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FACTORIZATION PROPERTIES OF KRULL MONOIDS
WITH INFINITE CLASS GROUP
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WOLFGANG HASSLER (Graz)

Abstract. For a non-unit a of an atomic monoid H we call
Ly(a) ={k €N |a=uq...u with irreducible u; € H}

the set of lengths of a. Let H be a Krull monoid with infinite divisor class group such
that each divisor class is the sum of a bounded number of prime divisor classes of H. We
investigate factorization properties of H and show that H has sets of lengths containing
large gaps. Finally we apply this result to finitely generated algebras over perfect fields
with infinite divisor class group.

1. Introduction. In this paper, a monoid H is a commutative and can-
cellative semigroup with unit element. We usually write H multiplicatively
and we denote by H* the group of units of H.

A monoid H is said to be atomic if every h € H\ H* has a factorization

(1) h=uy...ug
into irreducible elements (atoms) u; of H. We say that k is the length of the
factorization (1) and we call
Ly(h) = {k € N| k is the length of some factorization of h} C N
the set of lengths of h. We denote by
L(H)={Lu(h) |heH\H"}

the set of all sets of lengths of H.

Clearly, H is factorial if and only if (1) is unique up to associates and up
to order for each h € H. If H is not factorial the problem arises to describe
and classify the occurring phenomena of non-uniqueness of factorizations.
A first coarse measure for this non-uniqueness is the elasticity

sup Ly (h)

H) = ik b NN
o(H) = sup { min Lz (h)
This is a frequently investigated invariant and there is an extensive biblio-

graphy about it; for a survey see [3]. Unfortunately, the elasticity does not
contain any information about the structure of Ly (h) between min Ly (h)

hEH\HX} ERZlU{OO}.
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and sup Ly (h). In the following we consider an invariant which measures
the size of the “gaps” between elements of Lz (h).

Recall that an atomic monoid H is called a BF-monoid if Ly(h) is a
finite set for every h € H \ H*. By [2], Proposition 2.2, every Krull monoid
(see for example [4]) and the monoid R \ {0} of nonzero elements of every
noetherian domain R is a BF-monoid.

For an arbitrary set A we denote by Pg,(A) the set of finite subsets of A.

Let L ={l1,...,l;} € Pgy(Z) where I} < ... <l,. Then we call

AL)={l; —li1|2<i<r}
the set of differences of L (note that A(L) is empty if and only if |L]| < 1),

and we call
Am) = |J AlLu(h)
he H\H*
the set of differences of a BF-monoid H (see also [4]).

Let H be a Krull monoid. If the class group of H is finite, then all sets
of lengths of H are, up to bounded initial and final segments, arithmetical
multiprogressions with bounded sets of differences (see [4], Theorem 2.13).
In particular this implies that A(H) is a finite set.

If on the other hand H is a Krull monoid with infinite class group and if
each divisor class of H is a prime divisor class, then every non-empty finite
set L C N>g is contained in L(H) (see [7]).

In this paper we study sets of lengths of Krull monoids H with infinite
class group such that every class is the sum of a bounded number of prime
divisor classes. Such Krull monoids occur in a natural way in the study of
finitely generated algebras over perfect fields (see Section 2).

Let G be an abelian group and Gg C G a subset. We set

Go(m) ={g1+...+gr [r <m, gi € Go}.

Our main result where we prove the existence of “thin” sets of lengths (which
in particular implies that A(H) is infinite) reads as follows:

THEOREM 1.1. Let H be a Krull monoid with infinite class group G and
let Go C G denote the set of prime divisor classes. If G = Go(m) for some
m € N then there exists some constant K € N such that for all N € N
there exists some L € L(H) with minL < K, |L| < K and maxL > N. In
particular, A(H) is an infinite set.

The organization of the paper is as follows: In Section 2 we apply Theo-
rem 1.1 to finitely generated algebras over perfect fields. Section 3 is entirely
devoted to the proof of Theorem 1.1.

2. Finitely generated domains. Let H be a monoid. We denote by
Q(H) the quotient group of H. A monoid homomorphism ¢ : H — D is
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called a divisor homomorphism if ¢(a)|@(b) implies a|b for all a,b € H.
In this case ¢ induces a monomorphism Q(H)/H* — Q(D)/D* whose
cokernel C(y) is called the (divisor) class group of ¢. It is always written
additively. For each d € Q(D) we denote by [d], its image under the canon-
ical map Q(D) — C(y). We call the elements of {[p], | p € D is prime} the
prime divisor classes of .

For an integral domain R we set R* = R\ {0}, R = R*/R* and
A(R) = A(R®).

Let R be a noetherian integral domain whose integral closure R is a
finitely generated R-module. Let

S=Rr\J»,
peA
where A = Assr(R/R), denote the set of non-zero divisors of R/R. Set
P(R) = {p € spec(R) | ht(p) =1, pN S # 0}.

Then R, is a discrete valuation domain for every p € P(R) (see [5], Lemma 2).
Thus Hp €P(R) Rf can be canonically identified with the free abelian monoid
F(P(R)) with basis P(R) (see also formula (2) in Section 3). The natural
maps R* — Rf and R®* — R? induce a divisor homomorphism (see [5],
Theorem 1) Or : R* — F(P(R)) X R? whose class group C(R) is called the
divisor class group of R.

By restricting Or to S we obtain a divisor homomorphism Jr|s : S —
F(P(R)) whose class group and set of prime divisor classes naturally coin-
cide with those of R (see [5], Remark 4 to Theorem 1). In fact, S is a Krull

monoid with divisor theory dr|s and thus the set of prime divisor classes
generates the class group of R as a monoid.

THEOREM 2.1. Let R be a domain which is a finitely generated algebra
over some perfect field. If R has infinite divisor class group then there ex-
ists some K € N such that for all N € N there exists some L € L(R) with
min L < K, |L| < K and max L > N. In particular, A(R) is an infinite set.

Proof. Let G denote the class group of R and let Gg be the set of prime
divisor classes. If R is finitely generated over some infinite perfect field then
G = Gp(m) for some m € N by [6], Proposition 4.2. If R is a finitely
generated algebra over a finite field we again have G = Gy(m) for some
m € N by the remark after Corollary 4.1 in [6].

Since the set S of non-zero divisors of R/R is a divisor closed submonoid
of R®, the assertion follows immediately from Theorem 1.1 and the above
considerations. m

It is well known from [8], Theorem 3, that if a domain R is a finitely
generated algebra over an infinite perfect field with dim(R) > 2, then each
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divisor class of R is a prime divisor class. It is conjectured that the same is
true if R is finitely generated over Z.

The example R = k[X?3, X4, X?] C k[X] in [8], where k is an algebraically
closed field, shows that the assumption dim(R) > 2 for algebras over infinite
perfect fields is necessary.

3. Krull monoids. In the following we need the concept of block
monoids. Let P be a set. We denote by

@  Fe)={I]»

peP

ny, € No, n, = 0 for almost all p € P}

the free abelian monoid with basis P. For an element h = [[ . p p"* € F(P)
we set

o(h) = orp)(h) =Y np € No.
peP

For an abelian group G and an arbitrary subset Gog C G the block monoid
of GGy is defined by

B(Go) = { ] 9™ € F(Go)| 3 nyg = 0}.

9€Go g€Go

Let H be a Krull monoid with class group G and let Gy denote the set of
divisor classes containing a prime divisor. Then

L(H) = L(B(Go))

(see [4], Section 3).
In order to prove Theorem 1.1 it is thus sufficient to show the following
purely group-theoretical theorem.

THEOREM 3.1. Let G be an infinite abelian group, m € N and Gy C G
a subset such that G = Go(m). Then there exists some constant K € N
such that for all N € N there exists some L € L(B(Gy)) with min L < K,
|L| < K and max L > N. In particular, A(H) is an infinite set.

The rest of the paper is devoted to the proof of this theorem.

LEMMA 3.2. Let G be an abelian group and let Go C G be a subset. Let
V.,W € F(Gy) be elements such that VW is a block. Suppose that for all
divisors D | gy W, E |rce) V and E' |5,y V' the following holds true:
o(E) = o(E'") whenever ED and E'D are irreducible elements of B(G).
Then

LB (o) (VW) < o(W)L.

Proof. Let
VW =q1...qs
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be a factorization of VW into irreducible elements g¢; of B(Gp). Then we can
decompose each ¢; in the form

q; = V;w;
where v, w; € F(Go), vi |V, w;|W and w;...ws = W. We assume that

w; #Flforl<i<tandw;=1fort+1<i<s.
If we consider a second decomposition

into irreducible elements ¢, of B(Gp) such that ¢, = vjw; for all 1 <1i < ¢,
we see that s = &', i.e. [Lg(g,)(VW)] is bounded by the number of different
(up to order) decompositions wy ... ws of W into non-trivial elements w; €
F(Go).

Let W = x;...xz,, where the x; are prime elements of F(Gp). With-
out restriction we assume that the z; are pairwise distinct (since this just
enlarges the number of possible decompositions of W). If we write permu-
tations 7 € &,, as products of disjoint cycles 7 = o1 .. .0 we see that 7 de-
termines a decomposition of {1,...,n} into non-empty disjoint sets. Hence
we get a surjective map from &, to the set of decompositions of W. This
implies that the number of decompositions of W is bounded by o(W)!. =

LEMMA 3.3. Let G be an abelian group which contains an element of
infinite order and let Gy C G be a subset which generates G as a monoid.
Then there exists a non-trivial block

B=gl"...g* € B(Gy)

with pairwise distinct elements g; € Go of infinite order and t; > 0 such
that the kernel of the homomorphism

k
Y 7k - G, (o1,...,08) — Zai%
i=1

is generated by (t1,...,tx) € N¥. In particular, B({g1,...,gr}) = (No, +).

Proof. Since G generates G as a monoid, there exists an element g1 € G
with infinite order. Let B = §1...g, € B(Gy). For large | € N, B! has a

non-trivial divisor B" = ¢} ...g/, in B(Gp) such that each g, has infinite
order. We thus assume that all g; have infinite order.

Let T be a minimal subset of {g1, ..., g,} with respect to inclusion such
that B(T) # {1}. We write T' = {g1,...,9x} with pairwise distinct ele-
ments g;.

Next we show that the kernel of ¢ is cyclic.

Since g1, ..., g, are not linearly independent over Z, it suffices to show
that every proper subset 77 C T is linearly independent over Z. Assume the

contrary and let gi* ... g;* with r; > 0 be a non-trivial block.
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Then there exists some (81,...,5:) € Z*\ {0} such that Big1 + ... +
Brgr = 0 and 3; = 0 for at least one i € {1,...,k} (note that k > 2 since all
g; have infinite order). By the minimal choice of T, we have 3; < 0 for at
least one j, and we choose (f1,. .., ) with a minimal number of negative
components. We may assume that gy = 0 and 8;_1 < 0. Then we obtain

k-2
0= Z(Tk—lﬁi — Br—17:)9i + Be—17Tk9k>
i=0
a relation with fewer negative coefficients, which is a contradiction.

Let (t1,...,tx) = t € Z* be a generator of ker(¢). Since there exists a

non-trivial block in B(T) we can choose t € N¥. We set

B:g?...g]tg’@.
Since t generates ker(y), we see that B is the only irreducible element of
B(T) and hence B(T) = (Ng,+). =
From now on let G be always an infinite abelian group, m € N and

Go C G a subset such that
G = Go(m).
The proof of Theorem 3.1 is divided into three parts:
1. G contains an element of infinite order.

2. G is a torsion group with {ord(g) | ¢ € G} bounded.

3. G is a torsion group with {ord(g) | g € G} unbounded.

3.1. Case 1: G contains an element of infinite order. Let

B=gl"...g* € B(Go)

be a block as in Lemma 3.3. We set By = gil . .g,i’“_‘ll and By = g,i’“ (since
all g; are of infinite order, we have k > 2).

Let N € N be arbitrary and let ¢q, ..., ¢y, ¥1,. ..,y be elements of Gy
such that v < m, w < m,

k—1
~N D tigi=¢1+...+ 6y
=1
and —Ntpgr =1+ ... +w. Set V.=BY and W = ¢y ... dp01 ... 0y. We

assert that V' and W satisfy the assumptions of Lemma 3.2.
Let D be a divisor of W in F(Gp). We assume that there are uy, ..., ug,

ul,...,ul € No such that Q = ¢} ...g}*D and Q' = g," ... g,* D are irre-

ducible blocks. Then
k k
Z Uigi = Z Ui i
i=1 i=1
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and thus (u; — u},...,ur — u)) € ker(yp) (where ¢ is as in Lemma 3.3).
Hence g;“*u/l .. .gzk_u;“ = B! for some | € Z and Q = B'Q’. This implies
1 =0, since Q and Q' are both irreducible.
If we set C' = VW, then Lemma 3.2 implies
[L5(co) (O)] < (2m)!.
We immediately see that
maxLB(GO)(C) >N +1.
On the other hand we have
max Lggy)(B1¢1 ... dy) < v <m,
max LB(GO)(BT‘/}l c. ¢w) <w< m,
since every non-trivial divisor (in B(Gp)) of B1¢1 ... ¢y (resp. Bathy ... 1y,)
must contain some ¢; (resp. 1;). Hence we get
min Lpg(g,)(C) < 2m.

3.2. Case 2: G is a bounded torsion group. We now assume that G is a
torsion group with {ord(g) | g € G} bounded.
By [9], Theorem 6, we know that G is a direct sum of cyclic groups:

G = @ Z/n;Z
el
for some bounded family n; > 2 of integers. For a subset T' C I we denote
by
Pr: @Z/niZ — @Z/niZ cG
icl €T

the projection. For any g € G and T' C I we set ordr(g) = ord(Pr(g)) and
we define the support of g by

supp(g) = {i € I'| Pi(g) # 0}.

We now construct a sequence (h;);en in Go with the following properties:
There exist ¢ > 2, a € GG and a finite set £ C I such that the following
assertions hold for all 7 > 1:

(i) Pe(hi) = a.
(ii) ordl\g(h,-) =1.

(iii) If M =TI\ (€ Usupp(h1)U...Usupp(hi—1)) then ordys(h;) = t.

To begin with, let ¢ € N be minimal such that there exists a finite subset
& c I for which the set

T ={geGol|ordng(g) =t}
is infinite (since G is infinite and since {ord(g) | ¢ € G} is bounded, such
a t exists and ¢ > 2). Then for every finite set J C I, the set {g € T |
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ordp (gusy(g) # t} is finite since ordp (guy)(g) # t implies ordp (guy)(g) <t
forall geT.

Let T C T be an infinite subset with the property
(3) Pe(g)=Pe(h)=a€G

for all g,h € T and for some a € G (such a set exists since & is finite).

Now we construct the sequence h;. Let h; € T be arbitrary and assume
that hq,...,h,_1 are already constructed. Since the set

F={ge T ‘ Ordl\(SUsupp(m)U .Usupp(hn—1) ( ) £t}

is finite by the above considerations, T \ F is non-empty and we choose

hn € T\ F. We see easily that the sequence h; satisfies our requirements
(1)—(iil). We set
r = ord(ta).
Next we show the following
Cram. Set H = {h; |i € N}. Then:
(i) Let (oi)ien € ZM be a sequence such that
iEN
Then t|a; for all i € N and rt| ) ;.
(i) Let A =[L;en h%" € F(H) and B = [[;en b € F(H) be such that
Z aih; = Zﬁz’hz’
(€N iEN
If > ien@i > D ey Bi then there exists some A € F(H) and some non-
trivial block C € B(H) of the form
C=dc..c
with ¢; € H such that A = AC.

(iii) {c}...ct | c1y...,cr € H} is the set of all irreducible blocks of H.
In particular, B(H) is half-factorial.

Proof. (i) We show more generally that if
pa + Z a;h; =0
(€N
(for the definition of a see (3)) where p € Z and (oy)ien € ZM then t| oy for
all 7. Set
iop = max{i | o # 0}
and define
M = EUsupp(hi)U...Usupp(hj,—1) C I.
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Then
0=Pnum <P(1 + Z aihi) = Ppr(aighiy) = g Pryag (i)
iEN
Since the order of Pp\r(hi,) equals t, we get t | a;,. Thus we have
aiohio = %thio = %ta = 4, Q,
since th = Pg(th) + Ppg(th) = Pe(th) = ta for all h € H. By induction we
now infer that ¢|a; for all i € N.

Now let (a)ien € Z™ be a sequence such that 3
above we get

ijen @ihi = 0. From the

oz' S
Zozlhz = Z fthz = %Zta.
1€EN 21EN
Hence 7t | D ien Q-

(ii) Without loss of generality we may assume that A and B are coprime
in F(H). Then we see from (i) that ¢|«; and ¢|f; for all ¢ € N. Moreover,

we have
D=3 Bi+ort
ieN ieN
for some v € N. Since ¢ divides each «; there exist ¢y, ...,c. € H such that

the block C' = ¢} ...cL divides A.
iii) Let B € B(H) be non-trivial. Then B = Bc! ... c! where ¢; € H by
1 T
(ii). If B is irreducible, B is equal to 1. mClaim

For n € N we set
A, = h(n—l)r—H e hpy € f(Go)

Then Al is a block.
Let N € N be arbitrary. Set B = A;...Ayx and let ¢1,...,¢, € Gg be
such that

Nr
14 +dy=—> h
i=1

and v <m. Weset ® =¢;...¢, € F(Gy), V=B and W = .

From (iii) of the Claim we see that every non-trivial divisor of B® in
B(Gp) must contain at least one ¢; (note that ¢ > 2) and we get
max Lg(g,)(B®) < v. Let C = VW. Then

min Lgg,)(C) < tv < tm < exp(G)m.

On the other hand,
maXLB(GO)(C) >N+ 1.
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Let D be a divisor of W in F(Go). If Q = h?" ... h*D and @' =
hf o hgéD where 3, 8 € Ny are irreducible blocks then > 7, 3; =>7_, 3!
by (ii) of the Claim. Thus Lemma 3.2 yields

[ Lp(Go) (O] < (tv)! < (exp(G)m)!.

3.3. Case 3: G is an unbounded torsion group. We now consider the case
when G is a torsion group such that {ord(g) | ¢ € G} C N is unbounded.

Let N € N be arbitrary. The goal is to construct a block
(4) B=g{"...g)" € B(Go)

with pairwise distinct elements g; € G such that 2 < u < 2m and such that
there is no relation
u
> aigi=0
i=0

(where «; € Z) with the following properties:

(1) |ou| < max{y1,..., 7} N forall 1 <i<u.
(i) (1, ..., ) and (y1,...,7) are linearly independent over Z.

We set d = 2m + 1 and define a sequence (I;);en, of integers as follows:

d
lo=1, & =2"4d"N" and I =114

]

for all ¢ > 1.

In order to construct the block we start with a sequence (g1, ...,g,) of
(not necessarily pairwise distinct) non-zero elements of Gy such that

(i) r <2m.
(i) g1 +...+g-=0.
(iii) There exists some g € {g1,...,gr} such that ord(g) > l441.
(Such a sequence exists since Gop(m) = G and {ord(g) | ¢ € G} C N is
unbounded.) Set I = {g1,...,9,}.

Our first aim is to get rid of those elements g; which have “too small”
order: We construct a block

Bo=g/" ... € B(I)
of distinct elements g; and k < r (after renumbering the g; if necessary) such
that 1 < 3; <2m lfﬁ”l and ord(g;) > I for some 1 <t <dandall 1 <i<k.
For 7 > 1 set
K, = {g el ‘ li_1 < ord(g) < lz}
Then K; N K; = (0 if ¢ # j. This implies that there exists some 1 < ¢ < d

such that K; = (), since I contains at most 2m elements. Since there exists
some g € I such that ord(g) > l44+1, the set

M, ={g €I |ord(g) > I}
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is non-empty. Without restriction let My = {g1,...,gx} with pairwise dis-
tinct elements g;. Since for all g € I we have either ord(g) > l; or ord(g) <
l;_1, we see that there exists some 1 < x < lfﬁ”l such that kg = 0 for all
g c I\Mt = {g el ’ OI'd(g) < lt—l}-

From these considerations we see that there is a block

Bgzgll...gl’f’c
where 1 < 3; < 2mk. (The factor 2m arises because the g; of our original

sequence (g1, ..., gr) are not necessarily pairwise distinct.)
We now define a sequence k; by

ko =2mk and Kijpr1 = 22m/<;;-1N.

The next step is to use relations Zle a;g; = 0 with “small” coefficients
a;, where (aq,...,a) and (f51,...,0;) are linearly independent (if such
relations exist) to obtain blocks

i (1)
B; = g* gkf

which contain fewer g; than By does and where the 5]@ are still “small”
(compared with the order of the g;). We repeat this till there are no such
relations and finally obtain the block B in (4).

Hence assume that there is a relation

k
Z a;gi =0
i—1

(where o; € Z) such that |o;| < kN for all 1 < ¢ < k and such that
a = (a1,...,a) and B8 = (f,...,0) are linearly independent over Z.
Without loss of generality we assume that there exists some j with a; <0

(otherwise we pass to Zle(—ai) gi = 0). The formula
Bia+ (—ap)B=:a® = (af",... af")

5.1) = 0. If we repeat this procedure
with o) instead of a (provided there exists some ozg-l) < 0), we obtain a
vector al?). After n steps (where n < k) we get a vector a(™ such that all

(n)

«; ' are non-negative and ag-n) = 0 for at least one j. Without restriction

let agn), ... ,ozglb) > 0 and aglbzrl =...= al(cn) = 0. We set

defines a new vector a!) such that o

51.(1) = agn) foralll1 <7<k
and obtain a block
sV Y
By =g," ...g9," €B(Go)

1
where k1 < k.
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In order to estimate the size of the ﬁz-(l) we consider the equalities
l l I+1
o) —alg; = otV
which yield
max{la{ V| |1 <j <k} < 2max{g; | 1 <j < k}ymax{|al’] | 1< j <k}
< 2rgmax{lal’] | 1 < j < k}.
Since max{|a;| | 1 < j <k} < kgN we obtain, by induction on [,
max{|a§-l)] |1 <j <k} <2KiTIN < 22Mp2mHIN = g
Thus we have 8" < &y for all 1 < i < ky.
If we repeat the whole procedure with By (provided there exists some

relation
k1
Z @ig; =0
i=1

such that |o;| < k1N for all 1 < 4 < k; and such that («o,..., k) and
(6%1), . ,ﬂ,g?) are linearly independent over Z), we obtain a block

(2) Jeise
By =gy ...q;,°

such that 51‘(2) < ko for all 1 <i < ko. After s steps (where 0 < s < k < 2m)
we finally obtain a block

(s) ﬁ(s)
Bs = g)" ...gkfs

such that there is no equality

ks
Z a;g; =0
i=1

with the property |a;| < ksN for all 1 <i < kg and such that (aq,...,ax,)
and (ﬁ}s), . ,ﬂ,g‘?) are linearly independent over Z.

It is clear by construction that By is non-trivial and that ﬁi(s) > 0 for all
1 <1 < k. For the following argument it is crucial to see that even kg > 2.
One can easily verify that
i i il g
ki = 28 1 d N2
for every i > 0. We thus have
Ko :2d2m_1H82mN2?;ﬂgl dJ :22d2m_lmd2m/§d2mNZ?;%71 dJ S 2ddddd,l<,;dded_
Assume that kg is equal to one. Then

Ord(gl) < Bis) < Ks < Koy < Qdddddﬁdded
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since By is a block. On the other hand, ord(g;) > ;. Hence

I, < ord(gr) < 24" d% k1 NI < 9" g2 N < g
which is a contradiction.
Thus we have constructed a block as required at the beginning of the
subsection if we set u = kg, v; = B,L»(S) and B = B,.
We now set By = g{*...g."7" and By = g,* (note that u > 2).
Let ¢1,...,¢u,01,...,%y € Go be such that v < m, w < m,

u—1
N vgi=¢1 4.+
i=1

and —N7yugu = Y1+ ... +y. Set V.= BN, W = ¢1...¢pt01 .. .0, and
consider the block C'= VW. We obviously have

maxLB(GO)(C’) Z N + 1.

On the other hand, max L(B1¢1 ... ¢,) < v < m and max L(Bat); ... 1) <
w < m because there does not exist a non-trivial block which divides B;
(resp. Bs). Hence we obtain

min Ly, (C) < 2m.

Next we check that V and W satisfy the assumptions of Lemma 3.2. Let
D be a divisor of W in F(Gp) and let F = g‘fl ...¢% and E' = gfl . .gg“
be divisors of V' in F(Gp). If @ = ED and Q' = E'D are irreducible blocks

we have
u

Z(@‘ —0i)gi =0

i=1
and thus (01 — &1,...,04, — 9,) = x(y1,...,7v) for some x € Q because of
the properties of B.

Assume that = # 0. Without loss of generality let = > 0. This implies
that §; — 0} > 0 for all 1 <+ < u and hence

010 50 —6!
Q:Q/gll 1gu “

is a non-trivial decomposition, which is a contradiction.
Hence Lemma 3.2 implies

LGy (C)] < (2m)!.
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