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FACTORIZATION PROPERTIES OF KRULL MONOIDS

WITH INFINITE CLASS GROUP

BY

WOLFGANG HASSLER (Graz)

Abstract. For a non-unit a of an atomic monoid H we call

LH(a) = {k ∈ N | a = u1 . . . uk with irreducible ui ∈ H}

the set of lengths of a. Let H be a Krull monoid with infinite divisor class group such
that each divisor class is the sum of a bounded number of prime divisor classes of H. We
investigate factorization properties of H and show that H has sets of lengths containing
large gaps. Finally we apply this result to finitely generated algebras over perfect fields
with infinite divisor class group.

1. Introduction. In this paper, a monoid H is a commutative and can-
cellative semigroup with unit element. We usually write H multiplicatively
and we denote by H× the group of units of H.
A monoid H is said to be atomic if every h ∈ H \H× has a factorization

h = u1 . . . uk(1)

into irreducible elements (atoms) ui of H. We say that k is the length of the
factorization (1) and we call

LH(h) = {k ∈ N | k is the length of some factorization of h} ⊂ N

the set of lengths of h. We denote by

L(H) = {LH(h) | h ∈ H \H
×}

the set of all sets of lengths of H.
Clearly, H is factorial if and only if (1) is unique up to associates and up

to order for each h ∈ H. If H is not factorial the problem arises to describe
and classify the occurring phenomena of non-uniqueness of factorizations.
A first coarse measure for this non-uniqueness is the elasticity

̺(H) = sup

{
supLH(h)

minLH(h)

∣∣∣∣h ∈ H \H
×

}
∈ R≥1 ∪ {∞}.

This is a frequently investigated invariant and there is an extensive biblio-
graphy about it; for a survey see [3]. Unfortunately, the elasticity does not
contain any information about the structure of LH(h) between minLH(h)
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and supLH(h). In the following we consider an invariant which measures
the size of the “gaps” between elements of LH(h).
Recall that an atomic monoid H is called a BF-monoid if LH(h) is a

finite set for every h ∈ H \H×. By [2], Proposition 2.2, every Krull monoid
(see for example [4]) and the monoid R \ {0} of nonzero elements of every
noetherian domain R is a BF-monoid.
For an arbitrary set A we denote by Pfin(A) the set of finite subsets of A.
Let L = {l1, . . . , lr} ∈ Pfin(Z) where l1 < . . . < lr. Then we call

∆(L) = {li − li−1 | 2 ≤ i ≤ r}

the set of differences of L (note that ∆(L) is empty if and only if |L| ≤ 1),
and we call

∆(H) =
⋃

h∈H\H×

∆(LH(h))

the set of differences of a BF-monoid H (see also [4]).
Let H be a Krull monoid. If the class group of H is finite, then all sets

of lengths of H are, up to bounded initial and final segments, arithmetical
multiprogressions with bounded sets of differences (see [4], Theorem 2.13).
In particular this implies that ∆(H) is a finite set.
If on the other hand H is a Krull monoid with infinite class group and if

each divisor class of H is a prime divisor class, then every non-empty finite
set L ⊂ N≥2 is contained in L(H) (see [7]).
In this paper we study sets of lengths of Krull monoids H with infinite

class group such that every class is the sum of a bounded number of prime
divisor classes. Such Krull monoids occur in a natural way in the study of
finitely generated algebras over perfect fields (see Section 2).
Let G be an abelian group and G0 ⊂ G a subset. We set

G0(m) = {g1 + . . .+ gr | r ≤ m, gi ∈ G0}.

Our main result where we prove the existence of “thin” sets of lengths (which
in particular implies that ∆(H) is infinite) reads as follows:

Theorem 1.1. Let H be a Krull monoid with infinite class group G and
let G0 ⊂ G denote the set of prime divisor classes. If G = G0(m) for some
m ∈ N then there exists some constant K ∈ N such that for all N ∈ N

there exists some L ∈ L(H) with minL ≤ K, |L| ≤ K and maxL > N . In
particular , ∆(H) is an infinite set.

The organization of the paper is as follows: In Section 2 we apply Theo-
rem 1.1 to finitely generated algebras over perfect fields. Section 3 is entirely
devoted to the proof of Theorem 1.1.

2. Finitely generated domains. Let H be a monoid. We denote by
Q(H) the quotient group of H. A monoid homomorphism ϕ : H → D is
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called a divisor homomorphism if ϕ(a) |ϕ(b) implies a | b for all a, b ∈ H.
In this case ϕ induces a monomorphism Q(H)/H× → Q(D)/D× whose
cokernel C(ϕ) is called the (divisor) class group of ϕ. It is always written
additively. For each d ∈ Q(D) we denote by [d]ϕ its image under the canon-
ical map Q(D)→ C(ϕ). We call the elements of {[p]ϕ | p ∈ D is prime} the
prime divisor classes of ϕ.
For an integral domain R we set R• = R \ {0}, R# = R•/R× and

∆(R) = ∆(R•).
Let R be a noetherian integral domain whose integral closure R is a

finitely generated R-module. Let

S = R• \
⋃

p∈A

p,

where A = AssR(R/R), denote the set of non-zero divisors of R/R. Set

P (R) = {p ∈ spec(R) | ht(p) = 1, p ∩ S 6= ∅}.

ThenRp is a discrete valuation domain for every p∈P (R) (see [5], Lemma 2).

Thus
∏

p∈P (R)R
#
p can be canonically identified with the free abelian monoid

F(P (R)) with basis P (R) (see also formula (2) in Section 3). The natural

maps R• → R#p and R
• → R#S induce a divisor homomorphism (see [5],

Theorem 1) ∂R : R
• → F(P (R))×R#S whose class group C(R) is called the

divisor class group of R.
By restricting ∂R to S we obtain a divisor homomorphism ∂R|S : S →

F(P (R)) whose class group and set of prime divisor classes naturally coin-
cide with those of R (see [5], Remark 4 to Theorem 1). In fact, S is a Krull
monoid with divisor theory ∂R|S and thus the set of prime divisor classes
generates the class group of R as a monoid.

Theorem 2.1. Let R be a domain which is a finitely generated algebra
over some perfect field. If R has infinite divisor class group then there ex-
ists some K ∈ N such that for all N ∈ N there exists some L ∈ L(R) with
minL ≤ K, |L| ≤ K and maxL > N . In particular , ∆(R) is an infinite set.

Proof. Let G denote the class group of R and let G0 be the set of prime
divisor classes. If R is finitely generated over some infinite perfect field then
G = G0(m) for some m ∈ N by [6], Proposition 4.2. If R is a finitely
generated algebra over a finite field we again have G = G0(m) for some
m ∈ N by the remark after Corollary 4.1 in [6].
Since the set S of non-zero divisors of R/R is a divisor closed submonoid

of R•, the assertion follows immediately from Theorem 1.1 and the above
considerations.

It is well known from [8], Theorem 3, that if a domain R is a finitely
generated algebra over an infinite perfect field with dim(R) ≥ 2, then each
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divisor class of R is a prime divisor class. It is conjectured that the same is
true if R is finitely generated over Z.

The exampleR = k[X3, X4, X5] ⊂ k[X] in [8], where k is an algebraically
closed field, shows that the assumption dim(R) ≥ 2 for algebras over infinite
perfect fields is necessary.

3. Krull monoids. In the following we need the concept of block
monoids. Let P be a set. We denote by

F(P ) =
{∏

p∈P

pnp
∣∣∣np ∈ N0, np = 0 for almost all p ∈ P

}
(2)

the free abelian monoid with basis P . For an element h =
∏
p∈P p

np ∈ F(P )
we set

σ(h) = σF(P )(h) =
∑

p∈P

np ∈ N0.

For an abelian group G and an arbitrary subset G0 ⊂ G the block monoid
of G0 is defined by

B(G0) =
{ ∏

g∈G0

gng ∈ F(G0)
∣∣∣
∑

g∈G0

ngg = 0
}
.

Let H be a Krull monoid with class group G and let G0 denote the set of
divisor classes containing a prime divisor. Then

L(H) = L(B(G0))

(see [4], Section 3).

In order to prove Theorem 1.1 it is thus sufficient to show the following
purely group-theoretical theorem.

Theorem 3.1. Let G be an infinite abelian group, m ∈ N and G0 ⊂ G
a subset such that G = G0(m). Then there exists some constant K ∈ N

such that for all N ∈ N there exists some L ∈ L(B(G0)) with minL ≤ K,
|L| ≤ K and maxL > N . In particular , ∆(H) is an infinite set.

The rest of the paper is devoted to the proof of this theorem.

Lemma 3.2. Let G be an abelian group and let G0 ⊂ G be a subset. Let
V,W ∈ F(G0) be elements such that VW is a block. Suppose that for all
divisors D |F(G0) W , E |F(G0) V and E

′ |F(G0) V the following holds true:
σ(E) = σ(E′) whenever ED and E′D are irreducible elements of B(G0).
Then

|LB(G0)(VW )| ≤ σ(W )!.

Proof. Let

VW = q1 . . . qs
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be a factorization of VW into irreducible elements qi of B(G0). Then we can
decompose each qi in the form

qi = viwi

where vi, wi ∈ F(G0), vi |V , wi |W and w1 . . . ws = W . We assume that
wi 6= 1 for 1 ≤ i ≤ t and wi = 1 for t+ 1 ≤ i ≤ s.
If we consider a second decomposition

VW = q′1 . . . q
′
s′

into irreducible elements q′i of B(G0) such that q
′
i = v′iwi for all 1 ≤ i ≤ t,

we see that s = s′, i.e. |LB(G0)(VW )| is bounded by the number of different
(up to order) decompositions w1 . . . ws of W into non-trivial elements wi ∈
F(G0).
Let W = x1 . . . xn, where the xi are prime elements of F(G0). With-

out restriction we assume that the xi are pairwise distinct (since this just
enlarges the number of possible decompositions of W ). If we write permu-
tations τ ∈ Sn as products of disjoint cycles τ = σ1 . . . σk we see that τ de-
termines a decomposition of {1, . . . , n} into non-empty disjoint sets. Hence
we get a surjective map from Sn to the set of decompositions of W . This
implies that the number of decompositions of W is bounded by σ(W )!.

Lemma 3.3. Let G be an abelian group which contains an element of
infinite order and let G0 ⊂ G be a subset which generates G as a monoid.
Then there exists a non-trivial block

B = gt11 . . . g
tk
k ∈ B(G0)

with pairwise distinct elements gi ∈ G0 of infinite order and ti > 0 such
that the kernel of the homomorphism

ϕ : Zk → G, (α1, . . . , αk) 7→
k∑

i=1

αigi,

is generated by (t1, . . . , tk) ∈ Nk. In particular , B({g1, . . . , gk}) ∼= (N0,+).

Proof. SinceG0 generatesG as a monoid, there exists an element g̃1 ∈ G0
with infinite order. Let B̃ = g̃1 . . . g̃n ∈ B(G0). For large l ∈ N, B̃l has a

non-trivial divisor B̃′ = g̃′1 . . . g̃
′
n′ in B(G0) such that each g̃

′
i has infinite

order. We thus assume that all g̃i have infinite order.
Let T be a minimal subset of {g̃1, . . . , g̃n} with respect to inclusion such

that B(T ) 6= {1}. We write T = {g1, . . . , gk} with pairwise distinct ele-
ments gi.
Next we show that the kernel of ϕ is cyclic.
Since g1, . . . , gk are not linearly independent over Z, it suffices to show

that every proper subset T ′ ( T is linearly independent over Z. Assume the
contrary and let gr11 . . . g

rk
k with ri > 0 be a non-trivial block.



234 W. HASSLER

Then there exists some (β1, . . . , βk) ∈ Zk \ {0} such that β1g1 + . . . +
βkgk = 0 and βi = 0 for at least one i ∈ {1, . . . , k} (note that k ≥ 2 since all
gi have infinite order). By the minimal choice of T , we have βj < 0 for at
least one j, and we choose (β1, . . . , βk) with a minimal number of negative
components. We may assume that βk = 0 and βk−1 < 0. Then we obtain

0 =

k−2∑

i=0

(rk−1βi − βk−1ri)gi + βk−1rkgk,

a relation with fewer negative coefficients, which is a contradiction.

Let (t1, . . . , tk) = t ∈ Zk be a generator of ker(ϕ). Since there exists a
non-trivial block in B(T ) we can choose t ∈ Nk. We set

B = gt11 . . . g
tk
k .

Since t generates ker(ϕ), we see that B is the only irreducible element of
B(T ) and hence B(T ) ∼= (N0,+).

From now on let G be always an infinite abelian group, m ∈ N and
G0 ⊂ G a subset such that

G = G0(m).

The proof of Theorem 3.1 is divided into three parts:

1. G contains an element of infinite order.

2. G is a torsion group with {ord(g) | g ∈ G} bounded.
3. G is a torsion group with {ord(g) | g ∈ G} unbounded.

3.1. Case 1: G contains an element of infinite order. Let

B = gt11 . . . g
tk
k ∈ B(G0)

be a block as in Lemma 3.3. We set B1 = gt11 . . . g
tk−1
k−1 and B2 = gtkk (since

all gi are of infinite order, we have k ≥ 2).
Let N ∈ N be arbitrary and let φ1, . . . , φv, ψ1, . . . , ψw be elements of G0

such that v ≤ m, w ≤ m,

−N
k−1∑

i=1

tigi = φ1 + . . .+ φv

and −Ntkgk = ψ1 + . . .+ ψw. Set V = B
N and W = φ1 . . . φvψ1 . . . ψw. We

assert that V and W satisfy the assumptions of Lemma 3.2.

Let D be a divisor of W in F(G0). We assume that there are u1, . . . , uk,

u′1, . . . , u
′
k ∈ N0 such that Q = gu11 . . . gukk D and Q

′ = g
u′1
1 . . . g

u′k
k D are irre-

ducible blocks. Then
k∑

i=1

uigi =

k∑

i=1

u′igi
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and thus (u1 − u
′
1, . . . , uk − u

′
k) ∈ ker(ϕ) (where ϕ is as in Lemma 3.3).

Hence g
u1−u′1
1 . . . g

uk−u
′

k

k = Bl for some l ∈ Z and Q = BlQ′. This implies
l = 0, since Q and Q′ are both irreducible.
If we set C = VW, then Lemma 3.2 implies

|LB(G0)(C)| ≤ (2m)!.

We immediately see that

maxLB(G0)(C) ≥ N + 1.

On the other hand we have

maxLB(G0)(B1φ1 . . . φv) ≤ v ≤ m,

maxLB(G0)(B2ψ1 . . . ψw) ≤ w ≤ m,

since every non-trivial divisor (in B(G0)) of B1φ1 . . . φv (resp. B2ψ1 . . . ψw)
must contain some φi (resp. ψi). Hence we get

minLB(G0)(C) ≤ 2m.

3.2. Case 2: G is a bounded torsion group. We now assume that G is a
torsion group with {ord(g) | g ∈ G} bounded.
By [9], Theorem 6, we know that G is a direct sum of cyclic groups:

G =
⊕

i∈I

Z/niZ

for some bounded family ni ≥ 2 of integers. For a subset T ⊂ I we denote
by

PT :
⊕

i∈I

Z/niZ→
⊕

i∈T

Z/niZ ⊂ G

the projection. For any g ∈ G and T ⊂ I we set ordT (g) = ord(PT (g)) and
we define the support of g by

supp(g) = {i ∈ I | Pi(g) 6= 0}.

We now construct a sequence (hi)i∈N in G0 with the following properties:
There exist t ≥ 2, a ∈ G and a finite set E ⊂ I such that the following
assertions hold for all i ≥ 1:

(i) PE(hi) = a.
(ii) ordI\E(hi) = t.
(iii) If M = I \ (E ∪ supp(h1) ∪ . . . ∪ supp(hi−1)) then ordM (hi) = t.

To begin with, let t ∈ N be minimal such that there exists a finite subset
E ⊂ I for which the set

T = {g ∈ G0 | ordI\E(g) = t}

is infinite (since G0 is infinite and since {ord(g) | g ∈ G} is bounded, such
a t exists and t ≥ 2). Then for every finite set J ⊂ I, the set {g ∈ T |
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ordI\(E∪J)(g) 6= t} is finite since ordI\(E∪J)(g) 6= t implies ordI\(E∪J)(g) < t
for all g ∈ T .
Let T̃ ⊂ T be an infinite subset with the property

PE(g) = PE(h) = a ∈ G(3)

for all g, h ∈ T̃ and for some a ∈ G (such a set exists since E is finite).

Now we construct the sequence hi. Let h1 ∈ T̃ be arbitrary and assume
that h1, . . . , hn−1 are already constructed. Since the set

F = {g ∈ T̃ | ordI\(E∪supp(h1)∪...∪supp(hn−1))(g) 6= t}

is finite by the above considerations, T̃ \ F is non-empty and we choose

hn ∈ T̃ \ F . We see easily that the sequence hi satisfies our requirements
(i)–(iii). We set

r = ord(ta).

Next we show the following

Claim. Set H = {hi | i ∈ N}. Then:

(i) Let (αi)i∈N ∈ Z(N) be a sequence such that
∑

i∈N

αihi = 0.

Then t |αi for all i ∈ N and rt |
∑
i∈N

αi.

(ii) Let A =
∏
i∈N

hαii ∈ F(H) and B =
∏
i∈N

hβii ∈ F(H) be such that∑

i∈N

αihi =
∑

i∈N

βihi.

If
∑
i∈N

αi >
∑
i∈N

βi then there exists some Ã ∈ F(H) and some non-
trivial block C ∈ B(H) of the form

C = ct1 . . . c
t
r

with ci ∈ H such that A = ÃC.
(iii) {ct1 . . . c

t
r | c1, . . . , cr ∈ H} is the set of all irreducible blocks of H.

In particular, B(H) is half-factorial.

Proof. (i) We show more generally that if

pa+
∑

i∈N

αihi = 0

(for the definition of a see (3)) where p ∈ Z and (αi)i∈N ∈ Z(N) then t |αi for
all i. Set

i0 = max{i | αi 6= 0}

and define

M = E ∪ supp(h1) ∪ . . . ∪ supp(hi0−1) ⊂ I.
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Then

0 = PI\M

(
pa+
∑

i∈N

αihi

)
= PI\M (αi0hi0) = αi0PI\M (hi0).

Since the order of PI\M (hi0) equals t, we get t |αi0 . Thus we have

αi0hi0 =
αi0
t
thi0 =

αi0
t
ta = αi0a,

since th = PE(th) + PI\E(th) = PE(th) = ta for all h ∈ H. By induction we
now infer that t |αi for all i ∈ N.

Now let (αi)i∈N ∈ Z(N) be a sequence such that
∑
i∈N

αihi = 0. From the
above we get

∑

i∈N

αihi =
∑

i∈N

αi
t
thi =

∑
i∈N

αi

t
ta.

Hence rt |
∑
i∈N

αi.

(ii) Without loss of generality we may assume that A and B are coprime
in F(H). Then we see from (i) that t |αi and t |βi for all i ∈ N. Moreover,
we have ∑

i∈N

αi =
∑

i∈N

βi + γrt

for some γ ∈ N. Since t divides each αi there exist c1, . . . , cr ∈ H such that
the block C = ct1 . . . c

t
r divides A.

(iii) Let B ∈ B(H) be non-trivial. Then B = B̃ct1 . . . c
t
r where ci ∈ H by

(ii). If B is irreducible, B̃ is equal to 1. Claim

For n ∈ N we set

An = h(n−1)r+1 . . . hnr ∈ F(G0).

Then Atn is a block.

Let N ∈ N be arbitrary. Set B = A1 . . . AN and let φ1, . . . , φv ∈ G0 be
such that

φ1 + . . .+ φv = −
Nr∑

i=1

hi

and v ≤ m. We set Φ = φ1 . . . φv ∈ F(G0), V = B
t and W = Φt.

From (iii) of the Claim we see that every non-trivial divisor of BΦ in
B(G0) must contain at least one φi (note that t ≥ 2) and we get
maxLB(G0)(BΦ) ≤ v. Let C = VW. Then

minLB(G0)(C) ≤ tv ≤ tm ≤ exp(G)m.

On the other hand,

maxLB(G0)(C) ≥ N + 1.



238 W. HASSLER

Let D be a divisor of W in F(G0). If Q = hβ11 . . . hβss D and Q′ =

h
β′1
1 . . . h

β′s
s D where βi, β

′
i ∈ N0 are irreducible blocks then

∑s
i=1 βi =

∑s
i=1 β

′
i

by (ii) of the Claim. Thus Lemma 3.2 yields

|LB(G0)(C)| ≤ (tv)! ≤ (exp(G)m)!.

3.3. Case 3: G is an unbounded torsion group. We now consider the case
when G is a torsion group such that {ord(g) | g ∈ G} ⊂ N is unbounded.

Let N ∈ N be arbitrary. The goal is to construct a block

B = gγ11 . . . gγuu ∈ B(G0)(4)

with pairwise distinct elements gi ∈ G0 such that 2 ≤ u ≤ 2m and such that
there is no relation

u∑

i=0

αigi = 0

(where αi ∈ Z) with the following properties:

(i) |αi| ≤ max{γ1, . . . , γu}N for all 1 ≤ i ≤ u.
(ii) (α1, . . . , αu) and (γ1, . . . , γu) are linearly independent over Z.

We set d = 2m+ 1 and define a sequence (li)i∈N0 of integers as follows:

l0 = 1, l1 = 2
dddd

d

Nd
d

and li+1 = l1l
dd
d

i for all i ≥ 1.

In order to construct the block we start with a sequence (g1, . . . , gr) of
(not necessarily pairwise distinct) non-zero elements of G0 such that

(i) r ≤ 2m.
(ii) g1 + . . .+ gr = 0.

(iii) There exists some g ∈ {g1, . . . , gr} such that ord(g) ≥ ld+1.

(Such a sequence exists since G0(m) = G and {ord(g) | g ∈ G} ⊂ N is
unbounded.) Set I = {g1, . . . , gr}.
Our first aim is to get rid of those elements gi which have “too small”

order: We construct a block

B0 = g
β1
1 . . . gβkk ∈ B(I)

of distinct elements gi and k ≤ r (after renumbering the gi if necessary) such
that 1 ≤ βi ≤ 2ml2mt−1 and ord(gi) > lt for some 1 ≤ t ≤ d and all 1 ≤ i ≤ k.
For i ≥ 1 set

Ki = {g ∈ I | li−1 < ord(g) ≤ li}.

Then Ki ∩Kj = ∅ if i 6= j. This implies that there exists some 1 ≤ t ≤ d
such that Kt = ∅, since I contains at most 2m elements. Since there exists
some g ∈ I such that ord(g) ≥ ld+1, the set

Mt = {g ∈ I | ord(g) > lt}
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is non-empty. Without restriction let Mt = {g1, . . . , gk} with pairwise dis-
tinct elements gi. Since for all g ∈ I we have either ord(g) > lt or ord(g) ≤
lt−1, we see that there exists some 1 ≤ κ ≤ l2mt−1 such that κg = 0 for all
g ∈ I \Mt = {g ∈ I | ord(g) ≤ lt−1}.
From these considerations we see that there is a block

B0 = g
β1
1 . . . gβkk

where 1 ≤ βi ≤ 2mκ. (The factor 2m arises because the gi of our original
sequence (g1, . . . , gr) are not necessarily pairwise distinct.)
We now define a sequence κi by

κ0 = 2mκ and κi+1 = 2
2mκdiN.

The next step is to use relations
∑k
i=1 αigi = 0 with “small” coefficients

αi, where (α1, . . . , αk) and (β1, . . . , βk) are linearly independent (if such
relations exist) to obtain blocks

Bi = g
β
(i)
1
1 . . . g

β
(i)
ki

ki

which contain fewer gi than B0 does and where the β
(i)
j are still “small”

(compared with the order of the gi). We repeat this till there are no such
relations and finally obtain the block B in (4).
Hence assume that there is a relation

k∑

i=1

αigi = 0

(where αi ∈ Z) such that |αi| ≤ κ0N for all 1 ≤ i ≤ k and such that
α = (α1, . . . , αk) and β = (β1, . . . , βk) are linearly independent over Z.
Without loss of generality we assume that there exists some j with αj < 0

(otherwise we pass to
∑k
i=1(−αi)gi = 0). The formula

βjα+ (−αj)β =: α
(1) = (α

(1)
1 , . . . , α

(1)
k )

defines a new vector α(1) such that α
(1)
j = 0. If we repeat this procedure

with α(1) instead of α (provided there exists some α
(1)
j < 0), we obtain a

vector α(2). After n steps (where n ≤ k) we get a vector α(n) such that all

α
(n)
j are non-negative and α

(n)
j = 0 for at least one j. Without restriction

let α
(n)
1 , . . . , α

(n)
k1

> 0 and α
(n)
k1+1
= . . . = α

(n)
k = 0. We set

β
(1)
i = α

(n)
i for all 1 ≤ i ≤ k1

and obtain a block

B1 = g
β
(1)
1
1 . . . g

β
(1)
k1
k1
∈ B(G0)

where k1 < k.
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In order to estimate the size of the β
(1)
i we consider the equalities

βjα
(l)
i − α

(l)
j βi = α

(l+1)
j

which yield

max{|α
(l+1)
j | | 1 ≤ j ≤ k} ≤ 2max{βj | 1 ≤ j ≤ k}max{|α

(l)
j | | 1 ≤ j ≤ k}

≤ 2κ0max{|α
(l)
j | | 1 ≤ j ≤ k}.

Since max{|αj | | 1 ≤ j ≤ k} ≤ κ0N we obtain, by induction on l,

max{|α
(l)
j | | 1 ≤ j ≤ k} ≤ 2

lκl+10 N ≤ 22mκ2m+10 N = κ1.

Thus we have β
(1)
i ≤ κ1 for all 1 ≤ i ≤ k1.

If we repeat the whole procedure with B1 (provided there exists some
relation

k1∑

i=1

αigi = 0

such that |αi| ≤ κ1N for all 1 ≤ i ≤ k1 and such that (α1, . . . , αk1) and

(β
(1)
1 , . . . , β

(1)
k1
) are linearly independent over Z), we obtain a block

B2 = g
β
(2)
1
1 . . . g

β
(2)
k2
k2

such that β
(2)
i ≤ κ2 for all 1 ≤ i ≤ k2. After s steps (where 0 ≤ s ≤ k ≤ 2m)

we finally obtain a block

Bs = g
β
(s)
1
1 . . . g

β
(s)
ks

ks

such that there is no equality

ks∑

i=1

αigi = 0

with the property |αi| ≤ κsN for all 1 ≤ i ≤ ks and such that (α1, . . . , αks)

and (β
(s)
1 , . . . , β

(s)
ks
) are linearly independent over Z.

It is clear by construction that Bs is non-trivial and that β
(s)
i > 0 for all

1 ≤ i ≤ ks. For the following argument it is crucial to see that even ks ≥ 2.
One can easily verify that

κi = 2
di−1κd

i

0 N
∑i−1
j=0 d

j

for every i ≥ 0. We thus have

κ2m=2
d2m−1κd

2m

0 N
∑2m−1
j=0 d

j

=22d
2m−1md

2m
κd
2m
N
∑2m−1
j=0 d

j

≤2d
d

dd
d

κd
d

Nd
d

.

Assume that ks is equal to one. Then

ord(g1) ≤ β
(s)
1 ≤ κs ≤ κ2m ≤ 2

dddd
d

κd
d

Nd
d
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since Bs is a block. On the other hand, ord(g1) > lt. Hence

lt < ord(g1) ≤ 2
dddd

d

κd
d

Nd
d

≤ 2d
d

dd
d

l2m
dd

t−1 Nd
d

≤ lt,

which is a contradiction.

Thus we have constructed a block as required at the beginning of the

subsection if we set u = ks, γi = β
(s)
i and B = Bs.

We now set B1 = g
γ1
1 . . . g

γu−1
u−1 and B2 = g

γu
u (note that u ≥ 2).

Let φ1, . . . , φv, ψ1, . . . , ψw ∈ G0 be such that v ≤ m, w ≤ m,

−N
u−1∑

i=1

γigi = φ1 + . . .+ φv

and −Nγugu = ψ1 + . . . + ψw. Set V = BN , W = φ1 . . . φvψ1 . . . ψw and
consider the block C = VW. We obviously have

maxLB(G0)(C) ≥ N + 1.

On the other hand, maxL(B1φ1 . . . φv) ≤ v ≤ m and maxL(B2ψ1 . . . ψw) ≤
w ≤ m because there does not exist a non-trivial block which divides B1
(resp. B2). Hence we obtain

minLB(G0)(C) ≤ 2m.

Next we check that V and W satisfy the assumptions of Lemma 3.2. Let

D be a divisor of W in F(G0) and let E = gδ11 . . . g
δu
u and E

′ = g
δ′1
1 . . . g

δ′u
u

be divisors of V in F(G0). If Q = ED and Q
′ = E′D are irreducible blocks

we have
u∑

i=1

(δi − δ
′
i)gi = 0

and thus (δ1 − δ
′
1, . . . , δu − δ

′
u) = x(γ1, . . . , γu) for some x ∈ Q because of

the properties of B.

Assume that x 6= 0. Without loss of generality let x > 0. This implies
that δi − δ

′
i > 0 for all 1 ≤ i ≤ u and hence

Q = Q′g
δ1−δ′1
1 . . . gδu−δ

′

u
u

is a non-trivial decomposition, which is a contradiction.

Hence Lemma 3.2 implies

|LB(G0)(C)| ≤ (2m)!.
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