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THE SET OF POINTS AT WHICH A MORPHISM OF AFFINE
SCHEMES IS NOT FINITE

BY

ZBIGNIEW JELONEK and MAREK KARAS (Krakéw)

Abstract. Assume that X,Y are integral noetherian affine schemes. Let f: X — Y
be a dominant, generically finite morphism of finite type. We show that the set of points
at which the morphism f is not finite is either empty or a hypersurface. An example is
given to show that this is no longer true in the non-noetherian case.

1. Introduction. Let f : X — Y be a morphism of affine varieties over
an algebraically closed field k. Let y € Y. We say that f is not finite at
y if there exists no open affine neighborhood U of y such that f]f_l(U) :
f~Y(U) — U is finite. If £ = C, then f is not finite at y iff there exists a
sequence x, — oo such that f(z,) — y. The set of all points at which f is
not finite will be denoted by 5.

In [2], [3] the first author proved that for a polynomial, generically finite
dominant mapping f : X — Y of affine varieties, the set Sy is either empty
or a hypersurface.

The aim of this paper is to generalize this result to the case of a domi-
nant, generically finite morphism of finite type of affine integral noetherian
schemes. The main result is that even under such general assumptions the
set Sy is either empty or a hypersurface.

2. Preliminaries. We use the terminology and notation as in [4]. Let
A C B be arbitrary rings. We say that B is a finite ring extension of A if B is
a finitely generated A-module. A morphism f: X — Y of schemes is called
finite if there exists a covering of Y by open affine subsets V; = Spec(4;)
such that for each i, f~1(V;) is affine, equal to Spec(B;), where B; is a finite
ring extension of A;. The morphism f : X — Y is finite if and only if for
every covering of Y by open affine subsets V; = Spec(A;), the sets f~1(V;)
are affine, equal to Spec(B;), where B; is a finite ring extension of A; (see e.g.
[4]). In particular if f is finite, then for every open subset V' = Spec(4) C Y
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the set f~1(V) is affine, equal to Spec(B), where B is a finite ring extension
of A.

DEFINITION 2.1. Let f : X — Y be a morphism of schemes and let

y € Y. We say that f is finite at y if there exists an open affine neighborhood
U of y such that f[;-1 ) : f~YU) — U is finite.

If Y = Spec(A) is affine, then f is finite at y € Y if and only if there exists
h € A such that y € D(h) = Spec(As) and f|s-1(p(ny) f~YD(h)) — D(h)
is finite. For a morphism f : X — Y, we will denote by Sy the set of points
at which f is not finite. Of course f is finite iff Sy is an empty set.

Let X = Spec(A) be an integral affine scheme. By a rational function
on the scheme X we mean an element of the field Ay (field of fractions of
the ring A). We say that a rational function £ has a pole at a point x iff
§ & Ay = Ox . For a rational function £ on the scheme X we will denote
by Pr the set of points at which £ has a pole. This set is a closed proper
subset of X. Indeed, we have the following:

PROPOSITION 2.2. Let & = b/a be a rational function on an integral
scheme X = Spec(A). Then P: =V (((a) : (b))).

Proof. Let p € Pe. Then £ € Ap,ie., & F# x/rforallz € Aandr € A\p.
Suppose ((a) : (b)) ¢ p and take r € ((a) : (b)) \ p. Thus rb = za for
some x € A, but this is impossible if £ ¢ A,,. Therefore ((a) : (b)) C p, i.e.,
peV(((@): ®).

Conversely, assume that ((a) : (b)) C p. If p € P, then b/a € A,. This
means that there are x € A and r € A\p such that rb = za. Consequently,
r € ((a) : (b)) C p. This contradiction finishes the proof. =

In what follows we need the following results:

PROPOSITION 2.3. Let A and B = Alxy,...,z,] be integral domains
such that the field By is a finite extension of Ag. Let f; € Ag[T],i=1,...,n,
be minimal (monic) polynomials of x; over Ag. Assume that A is a normal
ring. Then B is finite over A if and only if f; € A[t] for all i=1,...,n.

Proof. Assume that B is finite over A. Fix i € {1,...,n}. Since z; is inte-
gral over A, there exists a monic polynomial g; € A[X] such that g;(z;) = 0.

Note that g; = fih in Ag[X]. Indeed, g; = fih+7r in Ap[X] where degr <
deg f;. Moreover, r(x;) = gi(z;) — fi(z;)h(z;) = 0 and by the minimality of
fi, we have r = 0. Since g; € A[X], we conclude by [1, Theorem 3.2.2, p. 114]
that f; € A[X].

The converse implication is obvious. =

PRrROPOSITION 2.4. Let f : X — Y be a morphism of finite type, and

let V.= Spec(A), U = Spec(B) be open affine subschemes of X and Y,
respectively. If U C f=Y(V), then B is a finitely generated A-algebra.
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Proof. We start with the proof of the following:

LEMMA 2.5. Let X be a scheme and let U = Spec(A), V = Spec(B)
be open affine subschemes of X. For every x € U NV, there exists an open
affine subscheme W, CUNV of X such that W, = Spec(Aj,) = Spec(By),
where h € A and g € B.

Proof. Let x € UNV. Since UNV is open in U, there exists h € A such
that 2 € Dy(h) :={z € U: h €z} C UN V. Consequently, we can assume
that U C V. Let g € B = Ox (V') be such that z € Dy (g) C U. Consider the
restriction mapping of; : Ox(V) = B — A = Ox(U) and take h = o};(g).
It is easy to see that Spec(Ay) = Dy (h) = Dy(g) = Spec(By). =

Now we can continue the proof of Proposition 2.4. Since f is of fi-
nite type, there exist open affine subschemes Uy,...,Us of X such that
UiU...uUs = f~%V). Moreover, U; = Spec(B;), where B; is a finitely
generated A-algebra. For every x € U, there is an index i, such that
x € UNU,,. By the lemma above, there exists an open affine subscheme
W, C X such that x € W, ¢ UnU;, and W, is of the form W, =
Spec((Bi)n,) = Spec(By, ). Since (B;)p, is a finitely generated A-algebra, so
is By, . The family A = {Spec(By, ) }zcv is an open covering of U = Spec(B).
Since every affine scheme is quasi-compact, we can choose a finite sub-
covering {Spec(By,),...,Spec(By,)} C A. Note that (g1,...,9,) = 1. Let
hi,...,h, € B be such that hig1 + ... 4+ h,g, = 1. Since By, is a finitely
generated A-algebra, we can write By, = A[s;1/g, ..., sml/gf’”]

Take an s € B. Observe that s/1 € By, = A[5i71/gfl,...,si,m/gf"i]
for ¢ = 1,...,r. This implies that there is a natural number k; such that
gf"s € Algi, Sia, - Sin,]- Set k = max;—1 _, k;. Now we can write

a
s=(h1g1+ ...+ hpgr)"s = Z ’a’ (h1ig1,- -, hrgr)“s

a€N", |a|=rk

Thus s € Alg1,...,9r,h1,. .., hryS11,-2 0, Sy ). @

3. Basic definitions. Let us recall some basic definitions.

DEFINITION 3.1. Let A be a ring and let p be a prime ideal in A. The
height ht(p) is the upper bound of the lengths of chains of distinct prime
ideals

PoCprC...Cpa=p
of A. The height ht(a) of any ideal a is the number
ht(a) = inf ht(p),
pDoa

where p ranges over all the prime ideals containing a.
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Now let us recall the notion of a Krull ring.

DEFINITION 3.2. A ring A is called a Krull ring if it is integral and

1) for every prime ideal p of height 1 the ring A, is a discrete valuation
ring,

2) A= mht(p)zl Ap,

3) for any non-zero r € A, there exist only finitely many prime ideals p
of height 1 such that (r) C p.

We have the following fundamental theorem of Nagata (see [5]):

THEOREM 3.3. The normalization of an integral noetherian ring is a
Krull ring.

Now we pass to the definition of a hypersurface.

DEFINITION 3.4. Let X be a topological space and let Z C X be an
irreducible closed subset. The codimension of Z in X, denoted by codimy Z,
is the upper bound of the lengths of chains of distinct closed irreducible
subsets of X:

Z=7Z0CZ C...CZy.

If Z C X and all irreducible components of Z have codimension one, we say
that Z is a hypersurface.

For an ideal a of a ring A we denote by Ass(a) the set of all associated
prime ideals of a. It is easy to see that the following proposition holds:

PROPOSITION 3.5. Let A be a ring and let a be an ideal in A. The subset
V(a) C Spec(A) is a hypersurface if and only if for every ideal p € Ass(a)
we have ht(p) = 1.

ExaMPLE 3.6. If A is a Krull ring and r € A is a non-zero element, then
the subset V' ((r)) C Spec(A) is a hypersurface (see [1]).

4. Krull schemes. In this section we prove our main theorem in the
Krull case.

PROPOSITION 4.1. Let X,Y be affine integral schemes, and let f : X
— Y be a dominant, generically finite morphism of finite type. If Y is
normal, then Sy is the union of the sets of poles of finitely many rational
functions on Y.

Proof. Let X = Spec(B) and Y = Spec(A). The rings A and B are
integral domains, and A is also a normal ring. The morphism f: X — Y is
given by a morphism of rings ¢ : A — B. By Proposition 2.4 the morphism
© makes B a finitely generated A-algebra. Since ¢ is a monomorphism, we
can identify A with p(A) and consequently we can write B = A[z1,...,xy).
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Moreover, f : X — Y is a dominant, generically finite morphism of finite
type, so the field By is a finite extension of Agy. Let

P=T"+a{T" '+ ... +al, € A[T],

for i =1,...,n, be the minimal polynomial of x; over Ag.
We will show that the set

S=Hyev:a ¢ A, =0y,}
0]
is equal to Sy. By Proposition 2.2 and irreducibility of Y the set S is a
closed proper subset of Y. Let y € Y'\S. Then a{ € Oy,y. Thus there exists
a neighborhood D(h), where h € A, such that af|D(h) € A, =0y (D(h)). It
is easy to see that P; € Ag[T] C (An)o[T], where ¢ = 1,...,n, is a minimal
polynomial for z;|ps) over (Ap)o. Since ag\D(h) € Oy (D(h)), we see that
P; € Ap[T]. By Lemma 2.3, the mapping f|s-1(p(n)) : Y D(h)) — D(h) is
finite. This implies that f is finite at y.

Conversely, let f be finite at y € Y. This means that there exists h € A
such that y € D(h) and the mapping f|;—1(pgpy) : f~'(D(h)) — D(h) is
finite. Now Lemma 2.3 yields that P; € Ap[T]. This implies that af Ip(n) €
Ap, = Oy (D(h)) and consequently D(h) C Y\S. =

The converse statement is also true:

PROPOSITION 4.2. Let Y be a normal integral affine scheme, and let
&1, ..., & be rational functions on Y. There exist an affine integral scheme

X and a dominant, generically finite morphism of finite type f : X — Y
such that Sy = U;_; P(&)-

Proof. Tt is sufficient to take X = Spec(A[1,...,&]) and f: X — YV
given by the inclusion A — A[{y,...,&]. =

Let us recall that if A is a Krull ring, we say that a scheme Spec(A) is a
Krull scheme. Let X be a Krull scheme and let f be a rational function on
X. Then the set Py of poles of f is either empty or it has pure codimension
one. Indeed, we have the following:

PROPOSITION 4.3. Let X = Spec(A) be a Krull scheme and f € A,
Then the set of poles of f, i.e. the set Pr = {p € X : f & Ap}, is either
empty or of the form

=1

where the p; are prime ideals with ht(p;) = 1. In particular, Py is either
empty or a hypersurface.
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Proof. Let f = b/a. In virtue of Proposition 2.2, Py = V (((a) : (b))).
Since A is a Krull ring, the principal ideal (a) has a primary decomposition,
say (a) = ();—; ¢;- Moreover, every associated prime ideal ,/g; is minimal
and has height one.

We have ((a) : (b)) =((g: : (b)). We also know that

A, b€ pi= a4,
i (b)) =
@O = e Ve
Thus if ((a) : (b)) C p, then there exists ¢ such that \/q; C p. =

Since a Krull ring is a normal ring (see [1], 4.2.5), by Proposition 4.3 we
have our first main result:

THEOREM 4.4. Let X,Y be affine integral schemes and let f : X — Y
be a dominant, generically finite morphism of finite type. If Y is a Krull
scheme, then Sy is either empty or a hypersurface.

5. Noetherian schemes. In this section we prove our theorem in the
noetherian case.

THEOREM 5.1. Let X,Y be affine integral schemes and let f: X — Y
be a dominant, generically finite morphism of finite type. If Y is noetherian,
then Sy is either empty or a hypersurface.

Proof. Let Y be a normalization of the scheme Y, say Yy = Spec(ﬁ),
where A is the integral closure of A in the field Ag. Let 7y : Y — Y be the
morphism given by the inclusion A < A. Set X = Spec(Afz1, ..., x,]) and
let 7x : X — X be given by the inclusion Alzy, ..., xn) — g[xl,...,xn].
We have the natural morphism f: X — Y such that the diagram

X
X
commutes. The morphism f X - Yisa dominant, generically finite

morphism of finite type. Since A is a Krull ring (see Theorem 3.3), by
Proposition 4.3, the set S 7 is either empty or a hypersurface.

Now we prove that wy(Sf) C Sy For h € A, we have 7, (Dy(h)) =
Dy (h) and Dy (h) = Spec(Ay), Dy (h) = Spec(Ay). Of course Ay, is an in-
tegral extension of Aj,. Moreover, f~!(Dy (h)) = Dx(h) and 7' (Dx(h)) =
D (h). The ring (A[z1,...,2n))h = Ap[z1, ..., 2n] is an integral extension
of (A[(L‘l, NN ,xn])h = Ah[(L‘l, NN ,.%'n]. Thus if f‘DX(h) : Dx(h) — Dy(h) is a

finite morphism, then ﬁh [1,...,2,] is an integral extension of A. It follows

_F

N=<—=1

/
—
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that gh[:cl, ..y Tp] is an mtegral extension of Aj. Since Ah[xl, ceey Ty 18
a finitely generated Ap- algebra, Ah[:cl, ...,Ty] is a finite ring extension of
Ap. Thus f]D,)\((h :Dg(h) — Dg(h) is a ﬁnite morphism, which proves the
inclusion 7y (S7) C Sy,

Conversely, we have Sy C my (S f)' It is enough to show that if y &
Wy(Sf), then y & Sy. Let y & ﬂ'y(Sf). Then there is an open neighborhood
U of y disjoint from Wy(Sf). The morphism g := 7y o ]7: g Y U) — Uis
integral, as a composition of integral morphisms. Consequently, so is formx :
g Y(U) — U and hence also f : f~1(U) — U. Since f is of finite type it is
finite, and consequently y & Sy.

It remains to prove that my (S f) is either empty or a hypersurface. Note
that S is the union of irreducible hypersurfaces V(P ), where P; € Ass(a;)
for some non-zero and non-invertible element a; € A (see Propositions 2.2
and 3.5).

In fact, we can assume that a; € A. Indeed, the irreducible equations of
x; over A are the same as over A, in particular, the coefficients of these equa-
tions are of the type a/b, where a,b € A. Since the morphism 7y : Y -Y
is integral, we have 7y (V(F;)) = V(P; N A).

Hence (by the Krull theorem) it is enough to prove that if a is a non-zero
and non-invertible element of A, and P; € Ass ;((a)), then P;NA is a minimal
ideal in the set Ass4((a)). But this can be done exactly as in the proof of
Theorem 4.7.2 of [1], pp. 199-200. =

To end this paper, we show that our results can be generalized neither
to the non-noetherian nor to the normal non-Krull case.

ExXAMPLE 5.2. For k € N we construct a ring Ry, such that:

1) Ry is a normal domain,
2) there exists p € Ry such that the ideal (p) is prime and ht(p) > k.

We proceed by induction. Let Ry = Z. Having defined a ring Ry, put
Rpy1 = Rp+(Ri)oX +(Ri)oX2+... C (Rg)o[X]. The ring Ry 1 is a normal
domain.

Indeed, if € € (Rigy1)o = (Rg)o(X) is an integral element over Ry.q,
then it is also integral over (Rg)o[X]. Thus & € (Ry)o[X], say £ = & +
EX + ...+ £ XL Consequently, if €” + ap,_ 1" ' + ...+ a9 = 0, where
a; = ajo+a; 1 X+...+ ai7diXdi € Ry, then f + an,1,0§371 +...4+apo =0.
Hence & € Ry and € € Ry11.

Let (p) = pr D pr—1 D ... D po = 0 be a sequence of distinct prime ideals
in Rg. Now let p; = {f = fo+ fiXps1+ ...+ deg+1 € Riy1: fo€pi}. It
is easy to see that (p) = pr D pr—1 O ... D po D 0 is a sequence of distinct
prime ideals in Rj41. Consequently, ht(p) > k + 1.
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Let f : Spec(Ry[1/p]) — Spec(Ry) be the morphism given by the inclu-
sion Ry — Ry[1/p]. By the proof of Proposition 4.1 and Proposition 2.2,
applied to f, we see that Sy = V(p) and consequently codim Sy > k.
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