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THE SET OF POINTS AT WHICH A MORPHISM OF AFFINE

SCHEMES IS NOT FINITE

BY

ZBIGNIEW JELONEK and MAREK KARAŚ (Kraków)

Abstract. Assume that X,Y are integral noetherian affine schemes. Let f : X → Y
be a dominant, generically finite morphism of finite type. We show that the set of points
at which the morphism f is not finite is either empty or a hypersurface. An example is
given to show that this is no longer true in the non-noetherian case.

1. Introduction. Let f : X → Y be a morphism of affine varieties over
an algebraically closed field k. Let y ∈ Y . We say that f is not finite at
y if there exists no open affine neighborhood U of y such that f |f−1(U) :
f−1(U) → U is finite. If k = C, then f is not finite at y iff there exists a
sequence xn → ∞ such that f(xn) → y. The set of all points at which f is
not finite will be denoted by Sf .
In [2], [3] the first author proved that for a polynomial, generically finite

dominant mapping f : X → Y of affine varieties, the set Sf is either empty
or a hypersurface.
The aim of this paper is to generalize this result to the case of a domi-

nant, generically finite morphism of finite type of affine integral noetherian
schemes. The main result is that even under such general assumptions the
set Sf is either empty or a hypersurface.

2. Preliminaries. We use the terminology and notation as in [4]. Let
A ⊂ B be arbitrary rings. We say that B is a finite ring extension of A if B is
a finitely generated A-module. A morphism f : X → Y of schemes is called
finite if there exists a covering of Y by open affine subsets Vi = Spec(Ai)
such that for each i, f−1(Vi) is affine, equal to Spec(Bi), where Bi is a finite
ring extension of Ai. The morphism f : X → Y is finite if and only if for
every covering of Y by open affine subsets Vi = Spec(Ai), the sets f

−1(Vi)
are affine, equal to Spec(Bi), where Bi is a finite ring extension of Ai (see e.g.
[4]). In particular if f is finite, then for every open subset V = Spec(A) ⊂ Y
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the set f−1(V ) is affine, equal to Spec(B), where B is a finite ring extension
of A.

Definition 2.1. Let f : X → Y be a morphism of schemes and let
y ∈ Y . We say that f is finite at y if there exists an open affine neighborhood
U of y such that f |f−1(U) : f−1(U)→ U is finite.
If Y = Spec(A) is affine, then f is finite at y ∈ Y if and only if there exists

h ∈ A such that y ∈ D(h) = Spec(Ah) and f |f−1(D(h)) : f−1(D(h))→ D(h)
is finite. For a morphism f : X → Y, we will denote by Sf the set of points
at which f is not finite. Of course f is finite iff Sf is an empty set.
Let X = Spec(A) be an integral affine scheme. By a rational function

on the scheme X we mean an element of the field A0 (field of fractions of
the ring A). We say that a rational function ξ has a pole at a point x iff
ξ 6∈ Ax = OX,x. For a rational function ξ on the scheme X we will denote
by Pξ the set of points at which ξ has a pole. This set is a closed proper
subset of X. Indeed, we have the following:

Proposition 2.2. Let ξ = b/a be a rational function on an integral
scheme X = Spec(A). Then Pξ = V (((a) : (b))).

Proof. Let p ∈ Pξ. Then ξ 6∈ Ap, i.e., ξ 6= x/r for all x ∈ A and r ∈ A\p.
Suppose ((a) : (b)) 6⊂ p and take r ∈ ((a) : (b)) \ p. Thus rb = xa for
some x ∈ A, but this is impossible if ξ 6∈ Ap. Therefore ((a) : (b)) ⊂ p, i.e.,
p ∈ V (((a) : (b))).
Conversely, assume that ((a) : (b)) ⊂ p. If p 6∈ Pξ, then b/a ∈ Ap. This

means that there are x ∈ A and r ∈ A\p such that rb = xa. Consequently,
r ∈ ((a) : (b)) ⊂ p. This contradiction finishes the proof.
In what follows we need the following results:

Proposition 2.3. Let A and B = A[x1, . . . , xn] be integral domains
such that the field B0 is a finite extension of A0. Let fi ∈ A0[T ], i = 1, . . . , n,
be minimal (monic) polynomials of xi over A0. Assume that A is a normal
ring. Then B is finite over A if and only if fi ∈ A[t] for all i = 1, . . . , n.
Proof. Assume that B is finite over A. Fix i ∈ {1, . . . , n}. Since xi is inte-

gral over A, there exists a monic polynomial gi ∈ A[X] such that gi(xi) = 0.
Note that gi = fih in A0[X]. Indeed, gi = fih+r in A0[X] where deg r <

deg fi. Moreover, r(xi) = gi(xi)− fi(xi)h(xi) = 0 and by the minimality of
fi, we have r = 0. Since gi ∈ A[X], we conclude by [1, Theorem 3.2.2, p. 114]
that fi ∈ A[X].
The converse implication is obvious.

Proposition 2.4. Let f : X → Y be a morphism of finite type, and
let V = Spec(A), U = Spec(B) be open affine subschemes of X and Y ,
respectively. If U ⊂ f−1(V ), then B is a finitely generated A-algebra.
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Proof. We start with the proof of the following:

Lemma 2.5. Let X be a scheme and let U = Spec(A), V = Spec(B)
be open affine subschemes of X. For every x ∈ U ∩ V, there exists an open
affine subscheme Wx ⊂ U ∩ V of X such that Wx = Spec(Ah) = Spec(Bg),
where h ∈ A and g ∈ B.
Proof. Let x ∈ U ∩ V. Since U ∩ V is open in U, there exists h̃ ∈ A such

that x ∈ DU (h̃) := {x ∈ U : h̃ 6∈ x} ⊂ U ∩ V. Consequently, we can assume
that U ⊂ V. Let g ∈ B = OX(V ) be such that x ∈ DV (g) ⊂ U. Consider the
restriction mapping ̺VU : OX(V ) = B → A = OX(U) and take h = ̺VU (g).
It is easy to see that Spec(Ah) = DV (h) = DU (g) = Spec(Bg).

Now we can continue the proof of Proposition 2.4. Since f is of fi-
nite type, there exist open affine subschemes U1, . . . , Us of X such that
U1 ∪ . . . ∪ Us = f−1(V ). Moreover, Ui = Spec(Bi), where Bi is a finitely
generated A-algebra. For every x ∈ U, there is an index ix such that
x ∈ U ∩ Uix . By the lemma above, there exists an open affine subscheme
Wx ⊂ X such that x ∈ Wx ⊂ U ∩ Uix and Wx is of the form Wx =
Spec((Bi)hx) = Spec(Bgx). Since (Bi)hi is a finitely generated A-algebra, so
is Bgx . The familyA = {Spec(Bgx)}x∈U is an open covering of U = Spec(B).
Since every affine scheme is quasi-compact, we can choose a finite sub-
covering {Spec(Bg1), . . . ,Spec(Bgr)} ⊂ A. Note that (g1, . . . , gr) = 1. Let
h1, . . . , hr ∈ B be such that h1g1 + . . . + hrgr = 1. Since Bgi is a finitely
generated A-algebra, we can write Bgi = A[si,1/g

k1
i , . . . , si,ni/g

kni
i ].

Take an s ∈ B. Observe that s/1 ∈ Bgi = A[si,1/gk1i , . . . , si,ni/g
kni
i ]

for i = 1, . . . , r. This implies that there is a natural number ki such that
gkii s ∈ A[gi, si,1, . . . , si,ni ]. Set k = maxi=1,...,r ki. Now we can write

s = (h1g1 + . . .+ hrgr)
rks =

∑

α∈Nr, |α|=rk

|α|!
α!
(h1g1, . . . , hrgr)

αs.

Thus s ∈ A[g1, . . . , gr, h1, . . . , hr, s1,1, . . . , sr,nr ].

3. Basic definitions. Let us recall some basic definitions.

Definition 3.1. Let A be a ring and let p be a prime ideal in A. The
height ht(p) is the upper bound of the lengths of chains of distinct prime
ideals

p0 ⊂ p1 ⊂ . . . ⊂ pd = p
of A. The height ht(a) of any ideal a is the number

ht(a) = inf
p⊃a
ht(p),

where p ranges over all the prime ideals containing a.
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Now let us recall the notion of a Krull ring.

Definition 3.2. A ring A is called a Krull ring if it is integral and

1) for every prime ideal p of height 1 the ring Ap is a discrete valuation
ring,

2) A =
⋂
ht(p)=1Ap,

3) for any non-zero r ∈ A, there exist only finitely many prime ideals p
of height 1 such that (r) ⊂ p.
We have the following fundamental theorem of Nagata (see [5]):

Theorem 3.3. The normalization of an integral noetherian ring is a
Krull ring.

Now we pass to the definition of a hypersurface.

Definition 3.4. Let X be a topological space and let Z ⊂ X be an
irreducible closed subset. The codimension of Z in X, denoted by codimX Z,
is the upper bound of the lengths of chains of distinct closed irreducible
subsets of X:

Z = Z0 ⊂ Z1 ⊂ . . . ⊂ Zn.
If Z ⊂ X and all irreducible components of Z have codimension one, we say
that Z is a hypersurface.

For an ideal a of a ring A we denote by Ass(a) the set of all associated
prime ideals of a. It is easy to see that the following proposition holds:

Proposition 3.5. Let A be a ring and let a be an ideal in A. The subset
V (a) ⊂ Spec(A) is a hypersurface if and only if for every ideal p ∈ Ass(a)
we have ht(p) = 1.

Example 3.6. If A is a Krull ring and r ∈ A is a non-zero element, then
the subset V ((r)) ⊂ Spec(A) is a hypersurface (see [1]).

4. Krull schemes. In this section we prove our main theorem in the
Krull case.

Proposition 4.1. Let X,Y be affine integral schemes, and let f : X
→ Y be a dominant , generically finite morphism of finite type. If Y is
normal , then Sf is the union of the sets of poles of finitely many rational
functions on Y.

Proof. Let X = Spec(B) and Y = Spec(A). The rings A and B are
integral domains, and A is also a normal ring. The morphism f : X → Y is
given by a morphism of rings ϕ : A→ B. By Proposition 2.4 the morphism
ϕ makes B a finitely generated A-algebra. Since ϕ is a monomorphism, we
can identify A with ϕ(A) and consequently we can write B = A[x1, . . . , xn].
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Moreover, f : X → Y is a dominant, generically finite morphism of finite
type, so the field B0 is a finite extension of A0. Let

Pi = T
ni + ai1T

ni−1 + . . .+ aini ∈ A0[T ],
for i = 1, . . . , n, be the minimal polynomial of xi over A0.

We will show that the set

S =
⋃

i,j

{y ∈ Y : aji 6∈ Ay = OY,y}

is equal to Sf . By Proposition 2.2 and irreducibility of Y the set S is a

closed proper subset of Y. Let y ∈ Y \S. Then aji ∈ OY,y. Thus there exists
a neighborhood D(h), where h ∈ A, such that aji |D(h) ∈ Ah = OY (D(h)). It
is easy to see that Pi ∈ A0[T ] ⊂ (Ah)0[T ], where i = 1, . . . , n, is a minimal
polynomial for xi|D(h) over (Ah)0. Since aji |D(h) ∈ OY (D(h)), we see that
Pi ∈ Ah[T ]. By Lemma 2.3, the mapping f |f−1(D(h)) : f−1(D(h))→ D(h) is
finite. This implies that f is finite at y.

Conversely, let f be finite at y ∈ Y. This means that there exists h ∈ A
such that y ∈ D(h) and the mapping f |f−1(D(h)) : f−1(D(h)) → D(h) is
finite. Now Lemma 2.3 yields that Pi ∈ Ah[T ]. This implies that aji |D(h) ∈
Ah = OY (D(h)) and consequently D(h) ⊂ Y \S.
The converse statement is also true:

Proposition 4.2. Let Y be a normal integral affine scheme, and let
ξ1, . . . , ξr be rational functions on Y . There exist an affine integral scheme
X and a dominant , generically finite morphism of finite type f : X → Y
such that Sf =

⋃r
i=1 P (ξi).

Proof. It is sufficient to take X = Spec(A[ξ1, . . . , ξr]) and f : X → Y
given by the inclusion A →֒ A[ξ1, . . . , ξr].
Let us recall that if A is a Krull ring, we say that a scheme Spec(A) is a

Krull scheme. Let X be a Krull scheme and let f be a rational function on
X. Then the set Pf of poles of f is either empty or it has pure codimension
one. Indeed, we have the following:

Proposition 4.3. Let X = Spec(A) be a Krull scheme and f ∈ A0.
Then the set of poles of f, i.e. the set Pf = {p ∈ X : f 6∈ Ap}, is either
empty or of the form

Pf =

r⋃

i=1

V (pi),

where the pi are prime ideals with ht(pi) = 1. In particular , Pf is either
empty or a hypersurface.
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Proof. Let f = b/a. In virtue of Proposition 2.2, Pf = V (((a) : (b))) .
Since A is a Krull ring, the principal ideal (a) has a primary decomposition,
say (a) =

⋂r
i=1 qi. Moreover, every associated prime ideal

√
qi is minimal

and has height one.
We have ((a) : (b)) =

⋂
(qi : (b)). We also know that

√
(qi : (b)) =

{
A, b 6∈ pi =

√
qi,√

qi, b ∈ pi =
√
qi.

Thus if ((a) : (b)) ⊂ p, then there exists i such that √qi ⊂ p.
Since a Krull ring is a normal ring (see [1], 4.2.5), by Proposition 4.3 we

have our first main result:

Theorem 4.4. Let X,Y be affine integral schemes and let f : X → Y
be a dominant , generically finite morphism of finite type. If Y is a Krull
scheme, then Sf is either empty or a hypersurface.

5. Noetherian schemes. In this section we prove our theorem in the
noetherian case.

Theorem 5.1. Let X,Y be affine integral schemes and let f : X → Y
be a dominant , generically finite morphism of finite type. If Y is noetherian,
then Sf is either empty or a hypersurface.

Proof. Let Ỹ be a normalization of the scheme Y, say Ỹ = Spec(Ã),

where Ã is the integral closure of A in the field A0. Let πY : Ỹ → Y be the
morphism given by the inclusion A →֒ Ã. Set X̃ = Spec(Ã[x1, . . . , xn]) and
let πX : X̃ → X be given by the inclusion A[x1, . . . , xn] →֒ Ã[x1, . . . , xn].
We have the natural morphism f̃ : X̃ → Ỹ such that the diagram

X̃ Ỹ

X Y

f̃
//

�� ��f
//

commutes. The morphism f̃ : X̃ → Ỹ is a dominant, generically finite
morphism of finite type. Since Ã is a Krull ring (see Theorem 3.3), by
Proposition 4.3, the set S

f̃
is either empty or a hypersurface.

Now we prove that πY (Sf̃ ) ⊂ Sf. For h ∈ A, we have π
−1
Y (DY (h)) =

D
Ỹ
(h) and DY (h) = Spec(Ah), DỸ (h) = Spec(Ãh). Of course Ãh is an in-

tegral extension of Ah. Moreover, f
−1(DY (h)) = DX(h) and π

−1
X (DX(h)) =

D
X̃
(h). The ring (Ã[x1, . . . , xn])h = Ãh[x1, . . . , xn] is an integral extension

of (A[x1, . . . , xn])h = Ah[x1, . . . , xn]. Thus if f |DX(h) : DX(h)→ DY (h) is a
finite morphism, then Ãh[x1, . . . , xn] is an integral extension of A. It follows
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that Ãh[x1, . . . , xn] is an integral extension of Ãh. Since Ãh[x1, . . . , xn] is

a finitely generated Ãh-algebra, Ãh[x1, . . . , xn] is a finite ring extension of

Ãh. Thus f̃ |D
X̃
(h) : DX̃(h)→ DỸ (h) is a finite morphism, which proves the

inclusion πY (Sf̃ ) ⊂ Sf.
Conversely, we have Sf ⊂ πY (Sf̃ ). It is enough to show that if y 6∈

πY (Sf̃ ), then y 6∈ Sf . Let y 6∈ πY (Sf̃ ). Then there is an open neighborhood
U of y disjoint from πY (Sf̃ ). The morphism g := πY ◦ f̃ : g−1(U) → U is
integral, as a composition of integral morphisms. Consequently, so is f ◦πX :
g−1(U) → U and hence also f : f−1(U) → U . Since f is of finite type it is
finite, and consequently y 6∈ Sf .
It remains to prove that πY (Sf̃ ) is either empty or a hypersurface. Note

that S
f̃
is the union of irreducible hypersurfaces V (Pi), where Pi ∈ Ass(ai)

for some non-zero and non-invertible element ai ∈ Ã (see Propositions 2.2
and 3.5).

In fact, we can assume that ai ∈ A. Indeed, the irreducible equations of
xi over Ã are the same as over A, in particular, the coefficients of these equa-
tions are of the type a/b, where a, b ∈ A. Since the morphism πY : Ỹ → Y
is integral, we have πY (V (Pi)) = V (Pi ∩A).
Hence (by the Krull theorem) it is enough to prove that if a is a non-zero

and non-invertible element of A, and Pi ∈ AssÃ((a)), then Pi∩A is a minimal
ideal in the set AssA((a)). But this can be done exactly as in the proof of
Theorem 4.7.2 of [1], pp. 199–200.

To end this paper, we show that our results can be generalized neither
to the non-noetherian nor to the normal non-Krull case.

Example 5.2. For k ∈ N we construct a ring Rk such that:

1) Rk is a normal domain,

2) there exists p ∈ Rk such that the ideal (p) is prime and ht(p) ≥ k.
We proceed by induction. Let R1 = Z. Having defined a ring Rk, put

Rk+1 = Rk+(Rk)0X+(Rk)0X
2+. . . ⊂ (Rk)0[X]. The ring Rk+1 is a normal

domain.

Indeed, if ξ ∈ (Rk+1)0 = (Rk)0(X) is an integral element over Rk+1,
then it is also integral over (Rk)0[X]. Thus ξ ∈ (Rk)0[X], say ξ = ξ0 +
ξ1X + . . . + ξdX

d. Consequently, if ξn + an−1ξ
n−1 + . . . + a0 = 0, where

ai = ai,0+ai,1X + . . .+ai,diX
di ∈ Rk, then ξn0 +an−1,0ξn−10 + . . .+a0,0 = 0.

Hence ξ0 ∈ Rk and ξ ∈ Rk+1.
Let (p) = pk ⊃ pk−1 ⊃ . . . ⊃ p0 = 0 be a sequence of distinct prime ideals

in Rk. Now let p̃i = {f = f0 + f1Xk+1 + . . .+ fdXdk+1 ∈ Rk+1 : f0 ∈ pi}. It
is easy to see that (p) = p̃k ⊃ p̃k−1 ⊃ . . . ⊃ p̃0 ⊃ 0 is a sequence of distinct
prime ideals in Rk+1. Consequently, ht(p) ≥ k + 1.
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Let f : Spec(Rk[1/p])→ Spec(Rk) be the morphism given by the inclu-
sion Rk →֒ Rk[1/p]. By the proof of Proposition 4.1 and Proposition 2.2,
applied to f , we see that Sf = V (p) and consequently codimSf ≥ k.
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