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BLOW UP FOR A COMPLETELY COUPLED FUJITA

TYPE REACTION-DIFFUSION SYSTEM

BY

NOUREDDINE IGBIDA and MOKHTAR KIRANE (Amiens)

Abstract. This paper provides blow up results of Fujita type for a reaction-diffusion
system of 3 equations in the form ut −∆(a11u) = h(t, x)|v|

p, vt −∆(a21u) −∆(a22v) =
k(t, x)|w|q, wt − ∆(a31u) − ∆(a32v) − ∆(a33w) = l(t, x)|u|

r, for x ∈ R
N , t > 0, p > 0,

q > 0, r > 0, aij = aij(t, x, u, v), under initial conditions u(0, x) = u0(x), v(0, x) =

v0(x), w(0, x) = w0(x) for x ∈ R
N , where u0, v0, w0 are nonnegative, continuous and

bounded functions. Subject to conditions on dependence on the parameters p, q, r,N and
the growth of the functions h, k, l at infinity, we prove finite blow up time for every solution
of the above system, generalizing results of H. Fujita for the scalar Cauchy problem, of
M. Escobedo and M. A. Herrero, of Fila, Levine and Uda, and of J. Rencławowicz for
systems.

1. Introduction. The aim of this paper is to establish new results on
blowing up solutions to systems of parabolic equations of Fujita type. We are
mainly interested in critical exponents. Since the pioneering articles of Fujita
[6], [7], critical exponents have attracted the attention of a sizable number
of researchers. For valuable surveys of Fujita type theorems for equations
as well as for systems of reaction-diffusion equations we refer to Levine
[10], Samarskĭı–Galaktionov–Kurdyumov–Mikhăılov [16], Bandle–Brunner
[1] and Deng–Levine [3]. In [4], Escobedo and Herrero considered the system

(EH)




ut = δ∆u+ u

p, vt = ∆v + v
q, t > 0, x ∈ R

N ,
u(0, x) = u0 ≥ 0, v(0, x) = v0 ≥ 0, x ∈ R

N ,
u0, v0 ∈ L

∞(RN ),

with δ = 1, p, q > 0, and derived global existence and blow up results for
(EH). They showed that all positive solutions of (EH) blow up in finite time
for

1 < pq and
N

2
≤
max(p, q) + 1

pq − 1
,

while positive global solutions exist for N/2 > (max(p, q)+1)/(pq−1). They
used the same technique as Fujita. Let us mention that they strongly use
the fact that the two parabolic equations in (EH) have the same diffusion
operators. Then in [5], Fila, Levine and Uda extended the results to the
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case where 0 ≤ δ ≤ 1. They use the same technique as in [4] and a prop-
erty satisfied by the heat kernel. In a recent paper, Guedda and Kirane [8]
considered, with respect to the nonexistence of global solutions, the more
general system

(GK)

{
ut = −a(−∆)

α/2u+ k(t, x)vp,
vt = −b(−∆)

β/2v + h(t, x)uq,

for any a, b, α, β > 0; for 0 < α, β ≤ 2, the operators (−∆)α/2 and (−∆)β/2

stand for diffusion in media with impurities. We define (−∆)α/2 by the
formula ((−∆)α/2v)(x) = F−1(|ξ|αv̂(ξ))(x) where ̂= F denotes the Fourier
transform and F−1 its inverse.

The conditions on h, k required are
{
0 < k(R2t, Ry) ≃ CRλk ,

0 < h(R2t, Ry) ≃ CRλh ,

for some λk, λh ∈ R, R≫ 1 and (t, y) in a bounded domain in Q := R
+×R

N .
Observe that the diffusive operators in (GK) are different and that the
reaction terms are nonautonomous. One can take for example k(t, x) =
tσ1 |x|̺1 and h(t, x) = tσ2|x|̺2 .

Let us note in passing that Kusano and Oharu [9] and Oharu [13] gave
sufficient conditions for the existence of solutions to the Cauchy problem for
the weakly coupled system

ut = ∆u+ f(x, u, v),

vt = ∆v + g(x, u, v).

In [14], Rencławowicz studied the completely coupled Fujita-type system

(R)





ut = ∆u+ v
p, (t, x) ∈ Q,

vt = ∆v + w
q, (t, x) ∈ Q,

wt = ∆w + u
r, (t, x) ∈ Q,

with p, q, r > 0, N ≥ 1 and nonnegative bounded continuous initial values.
She proved that, if pqr ≤ 1, then any solution is global, while when pqr > 1
and N/2 ≤ max(α, β, γ) where

α =
1 + p+ pq

pqr − 1
, β =

1 + q + rq

pqr − 1
, γ =

1 + r + rp

pqr − 1
,

then every nontrivial solution exhibits a finite blow up time. She also uses
Fujita’s method; that is why in (R), the equations have the same diffu-
sion coefficient. In [15], she extended her study to a diagonal system of N
equations.
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Here, we present global nonexistence results for the triangular system

(IK)





ut −∆(a11u) = h(t, x)|v|
p in Q,

vt −∆(a21u)−∆(a22v) = k(t, x)|w|
q in Q,

wt −∆(a31u)−∆(a32v)−∆(a33w) = l(t, x)|u|
r in Q,

u0 ≥ 0, v0 ≥ 0, w0 ≥ 0,

where 0 < p, q, r are real, aij(t, x, u, v) are measurable, positive bounded
functions, and the nontrivial nonnegative functions h, k and l are assumed
to satisfy 




0 < h(R2τ, Ry) ≃ CRµ,

0 < k(R2τ, Ry) ≃ CRκ,

0 < l(R2τ, Ry) ≃ CRλ,

(1.1)

for µ, κ, λ ∈ R, R≪ 1, and (τ, y) belonging to a bounded set in Q.

Observe that nonnegative initial data for (IK) do not necessarily lead to
nonnegative solutions.

It is absolutely clear that our system (IK) is not only much more general
than those cited above with respect to the reaction terms but also concerning
the diffusion terms. Let us point out that the method of Fujita is here
inoperative. We deal with nonlinear operators which generate propagators
rather than semigroups and for which we have no comparison result.

Our method of proof is that introduced by Mitidieri, Pokhozhaev and
Tesei in [11] and [12]; very close ideas were developed previously by Baras
and Pierre [2]. Before setting our theorem concerning (IK), let us define the
solutions we use.

Definition 1. The 3-tuple (u, v, w) such that u ∈ C([0, T ];L1loc(R
N ))∩

C([0, T ];Lrloc((0, T ) × R
N , l dtdx)), v ∈ C([0, T ];L1loc(R

N )) ∩ Lploc((0, T ) ×
R
N , h dtdx)) and w ∈ C([0, T ];L1loc(R

N ))∩Lqloc((0, T )×R
N , k dtdx)) is called

a solution to system (IK) if




−
\

RN

u0ξ(0)−
\
Q

(uξt − a11u∆ξ) =
\
Q

h|v|pξ,

−
\

RN

v0ξ(0)−
\
Q

(vξt − (a21u+ a22v)∆ξ) =
\
Q

k|w|qξ,

−
\

RN

w0ξ(0)−
\
Q

(wξt − (a31u+ a32v + a33w)∆ξ) =
\
Q

l|u|rξ,

(1.2)

for any nonnegative test function ξ ∈ C20 (R
+ × R

N ) with ξ(T, x) = 0. If
T =∞, we say that (u, v, w) is a global weak solution.

Here, we also require that the nonnegative initial data (u0(x), v0(x), w0(x))
is such that a local solution exists.
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Notation. We let Lrloc((0, T ) × R
N , l dtdx)) be the set of all functions

u : (0, T ) × R
N → R such that

T
K |u|

rl dt dx < ∞ for any compact K ⊂

(0, T )× R
N .

Our result is

Theorem 1. Let (u, v, x) be a solution of (IK) such that u0, v0, w0 ≥ 0.
Let pqr > 1 and

(1.3) N ≤ min

{
r(µ+ 2 + p(k + 2)) + λ+ 2

pqr − 1
,
p[r(k + 2) + (λ+ 2)]

pqr − p
,

λ+ 2

r − 1
,
q[r(µ+ 2) + (λ+ 2)]

pqr − q

}
.

Then every nontrivial solution of (IK) blows up in finite time.

Proof. The proof is by contradiction. Let (u, v, w) be a global solution
of (IK) with u0, v0, w0 ≥ 0, pqr > 1, and suppose (1.3) is satisfied. Let ξ be
a nonnegative test function such that

(H)





\
Q

(l|ξ|)−r̃/r|ξt|
r̃ <∞,

\
Q

(h|ξ|)−p̃/p|ξt|
p̃ <∞,\

Q

(k |ξ|)−q̃/q|ξt|
q̃ <∞,

\
Q

(l |ξ|)−r̃/r|∆ξ|r̃ <∞,\
Q

(h|ξ|)−p̃/p|∆ξ|p̃ <∞,
\
Q

(k|ξ|)−q̃/q|∆ξ|q̃ <∞.

As u0, v0, w0 ≥ 0, using (1.2) we have, for ξ ≥ 0,\
Q

h|v|pξ ≤
\
Q

|u| · |ξt|+ ‖a11‖∞
\
Q

|u| · |∆ξ|,(1.4) \
Q

k|w|qξ ≤
\
Q

|v| · |ξt|+ ‖a21‖∞
\
Q

|u| · |∆ξ|+ ‖a22‖∞
\
Q

|v| · |∆ξ|,(1.5) \
Q

l|u|pξ ≤
\
Q

|w||ξt|+ ‖a31‖∞
\
Q

|u| · |∆ξ|+ ‖a32‖∞
\
Q

|v| · |∆ξ|(1.6)

+‖a33‖∞
\
Q

|w| · |∆ξ|,

where ‖a21‖∞ := maxt,x |a21|, etc. Writing\
Q

|u| · |ξt| =
\
Q

|u|(l|ξ|)1/r(l|ξ|)−1/r|ξt|

and using the Hölder inequality, we obtain\
Q

|u| · |ξt| ≤
( \
Q

|u|rl|ξ|
)1/r(\

Q

(l|ξ|)−r̃/r|ξt|
r̃
)1/r̃
,(1.7)
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where 1/r̃ + 1/r = 1. Similarly\
Q

|u| · |∆ξ| ≤
( \
Q

|u|rl|ξ|
)1/r(\

Q

(l|ξ|)−r̃/r|∆ξ|r̃
)1/r̃
.(1.8)

Next, we set

Ar,l =
(\
Q

(lξ)−r̃/r|ξt|
r̃
)1/r̃
+ C
(\
Q

(lξ)−r̃/r|∆ξ|r̃
)1/r̃

=: A
(1)
r,l + CA

(2)
r,l

and

X :=
(\
Q

|u|rlξ
)1/r

and Y :=
( \
Q

|v|phξ
)1/p
;

here C denotes a constant that may change in different occurrences. Then
using (1.6) and (1.7) in (1.3), we obtain

Yp ≤ XAr,l.(1.9)

We also have\
k|w|qξ ≤

(\
Q

h|v|pξ
)1/p
Ap,h + C

(\
Q

|u|rlξ
)1/r
A
(2)
r,l ,\

Q

l|u|pξ ≤
(\
Q

k|w|qξ
)1/q
Aq,k + C

(\
Q

|u|rlξ
)1/r
A
(2)
r,l

+ C
(\
Q

|v|phξ
)1/p
Ap,h.

If we set

Z :=
( \
Q

|w|qkξ
)1/q
,

then we can write

Zq ≤ YAp,h + CXA
(2)
r,l ,(1.10)

Xr ≤ ZAq,k + CXA
(2)
r,l + CYAp,h.(1.11)

So,

Zpq ≤ CYpApp,h + CX
p(A
(2)
r,l )
p,(1.12)

Xrpq ≤ CZpqApqq,k + CX
pq(A

(2)
r,l )
pq + CYpqApqp,h.(1.13)

Inserting (1.12) in (1.13), we get

Xpqr ≤ CYpApp,hA
pq
q,k + CX

p(A
(2)
r,l )
pApqq,k(1.14)

+ CXpq(A
(2)
r,l )
pq + CYpqApqp,h.
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Using now (1.9) in (1.14), we obtain

Xpqr ≤ CXAr,lA
p
p,hA

pq
q,k + CX

p(A
(2)
r,l )
pApqq,k

+CXpq(A
(2)
r,l )
pq + CXqApqp,hA

q
r,l,

which we write as

Xpqr−1 ≤ a+ bXp−1 + cXpq−1 + dXq−1(1.15)

with
a = CAr,lA

p
p,hA

pq
q,k, b = CA

pq
q,k(A

(2)
r,l )
p,

c = C(A
(2)
r,l )
pq, d = CApqp,hA

q
r,l.

Now, by using the ε-Young inequality, we obtain

bXp−1 ≤ εXpqr−1 + Cεb
α̃(1.16)

where α := (pqr − 1)/(p− 1) and 1/α̃+ 1/α = 1; similarly

cXpq−1 ≤ εXpqr−1 + Cεc
β̃(1.17)

where β = (pqr − 1)/(pq − 1) and 1/β̃ + 1/β = 1; and

dXq−1 ≤ εXpqr−1 + Cεd
γ̃(1.18)

where γ = (pqr − 1)/(q − 1), 1/γ̃ + 1/γ = 1. Cε has a different meaning in
(1.16), (1.17) and (1.18). Taking ε small enough and using (1.16)–(1.18) in
(1.15), we obtain

(1− 3ε)Xpqr−1 ≤ a+ Cε(b
α̃ + cβ̃ + dγ̃).(1.19)

Next, we consider φ ∈ C2(R;R+) such that

φ(r) =

{
1 for r ≤ 1,
0 for r ≥ 2,

and 0 ≤ φ ≤ 1 for any r > 0. If we set

ξ(t, x) = φλ
(
t2 + |x|2

R2

)
, R > 0,

and take λ large enough, we ensure the validity of the requirement (H) at
the beginning of the proof.
At this stage, we introduce the scaled variables

τ = tR−2, y = xR−1.

We have the estimates

Ap,h ≤ CR
[−(µ+2)+N(p−1)]/p,

App,h ≤ CR
−(µ+2)+N(p−1),

Apqq,k ≤ CR
p[−(k+2)+N(q−1)],
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(A
(2)
r,l )
p ≤ R(p/r)[N(r−1)−(λ+2)], Aqr,l ≤ R

(q/r)[N(r−1)−(λ+2)].

So

a ≤ CRsa , b ≤ CRsb , c ≤ CRsc , d ≤ CRsd ,

where

sa = N(pq − p)− p(k + 2)− (µ+ 2) +N(p− 1) +
−(λ+ 2) +N(r − 1)

r
,

sb = −p(k + 2) +Np(q − 1) +
p

r
[N(r − 1)− (λ+ 2)]

rsc = pq[−(λ+ 2) +N(r − 1)],

sd = −q(µ+ 2) + qN(p− 1) +
q

r
[N(r − 1)− (λ+ 2)].

Now, we require

sa ≤ 0, sb ≤ 0, sc ≤ 0, sd ≤ 0,

which are, respectively, equivalent to

N ≤
r[µ+ 2 + p(k + 2)] + λ+ 2

pqr − 1
,

N ≤
p[r(k + 2) + λ+ 2]

pqr − p
,

N ≤
λ+ 2

r − 1
,

N ≤
q[r(µ+ 2) + λ+ 2]

pqr − q
;

in other words,

N ≤ min

{
r[µ+ 2 + p(k + 2)] + λ+ 2

pqr − 1
,
r(k + 2) + (λ+ 2)

qr − 1
,

λ+ 2

r − 1
,
r(µ+ 2) + (λ+ 2)

pr − 1

}
.

We have two cases:

• Either sa < 0, sb < 0, sc < 0, and sd < 0. In this case, we let R →∞
in (1.19) to obtain

lim
R→∞

Xpqr−1 = 0,

hence u ≡ 0; this in turn implies v ≡ 0 via (1.9); and finally w ≡ 0 from
(1.10)—a contradiction.

• Or sa < 0 or sb < 0 or sc < 0 or sd < 0, i.e. at least one of the
exponents is zero. In this case, we get

lim
R→∞

Xpqr−1 ≤ C <∞.
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So

lim
R→∞

\
ΩR

|u|rlξ = 0

where ΩR := {(t, x) : R
2 ≤ t+ |x|2 ≤ 2R2}. Now we write (1.9) in the form\
|v|phξ ≤

( \
ΩR

|u|rlξ
)
Ar,l

and let R→∞. The right-hand side goes to zero while the left-hand side is
assumed to be positive—a contradiction.

Remark 1. When the system (IK) is diagonal (a21 = a31 = a32 = 0),
the inequalities (1.9)–(1.11) become

Yp ≤ Ar,lX, Zq ≤ Ap,h Y , Xr ≤ Aq,k Z,

which combined leads to

Xpqr−1 ≤ Ar,lA
p
p,hA

pq
q,k,

Ypqr−1 ≤ Arqr,lAp,hA
q
q,k,

Zpqr−1 ≤ Arr,lA
pr
p,hAq,k.

Now, if we use the scaled variables, we obtain

Xpqr−1 ≤ Rsx , Ypqr−1 ≤ Rsy , Zpqr−1 ≤ Rsz ,

where

sx =
−(λ+ 2) +N(r − 1)

r
+N(p− 1)

− (µ+ 2)− p(k + 2) +Np(q − 1),

sy = [−(λ+ 2) +N(r − 1)]q − (k + 2) +N(q − 1)

+
N(p− 1)− (µ+ 2)

p
,

sz = −r(µ+ 2) + rN(p− 1)− (λ+ 2) +N(r − 1)

+
N(q − 1)− (k + 2)

q
.

The choice of sx ≤ 0, sy ≤ 0 and sz ≤ 0 leads to

N ≤
λ+ 2 + r[µ+ 2 + p(k + 2)]

pqr − 1
,

N ≤
p[(λ+ 2)q + (k + 2)] + µ+ 2

pqr − 1
,

N ≤
q[r(µ+ 2) + λ+ 2)] + k + 2

pqr − 1
.
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Now, if we take the case studied by Rencławowicz: λ = k = µ = 0, we
obtain the same result as she did:

N

2
≤

1

pqr − 1
min{pq + p+ 1, rp+ r + 1, qr + q + 1}.

Remark 2. Our results can be generalized to the more general system




ut + |x|
α(−∆)α1/2(a11u)=h(t, x)|v|

p in Q,

vt + |x|
β{(−∆)α2/2(a21u) + (−∆)

α3/2(a22v)}=k(t, x)|w|
q in Q,

wt + |x|
γ{(−∆)α4/2(a31u)

+ (−∆)α5/2(a32v) + (−∆)
α6/2(a33w)}= l(t, x)|u|

r in Q,

u0≥0, v0≥0, w0≥0.
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