the results of [I2, I3, BGS]
cannot be applied directly.

The aim of the paper is to give an affirmative answer to the first part of
the question above. Our main result is the following.

Theorem 1. Let Λ be the admissible category generated by a simple
generic Gelfand–Zetlin module, or the admissible category of Enright-com-
plete modules, and O(p, Λ) be the corresponding parabolic analogue of O (cf.
[FKM1]). Then generalized Verma modules in O(p, Λ) are rigid.

In contrast with the classical case, the big projective modules in
O(p, Λ) fail to be rigid in the general case. We present an sl(3)-counter-
example in Section 4. We also remark that, in the second extremal case,
namely g = a, all GVMs are simple, hence rigid of Loewy length 1 and the
rigidity of the big projective module (= the unique indecomposable pro-
jective in the principal block, = the standard module) was proved already
in [KM1].

The paper is organized as follows. The next section contains all necessary
preliminary information, in particular, we define O(p, Λ) and recall how the
situation is related to the category O. Section 3 is devoted to the study of
Loewy series on generalized Verma modules. Here we prove rigidity, calculate
Loewy length and quotients of the unique Loewy filtration. In Section 4 we
compute an sl(3,C)-example, and, in particular, give an example of a non-
rigid big projective module in O(p, Λ). We finish the paper with a short
discussion of properties of standard modules in Section 5.
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2. Notation and preliminary results

2.1. Generalized Verma modules and generic Gelfand–Zetlin modules.

By [KM1], the category constructed here is a special case of the categories
considered in the next subsection (we recall that for Gelfand–Zetlin modules
we assume that a is a product of sl(ni,C)). The advantage of this construc-
tion is that for these categories the notions of simple objects and simple
g-modules coincide.
Let V be an a′-module. Extending it trivially to a p-module we can form

the module Mp(V ) = U(g) ⊗U(p) V , which is called a generalized Verma
module (GVM in what follows), provided V is simple.

Let [l] = (li,j)
j=1,...,i
i=1,...,n be a tableau with complex entries such that li,j −

li,k 6∈ Z for all i < n and all possible j, k, and V ([l]) be the correspond-
ing generic Gelfand–Zetlin gl(n,C)-module (generic GZ-module in what fol-
lows), as defined in [DOF1]. V ([l]) can be restricted in a natural way to the
canonical copy of sl(n,C) ⊂ gl(n,C) and thus we can talk about generic
GZ-modules over sl(n,C). Now over a direct product of some sl(ni,C) (e.g.
over a) we define generic GZ-modules as tensor product of the above generic
GZ-modules over the components.
Fix a simple generic GZ-module, V , over a and consider the category Λ

of all subquotients in V ⊗ F , where F runs through all finite-dimensional
gl(n,C)-modules. This category extends in a natural way (diagonal action of
the center) to a′. The blocks of this category will be module categories over
local finite-dimensional associative algebras ([FKM1]). For a simple object,

V ∈ Λ, we denote by Ṽ the projective cover of V .
Following [FKM1] we define O(p, Λ) as the full subcategory of the cat-

egory of all g-modules which consists of those finitely generated n-locally
finite g-modules which decompose into a direct sum of modules from Λ,
when viewed as a′-modules. The blocks of O(p, Λ) are module categories over
properly stratified finite-dimensional associative algebras ([FKM1]). GVMs
Mp(V ), where V is a simple generic GZ-module over a

′, are objects ofO(p, Λ)
and they are also proper standard modules for the corresponding properly
stratified algebras. The modules ∆(V ) = Mp(Ṽ ), where V is simple in Λ,
are standard modules for O(p, Λ).

2.2. Enright completions and S-subcategories in O. Let R be the
root system of g with respect to h and π be the basis of R, which cor-
responds to our fixed triangular decomposition. Fix some Weyl–Chevalley
basis, {Xα | α ∈ R}, {Hα | α ∈ π}, in g. Denote by W the Weyl group
of R and by sα the reflection corresponding to α ∈ R. We denote by
l : W → Z+ the length function and by ŵ the unique longest element
of W .
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For a simple root, α, denote by Uα the localization of U(g) with respect
to {Xk−α | k ∈ N} (see [M]) and define the completion functor Eα : O→O
as the composition of Uα ⊗U(g) −, −|U(g) and the functor of taking the lo-
cally Xα-finite part of a module (see [FKM2, FKM3, KM1, KM2]). Clearly
Eα ◦Eα = Eα.
For S ⊂ π let O(S) denote the full subcategory of O which consists of

all modules on which all X−α, α ∈ S, act injectively. Then for α, β ∈ S the
restrictions of Eα and Eβ to O(S) satisfy braid relations (see [De] or [KM2]
for a short proof). Hence, if sα1 . . . sαk = w ∈ WS = 〈sα | α ∈ S〉, then the
functor Ew = Eα1 ◦ . . . ◦ Eαk : O(S) → O(S) is well defined. Let wS ∈ WS
be the longest element. The functor EwS is called the S-completion functor
and a module, M ∈ O, is called S-complete if M ∈ EwS (O(S)). The cat-
egory O(S)st of all S-complete modules is an abelian category with usual
kernels and cokernels defined as follows: if f : M → N , M,N ∈ O(S)st,
then the cokernel of f is EwS (N/EwS (f(M))) ([FKM3], see [KM2] for an-
other description in terms of approximation with respect to an injective
module).
Now let S be the set of simple roots of a. Then, by [KM1], for appropriate

a, there exists a blockwise equivalence of categories, F : O(p, Λ)→ O(S)st,
which sends GVMs to Verma modules. Again by [KM1], the functor F−1 :
O(S)st → O(p, Λ) is also well defined. In particular, we can set Λ = O(S)st
and considerO(p, Λ) in the case of arbitrary a. We emphasize once more that
the advantage of Gelfand–Zetlin modules is that in this case simple objects
of O(p, Λ) are simple g-modules. Finally, we recall the following properties
of EwS (see [FKM3]):

1. for a simple L ∈ O the module EwS is either 0 or simple in O(S)st;
2. EwS (M) ⊂ EwS (N) for M ⊂ N ;
3. EwS (N/M) ⊃ EwS (N)/EwS (M) for M ⊂ N .

2.3. Loewy length and Loewy filtrations. Let M be a module of finite
length. A filtration, 0 ⊂ M1 ⊂ . . . ⊂ Mk = M , is called a Loewy filtration
if all Mi/Mi−1 are semisimple and k is the minimal possible. This k is
called the Loewy length of M and is denoted by ll(M) (if M is an object
of two different categories and we want to underline that its Loewy length
is considered inside, say, the category A, we will write llA(M)). Associated
with M there are two Loewy filtrations: the socle filtration 0 ⊂ soc1M ⊂
soc2M ⊂ . . . ⊂ socll(M) =M (here soci+1M/sociM = soc(M/sociM)) and
the radical filtration 0 = radll(M)M ⊂ . . . ⊂ rad1M ⊂ rad0M = M (here
radi(M) = rad(radi−1M)). If 0 ⊂M1 ⊂ . . . ⊂Mk =M is a Loewy filtration
of M , then radll(M)−iM ⊂ Mi ⊂ soc

iM . The module M is called rigid if
the socle filtration and the radical filtration coincide and thus there is only
one Loewy filtration. We will denote the layers of the socle and the radical
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filtrations by sociM = soc
iM/soci−1M and radiM = rad

iM/radi+1M
respectively.

2.4. Soergel’s combinatorics of O and its generalization to O(p, Λ). For
λ ∈ h∗ we will denote by M(λ) the Verma module with highest weight λ,
by L(λ) the unique simple quotient of M(λ), by P (λ) the indecomposable
projective cover of L(λ) and by I(λ) the indecomposable injective envelope
of L(λ). If ̺ is the half-sum of all positive roots, we recall the standard
·-action of W on h∗, defined as follows: w · (λ) = w(λ+ ̺)− ̺.
Let χ be an integral central character of g and Oχ be the block of O

corresponding to χ. By the main result of [S], any indecomposable block of
O is equivalent to Oχ for some χ; however, this equivalence may force to
change g. The character χ thus corresponds to an integral W -orbit, W · λ,
where λ is antidominant. LetWλ denote the stabilizer of λ. Then the simples
in Oχ are naturally parameterized by cosets ξ ∈ W/Wλ. If w ∈ ξ is the
longest element, then we set L(ξ) = L(w ·λ). Analogously we define P (ξ) =
P (w · λ), ∆(ξ) = ∆(w · λ) and M(ξ) = M(w · λ). Set Pλ =

⊕
ξ∈W/Wλ

P (ξ)

and Aλ = EndO(Pλ). Then Aλ is a basic, finite-dimensional, associative and
quasi-hereditary algebra. The Verma modules M(ξ) are standard modules
with respect to the quasi-hereditary structure. Set Cλ = EndO(P (λ)). By [S,
Endomorphismensatz 7], the algebra Cλ is the subalgebra of Wλ-invariants
in the coinvariant algebra C, which is the quotient of C[h∗] modulo the ideal
generated by W -invariant (with respect to the usual W -action) polynomials
without constant term. In particular, Cλ = C, the coinvariant algebra, if
λ is regular. Let e be the primitive idempotent of Aλ corresponding to
ξ = Wλ (which means Cλ = EndAλAe). Then, by [S, Struktursatz 9], Aλ ≃
End(AλeCλ). This is usually called the double centralizer property . For a
primitive idempotent, f , of Aλ we will denote the Cλ-module fAe by Df .
Now we recall the analogous description of O(p, Λ), as defined in Sub-

section 2.2 ([FKM2, FKM3]). For this we consider the equivalent category

O(S)st and set O
S
λ = O(S)st∩Oλ. We emphasize that the abelian structure

on OSλ is not inherited from that on Oλ. The simples of O
S
λ are indexed by

those ξ ∈ W/Wλ such that the longest representative w of ξ is at the same
time the shortest element in a coset from W/WS . Let T = {ξ1, . . . , ξk} be

the complete set of parameters of simples in OSλ . Set P
S
λ =
⊕
ξ∈T P (ξ) and

ASλ = Endg(P
S
λ ). Denote by e

S the primitive idempotent of ASλ correspond-

ing to P (λ). Then, by [FKM3, Section 5], we have ASλ = End((A
S
λe
S)Cλ).

3. Rigidity of generalized Verma modules. In this section we prove
the main result of this paper, the rigidity of GVMs. Our proof follows the
ideas of [BGS]. In fact, we are going to realize GVMs as graded modules
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over graded algebras and then apply the following lemma ([BGS, Proposi-
tion 2.4.1]).

Lemma 1. Let R be a Z-graded ring , generated by R0 and R1, such
that R0 is semisimple. Let M be a graded R-module of finite length. If
soc(M) (resp. rad(M)) is simple, then the socle (resp. radical) filtration on
M coincides with the grading filtration, up to shift.

The coinvariant algebra C is graded in a natural way, and we fix a
grading in which the generators (h∗) have degree 2. Hence the algebra Cλ
is graded as well. Both modules Aλe and A

S
λe
S are graded Cλ-modules (see

Remark after [S, Lemma 7]). Moreover, as ASλ = tAλt for some, in general
non-primitive, idempotent t of Aλ, we can naturally consider A

S
λe
S as a

graded submodule of Aλe. The decomposition Aλe =
⊕
f Df , where f runs

through the set of all primitive idempotents of Aλ, is a decomposition of Aλe
into a direct sum of indecomposable modules and all summands are graded.
If f corresponds to L(ξ), ξ ∈ W/Wλ, then the minimal non-zero degree of
Df is exactly ll(M(ξ)). Via the double centralizer property we get a positive
grading on Aλ which corresponds to the “mixed” structure on O. By [BGS,
Section 4], this grading is Koszul, in particular, (Aλ)0 is semisimple and Aλ
is generated by (Aλ)1 over (Aλ)0.

Now we want to move this picture to ASλ , which is a positively graded
subalgebra of Aλ via the double centralizer property. This trivially implies
that (ASλ)0 is semisimple as well. Unfortunately, in the general case A

S
λ is

not generated by (ASλ)1 over (A
S
λ)0. We refer the reader to Section 4 for the

corresponding sl(3,C)-example. However, we can find some convenient set
of generators for ASλ .

Since the algebra Cλ is commutative the double centralizer property
implies that it is a subalgebra of ASλ and, moreover, is a subalgebra of the
center of ASλ . We also recall that Cλ appears in [S] as the image of the action
of Z(g) on P (λ).

Proposition 1. ASλ is generated by (A
S
λ)0, (A

S
λ)1 and Cλ.

Proof. Let f1 and f2 be two primitive idempotents of A
S
λ . Our aim is to

decompose any graded element from f1A
S
λf2 into a product of elements from

(ASλ)0, (A
S
λ)1 and Cλ. But any element from f1A

S
λf2 corresponds to a map

from an indecomposable projective P (ξ1) to an indecomposable projective
P (ξ2) in O(p, Λ). From the definition of projective modules it follows that
the map φ : P (ξ1) → P (ξ2) cannot be decomposed non-trivially into a
product of other maps between projectives only in the case when φ(P (ξ1)) 6∈
rad2(P (ξ2)). Hence, it is enough to prove that, under this assumption, we
have φ ∈ (ASλ)0 or φ ∈ (A

S
λ)1 or φ ∈ Cλ. We have to consider several cases.
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First, let ξ1 = ξ2 and φ be an isomorphism. Then the assumption that
φ is a graded element implies φ ∈ (ASλ)0.
Now, let ξ1 6= ξ2. Because of the duality on O(p, Λ) we may assume

ξ1 6≤ ξ2 with respect to the order of properly stratified structure. Then
necessarily L(ξ1) is a top of rad(P (ξ2)). Now we recall that, according to
[FKM1], all projectives in O(p, Λ) are filtered by standard modules. Because
of ξ1 6≤ ξ2 and the BGG-reciprocity ([FKM1]), the standard module ∆(ξ1)
occurs in this filtration. Hence there should exist a quotient of P (ξ2) which
is an extension of ∆(ξ1) by ∆(ξ2) such that the unique copy of L(ξ1) in the
top of ∆(ξ1) is exactly the one covered by φ. But this means that φ covers
the whole ∆(ξ1) as it has a simple top. So, the image of φ does not belong
to rad(P (ξ2)) in the category O as well. This implies that φ is a degree 1
map in Aλ, as it is graded. Hence φ ∈ (A

S
λ)1.

Finally, we consider the case ξ1 = ξ2 = ξ and φ(P (ξ)) ⊂ rad(P (ξ)).
Again we recall that P (ξ) is filtered by standard modules and there is only
one of them (the last one) isomorphic to∆(ξ). As all other standard modules
have different tops, φ maps the top of P (ξ), which is also the top of ∆(ξ),
into some other copy of L(ξ) in ∆(ξ). Our claim will easily follow if we
prove that the natural action of Cλ on ∆(ξ) surjects onto EndAλ(∆(ξ)).

Realize ∆(ξ) as Mp(Ṽ ), where Ṽ is projective in Λ. Then the exactness

of induction guarantees EndAλ(∆(ξ)) = EndΛ(Ṽ ). The S-Harish-Chandra
homomorphism ([DOF2]) restricts the action of Z(g) on ∆(ξ) to the action

of Z(a) on Ṽ , and the statement follows from [S, Endomorphismensatz].
This completes the proof.

Lemma 2. (Cλ)>0 annihilates M(ξ).

Proof. The action of Cλ comes from the action of Z(g), which acts by
scalars on M(ξ) ([FC, DOF2]).

Lemma 3. M(ξ) is a graded ASλ -module.

Proof. This follows directly from [BGS], asM(ξ) is a graded Aλ-module
and ASλ is a graded subalgebra of Aλ. But one can also get this from our
graded picture and the double centralizer. Obviously, ASλe

S is a positively
graded finite-dimensional ASλ -module. Moreover, it is filtered by GVMs and,
by BGG-reciprocity ([FKM1]), each GVM from OSλ occurs as a subquotient
of ASλe

S . The biggest GVM is naturally identified with soc(ASλe
S), the latter

viewed as Cλ-module, hence graded. The statement follows by induction.

We are now ready to state our main result.

Theorem 2. Any GVM M(ξ) in OSλ is rigid.

Proof. By Lemma 3, M(ξ) is a graded module over the graded alge-
bra ASλ . By Lemma 2, it is even a graded module over the graded algebra
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ASλ/((Cλ)>0). By Proposition 1, the last is generated in degrees 0 and 1. It
is well known that GVMs have simple socles and tops ([FC, MO]). Hence
the statement follows from Lemma 1.

Now we can calculate the Loewy length of GVMs for regular λ. We recall
that in this case they are parameterized by ξ ∈ W/WS . We start with the
following easy observation.

Lemma 4. The inequality llO(p,Λ)(F
−1 ◦ EwS (M)) ≤ llO(M) is true for

any M ∈ O.

Proof. Follows from properties of EwS , described in Subsection 2.2.

Now we can calculate the Loewy length of M(ξ).

Lemma 5. Let λ be regular and ξ ∈W/WS. Then ll(M(ξ)) = l(w
ξ)+1.

Proof. The inequality ll(M(ξ)) ≥ l(wξ) + 1 follows from the analogue
of the BGG-criterion for inclusion of GVMs ([MO]). By this criterion, each
M(ξ) has a filtration, 0 ⊂M(ξ1) ⊂ . . . ⊂M(ξr) =M(ξ), where r = l(w

ξ)+1
and all quotients of the filtration are non-zero. As each GVM has a simple
top, M(ξi) lies in the radical of M(ξi+1) and hence ll(M(ξ)) ≥ r.

Let us now prove that ll(M(ξ)) ≤ l(wξ)+1. Consider two Verma modules
M(wξλ) and M(w

ξλ). By [De], EwS (M(w
ξλ)) = M(wξλ) and, as we have

already mentioned, F−1(M(wξλ)) = M(ξ). Hence, by Lemma 4, we have
llO(p,Λ)(M(ξ)) ≤ llO(M(wξλ)) = l(w

ξ) + 1. This completes the proof for
GVMs.

We remark that in the case of singular λ one can also calculate the Loewy
length in terms of the height of an ideal in the poset W/Wλ. However, this
does not give any closed formula as in Lemma 5.

Combining the above results we can describe the layers of the unique
Loewy filtration of M(ξ).

Corollary 1. Let λ be regular , ξ ∈ W/WS , w the shortest repre-
sentative of ξ, and i ∈ Z+. Then soci(M(ξ)) = radll(M(ξ))−i+1(M(ξ)) =

F−1 ◦EwS (soci(M(w · λ))).

Proof. As already mentioned, F−1 ◦ EwS sends any Loewy filtration
of M(w · λ) to a filtration of M(ξ) with semisimple subquotients. But by
Lemma 5, we have llO(M(w · λ)) = llO(p,Λ)(M(ξ)) and both modules are
rigid. The statement follows.

4. g = sl(3,C), a = sl(2,C)—example. In this section we assume
g = sl(3,C) with the standard Cartan subalgebra and {α, β} is a basis of ∆.
We assume that a = sl(2,C) is the subalgebra corresponding to the root α.
We fix λ regular antidominant. Then Oλ contains 6 simple modules indexed
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by 1 = λ, 2 = sα ·λ, 3 = sβ ·λ, 4 = sαsβ ·λ, 5 = sβsα ·λ and 6 = sαsβsα ·λ.
The Verma modules have the following radical filtrations (the number on
the left is the index i of radi):

M(1) M(2) M(3) M(4) M(5) M(6)

0 1 2 3 4 5 6

1 1 1 2 3 2 3 4 5

2 1 1 2 3

3 1

The big projective module Aλe is rigid and filtered by all Vermas with all
multiplicities equal to 1. The graded picture of Aλe as Cλ-module is the
following one, where by i we denote the simple subquotients which come
from g-simple subquotients of Aλ isomorphic to L(i). This is what we called
Df before. Here we will denote these Cλ-direct summands of Aλe by Di
respectively. The number on the left is the degree of the corresponding
graded component.

0 1

1 2 3

2 1 1 4 5

3 2 2 3 3 6

4 1 1 4 5

5 2 3

6 1

In particular, the algebra Cλ, as a graded left module over itself, is isomor-
phic to D1. Going to O(p, Λ) we take (see [FKM3, KM2]) the category of
injectively copresented modules with respect to the direct sum of indecom-
posable injectives indexed by the shortest representatives in W/WS . This
means that only the indices corresponding to these shortest representatives,
namely 1, 3 and 5, will survive. Hence, the graded structure of ASλe

S will be:

0 1

1 3

2 1 1 5

3 3 3

4 1 1 5

5 3

6 1

Now let us look at GVMs and standard modules, which we will naturally
index by 1, 3 and 5. As all multiplicities are one, all GVMs are uniserial and
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have the following radical filtrations:

Mp(1) Mp(3) Mp(5)

0 1 3 5

1 1 3

2 1

To obtain ∆(5) one has to find the trace of D5 in A
S
λe
S . It is easy to see

that this will be the following part of ASλe
S :

2 5

3 3

4 1 5

5 3

6 1

Analogously, ∆(3) is represented by the following part of ASλe
S :

1 3

2 1

3 3

4 1

By direct calculation one easily finds that these graded filtrations are in fact
Loewy filtrations of the corresponding standard modules. The module ∆(1)
is, obviously, a self-extension of Mp(1). It is represented by the following
part of ASλe

S :

0 1

1

2 1

And here we see the difference: to obtain the radical filtration of ∆(1) one
has to re-scale the grading. The result is that the big projective module
ASλe

S in O(p, Λ) is not rigid. Indeed, let us look at its first three graded
components:

0 1

1 3

2 1 1

Clearly, the dimension of Cλ-homomorphisms of degree 1 from D1 to D3
is 1. But the dimension of Cλ-homomorphisms of degree 1 from D3 to D1
is also 1 (e.g. since D1 is injective). Hence their composition has dimension
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at most 1, which means that one composition factor of rad1(D1) belongs to
rad1(A

S
λe
S). The above description of Loewy filtrations of standard modules

(it is enough to have it for ∆(5)) implies that the Loewy length of ASλe
S

is 7. Hence the graded filtration is a Loewy one and does not coincide with
the radical filtration. Therefore ASλe

S is not rigid.

5. What can be said about standard modules? Based on the ex-
ample above we formulate the following conjecture:

Conjecture. Standard modules in O(p, Λ) are rigid.

We also have to remark that even the calculation of the Loewy length
of standard modules seems to be a very non-trivial problem. As the above
example shows, the answer will be much more difficult than that for GVMs.
However, it is not difficult to get the following inequalities:

Lemma 6. Let M = Mp(V ) be a generalized Verma module and ∆ =

∆(Ṽ ) be the corresponding standard module. Then

ll(M) + ll(Ṽ )− 1 ≤ ll(∆) ≤ ll(M) + 2ll(Ṽ )− 1.

Proof. To prove the left inequality we recall that Ṽ has simple socle, V ,
andM is a submodule of∆ with simple top Lp(V ) and all other composition
factors different from Lp(V ). Hence M ⊂ radll(Ṽ )−1(∆), which implies the

desired inequality.

The right inequality follows from the double centralizer property. Indeed,
the latter implies that the big projective is graded as Aλ-module. Moreover,
by BGG reciprocity, it is filtered by standard modules, and by induction one
derives that all standard modules are in fact graded modules over Aλ. It is
straightforward to see that the length of the grading filtration inherited from
the big projective module is precisely ll(∆) ≤ ll(M) + 2ll(Ṽ ) − 1. Indeed,
ll(∆) ≤ ll(M) corresponds to the Verma submoduleM of ∆ and its grading

filtration and 2ll(Ṽ ) corresponds to the grading filtration of Ṽ as Cλ-module
(we recall that Cλ is even-graded). This implies the desired inequality.

We note that both extremal cases of equalities are possible. This can
be read off from the example in Section 4. Indeed, the left equality holds
for ∆(1) and the right equality holds for both ∆(3) and ∆(5). It is easy to
construct other examples where ll(∆) satisfies two strict inequalities in the
above formula. However, for this one has to take a of rank greater than 1.
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