COLLOQUIUM MATHEMATICUM

HYERS-ULAM STABILITY
 FOR A NONLINEAR ITERATIVE EQUATION

BY

BING XU and WEINIAN ZHANG (Chengdu)

Abstract

We discuss the Hyers-Ulam stability of the nonlinear iterative equation $G\left(f^{n_{1}}(x), \ldots, f^{n_{k}}(x)\right)=F(x)$. By constructing uniformly convergent sequence of functions we prove that this equation has a unique solution near its approximate solution.

1. Introduction. When we consider a functional equation

$$
\begin{equation*}
E_{1}(h)=E_{2}(h) \tag{1.1}
\end{equation*}
$$

and know a function g which is an approximate solution of (1.1), i.e., $E_{1}(g)$ and $E_{2}(g)$ are close in some sense, we may ask whether a solution f of (1.1) exists near g. As in [3], we say equation (1.1) satisfies Hyers-Ulam stability if for every function g such that

$$
\begin{equation*}
\left\|E_{1}(g)-E_{2}(g)\right\| \leq \delta \tag{1.2}
\end{equation*}
$$

for some constant $\delta \geq 0$, there exists a solution f of (1.1) such that

$$
\begin{equation*}
\|f-g\| \leq \varepsilon \tag{1.3}
\end{equation*}
$$

for some positive constant ε depending only on δ. Sometimes we say g is a δ-approximate solution of (1.1) and f is ε-close to g.

Such a problem was raised first by S. M. Ulam in 1940 and solved for the Cauchy equation by D. H. Hyers [5] in 1941. Later, many papers on the Hyers-Ulam stability have been published, generalizing Ulam's problem and Hyer's theorem in various directions (see, e.g., [2], [3], [9] and [10]). For instance, the problem of Hyers-Ulam stability is studied by Borelli [1] for Hosszú's functional equation, Ger and Šemrl [4] for the exponential equation, Jun, Kim and Lee [6] for the gamma functional equation and beta functional equation, Nikodem [8] for the Pexider equations, and Székelyhidi [15] for the sine functional equation and cosine functional equation.

[^0]The iterative equation

$$
\begin{equation*}
G\left(f^{n_{1}}(x), \ldots, f^{n_{k}}(x)\right)=F(x) \tag{1.4}
\end{equation*}
$$

is an important functional equation where $x \in I$, a subset of a Banach space $X, F: I \rightarrow I$ is a given map, $f: I \rightarrow I$ is an unknown map, f^{i} denotes the i th iterate of f, i.e., $f^{0}(x)=x$ and $f^{i+1}(x)=f\left(f^{i}(x)\right)$ for all $x \in I$ and all $i=0,1,2, \ldots$, and $n_{i}, i=1, \ldots, k$, are positive integers. For linear G, i.e., $G\left(y_{1}, \ldots, y_{k}\right)=\sum_{i=1}^{k} \lambda_{i} y_{i}$, many results have been given (e.g. [7], [11], [16], [17], and [18]) on existence, uniqueness, continuous dependence, smoothness and analyticity of solutions on $I=[a, b]$. For general G, some results are given in [12]-[14] under the basic hypotheses:
(H1) $\quad G: I^{k}=I \times \ldots \times I \rightarrow I$ is continuous, $G(a, \ldots, a)=a, G(b, \ldots, b)=b$;
(H2) there exist constants $B_{i} \geq 0, i=1, \ldots, k$, such that

$$
\begin{equation*}
G\left(y_{1}, \ldots, y_{k}\right)-G\left(z_{1}, \ldots, z_{k}\right) \leq \sum_{i=1}^{k} B_{i}\left(y_{i}-z_{i}\right) \tag{1.5}
\end{equation*}
$$

if $y_{i} \geq z_{i}, i=1, \ldots, k$;
(H3) $\quad n_{1}=1$ and there exist constants $C_{1}>0, C_{i} \geq 0, i=2, \ldots, k$, such that

$$
\begin{equation*}
G\left(y_{1}, \ldots, y_{k}\right)-G\left(z_{1}, \ldots, z_{k}\right) \geq \sum_{i=1}^{k} C_{i}\left(y_{i}-z_{i}\right) \tag{1.6}
\end{equation*}
$$

if $y_{i} \geq z_{i}, i=1, \ldots, k$.
In this paper we further discuss the Hyers-Ulam stability of equation (1.4) on $I=[a, b]$ under the hypotheses (H1) and
$\left(\mathrm{H} 2^{\prime}\right) \quad$ there exist constants $B_{i} \geq 0, i=1, \ldots, k$, such that

$$
\begin{equation*}
\left|G\left(y_{1}, \ldots, y_{k}\right)-G\left(z_{1}, \ldots, z_{k}\right)\right| \leq \sum_{i=1}^{k} B_{i}\left|y_{i}-z_{i}\right| \tag{1.7}
\end{equation*}
$$

if $y_{i}, z_{i} \in I, i=1, \ldots, k$;
$\left(\mathrm{H} 3^{\prime}\right) \quad$ there exist constants $C_{1}>0, C_{i} \geq 0, i=2, \ldots, k$, such that

$$
\begin{equation*}
G\left(y_{1}, \ldots, y_{k}\right)-G\left(z_{1}, \ldots, z_{k}\right) \geq C_{1}\left(y_{1}-z_{1}\right)-\sum_{i=2}^{k} C_{i}\left|y_{i}-z_{i}\right| \tag{1.8}
\end{equation*}
$$

if $y_{i}, z_{i} \in I, i=1, \ldots, k$ and $y_{1} \geq z_{1}$.
Our requirements are much weaker than (H2)-(H3) in [12], because $\left(\mathrm{H} 2^{\prime}\right)-\left(\mathrm{H}^{\prime}\right)$ allow G not to be monotonic, for example, $G\left(y_{1}, y_{2}\right)=\frac{3}{2} y_{1}-\frac{1}{2} y_{2}^{2}$. By constructing a uniformly convergent sequence of functions we prove that there is a unique solution of (1.4) near an approximate solution.
2. Some lemmas. Let $\mathcal{C}(I)$ consist of all continuous functions on I. Then $\mathcal{C}(I)$ is a Banach space equipped with the norm $\|f\|=\max _{x \in I}|f(x)|$. We can imitate [16] and [18] to prove the following lemma but do not need to require that f and g be both Lipschitzian as in [16] and [18].

Lemma 2.1. Suppose that $f, g: I \rightarrow I$ are continuous mappings and $\operatorname{Lip}(f) \leq M$ where M is a positive constant. Then

$$
\begin{equation*}
\left\|f^{k}-g^{k}\right\| \leq \sum_{j=0}^{k-1} M^{j}\|f-g\|, \quad \forall k=1,2, \ldots \tag{2.9}
\end{equation*}
$$

Furthermore we need the following two lemmas to construct a certain convergent sequence of functions.

Lemma 2.2. Suppose that $P: I \rightarrow I$ is a Lipschitzian mapping fixing the end-points of I with $\operatorname{Lip}(P) \leq M$ where $M>0$ is a constant. If the reals $C_{j}, j=1, \ldots, k$, satisfy $C_{1}>\sum_{i=2}^{k} C_{i} M^{n_{i}-1}$ then the function $L P$ defined by

$$
\begin{equation*}
L P(x)=G\left(P^{n_{1}-1}(x), \ldots, P^{n_{k}-1}(x)\right) \tag{2.10}
\end{equation*}
$$

is an orientation-preserving homeomorphism of I onto itself, and

$$
\begin{equation*}
\operatorname{Lip}\left((L P)^{-1}\right) \leq 1 /\left(C_{1}-\sum_{i=2}^{k} C_{i} M^{n_{i}-1}\right) \tag{2.11}
\end{equation*}
$$

Proof. Clearly, $P^{i}: I \rightarrow I$ is also a Lipschitzian mapping such that $P^{i}(a)=a, P^{i}(b)=b$ and $\operatorname{Lip}\left(P^{i}\right) \leq M^{i}, i=2,3, \ldots$, so by hypothesis (H1), $L P(a)=a, L P(b)=b$. Let

$$
\begin{equation*}
\xi=C_{1}-\sum_{i=2}^{k} C_{i} M^{n_{i}-1} \tag{2.12}
\end{equation*}
$$

for short. For any $x_{1}, x_{2} \in I$ with $x_{2}>x_{1}$,

$$
\begin{align*}
& L P\left(x_{2}\right)-L P\left(x_{1}\right) \tag{2.13}\\
& \quad=G\left(P^{n_{1}-1}\left(x_{2}\right), \ldots, P^{n_{k}-1}\left(x_{2}\right)\right)-G\left(P^{n_{1}-1}\left(x_{1}\right), \ldots, P^{n_{k}-1}\left(x_{1}\right)\right) \\
& \quad \geq C_{1}\left(P^{n_{1}-1}\left(x_{2}\right)-P^{n_{1}-1}\left(x_{1}\right)\right)-\sum_{i=2}^{k} C_{i}\left|P^{n_{i}-1}\left(x_{2}\right)-P^{n_{i}-1}\left(x_{1}\right)\right| \\
& \quad \geq C_{1}\left(x_{2}-x_{1}\right)-\left(x_{2}-x_{1}\right) \sum_{i=2}^{k} C_{i} M^{n_{i}-1} \geq \xi\left(x_{2}-x_{1}\right)>0
\end{align*}
$$

since $n_{1}=1$. This implies that $L P$ is strictly increasing and invertible on I. Thus $L P$ is an orientation-preserving homeomorphism of I onto itself. Moreover, (2.11) follows from (2.13) immediately.

Lemma 2.3. Suppose that $P_{0}, F: I \rightarrow I$ are both Lipschitzian mappings fixing the end-points of I such that $\operatorname{Lip}\left(P_{0}\right) \leq M$ and $\operatorname{Lip}(F) \leq M_{0}$ for positive constants M and M_{0}. If the reals $C_{j}, j=1, \ldots, k$, satisfy $C_{1} \geq$ $M_{0} / M+\sum_{i=2}^{k} C_{i} M^{n_{i}-1}$, then both

$$
\begin{equation*}
L P_{k-1}(x):=G\left(P_{k-1}^{n_{1}-1}(x), \ldots, P_{k-1}^{n_{k}-1}(x)\right) \tag{2.14}
\end{equation*}
$$

and

$$
\begin{equation*}
P_{k}:=\left(L P_{k-1}\right)^{-1} \circ F \tag{2.15}
\end{equation*}
$$

are well defined and $P_{k}: I \rightarrow I$ is a Lipschitzian mapping fixing the endpoints of I with $\operatorname{Lip}\left(P_{k}\right) \leq M, k=1,2, \ldots$

Proof. By Lemma 2.2, $L P_{0}(x):=G\left(P_{0}^{n_{1}-1}(x), \ldots, P_{0}^{n_{k}-1}(x)\right)$ is well defined and maps I onto itself homeomorphically with $L P_{0}(a)=a, L P_{0}(b)=b$ and $\operatorname{Lip}\left(\left(L P_{0}\right)^{-1}\right) \leq 1 / \xi$, where ξ is defined in (2.12). Thus $P_{1}(x):=$ $\left(L P_{0}\right)^{-1} \circ F(x)$ is meaningful and $P_{1}(a)=a, P_{1}(b)=b$. Moreover, $\operatorname{Lip}\left(P_{1}\right) \leq$ $\operatorname{Lip}\left(\left(L P_{0}\right)^{-1}\right) \cdot \operatorname{Lip}(F) \leq(1 / \xi) M_{0} \leq M$, by the assumptions on C_{j}.

For the inductive proof we assume that the conclusion of Lemma 2.3 is true for the integer k. By Lemma $2.2, L P_{k}(x):=G\left(P_{k}^{n_{1}-1}(x), \ldots, P_{k}^{n_{k}-1}(x)\right)$ is also well defined and maps I onto itself homeomorphically with $L P_{k}(a)$ $=a, L P_{k}(b)=b$ and $\operatorname{Lip}\left(\left(L P_{k}\right)^{-1}\right) \leq 1 / \xi$. Similarly we see that $P_{k+1}(x):=$ $\left(L P_{k}\right)^{-1} \circ F(x)$ is also meaningful and $P_{k+1}(a)=a, P_{k+1}(b)=b$. Moreover, $\operatorname{Lip}\left(P_{k+1}\right) \leq \operatorname{Lip}\left(\left(L P_{k}\right)^{-1}\right) \cdot \operatorname{Lip}(F) \leq(1 / \xi) M_{0} \leq M$. This implies that the conclusion of Lemma 2.3 is also true for $k+1$ and completes the proof of Lemma 2.3.

3. Main result

Theorem. Suppose that equation (1.4) satisfies the hypotheses (H1), $\left(\mathrm{H}^{\prime}\right)$ and $\left(\mathrm{H} 3^{\prime}\right)$ and that $F: I \rightarrow I$ is a Lipschitzian mapping fixing the end-points of I with $\operatorname{Lip}(F) \leq M_{0}$ for a positive constant M_{0}. If $g: I \rightarrow I$ is a Lipschitzian mapping fixing the end-points of I with $\operatorname{Lip}(g) \leq M$ such that

$$
\begin{equation*}
\left|F(x)-G\left(g^{n_{1}}(x), \ldots, g^{n_{k}}(x)\right)\right| \leq \delta, \quad \forall x \in I \tag{3.16}
\end{equation*}
$$

for a constant $\delta>0$, then there exists a unique continuous solution $f: I \rightarrow I$ of equation (1.4) such that

$$
\begin{equation*}
|f(x)-g(x)| \leq \gamma \delta, \quad \forall x \in I \tag{3.17}
\end{equation*}
$$

where

$$
\gamma=\left(C_{1}-\sum_{i=2}^{k} C_{i} M^{n_{i}-1}-\max \left\{\sum_{i=2}^{k} C_{i} \sum_{j=0}^{n_{i}-2} M^{j}, \sum_{i=2}^{k} B_{i} \sum_{j=0}^{n_{i}-2} M^{j}\right\}\right)^{-1}
$$

provided

$$
\begin{equation*}
C_{1}>\sum_{i=2}^{k} C_{i} M^{n_{i}-1}+\max \left\{M_{0} / M, \sum_{i=2}^{k} C_{i} \sum_{j=0}^{n_{i}-2} M^{j}, \sum_{i=2}^{k} B_{i} \sum_{j=0}^{n_{i}-2} M^{j}\right\} \tag{3.18}
\end{equation*}
$$

This Theorem implies that equation (1.4) satisfies Hyers-Ulam stability if the constants in (1.7) and (1.8) satisfy (3.18).

In this Theorem we free both F and f from the requirement of increasing monotonicity, which were imposed in [12]-[14]. So the form of equation in this paper is more general. Additionally, unlike [16] and [12] we do not restrict our discussion to the subset

$$
\begin{align*}
& X(I ; 0, M):=\{f: I \rightarrow I \mid f(a)=a, f(b)=b \tag{3.19}\\
& \left.\quad 0 \leq f\left(x_{2}\right)-f\left(x_{1}\right) \leq M\left(x_{2}-x_{1}\right), \forall x_{1}, x_{2} \in I \text { with } x_{2}>x_{1}\right\}
\end{align*}
$$

For example, for

$$
F(x)= \begin{cases}2 x, & 0 \leq x \leq \frac{1}{4} \\ -\frac{1}{2} x+\frac{5}{8}, & \frac{1}{4}<x \leq \frac{5}{8} \\ \frac{11}{6} x-\frac{5}{6}, & \frac{5}{8}<x \leq 1\end{cases}
$$

consider the equation

$$
\begin{equation*}
\frac{21}{20} f(x)-\frac{1}{20}\left(f^{2}(x)\right)^{2}=F(x), \quad x \in I=[0,1] \tag{3.20}
\end{equation*}
$$

Let $G\left(y_{1}, y_{2}\right)=\frac{21}{20} y_{1}-\frac{1}{20} y_{2}^{2}$. So, $G(0,0)=0, G(1,1)=1$. If $y_{i}, z_{i} \in I$, $i=1,2$, we have

$$
\begin{align*}
\left|G\left(y_{1}, y_{2}\right)-G\left(z_{1}, z_{2}\right)\right| & \leq \frac{21}{20}\left|y_{1}-z_{1}\right|+\frac{1}{20}\left|y_{2}+z_{2}\right| \cdot\left|y_{2}-z_{2}\right| \tag{3.21}\\
& \leq \frac{21}{20}\left|y_{1}-z_{1}\right|+\frac{1}{10}\left|y_{2}-z_{2}\right|
\end{align*}
$$

Moveover, if $y_{1} \geq z_{1}$, we have

$$
\begin{equation*}
G\left(y_{1}, y_{2}\right)-G\left(z_{1}, z_{2}\right) \geq \frac{21}{20}\left(y_{1}-z_{1}\right)-\frac{1}{10}\left|y_{2}-z_{2}\right| \tag{3.22}
\end{equation*}
$$

Thus the hypotheses $(\mathrm{H} 1)-\left(\mathrm{H} 2^{\prime}\right)$ and $\left(\mathrm{H}^{\prime}\right)$ are satisfied, where $C_{1}=\frac{21}{20}$ and $C_{2}=\frac{1}{10}$. Clearly, the function

$$
g(x)= \begin{cases}\frac{3}{5} x, & 0 \leq x \leq \frac{5}{6} \\ 3 x-2, & \frac{5}{6}<x \leq 1\end{cases}
$$

satisfies the inequality

$$
\left|F(x)-\left(\frac{21}{20} g(x)-\frac{1}{20}\left(g^{2}(x)\right)^{2}\right)\right| \leq 0.343
$$

i.e., g is a δ-approximate solution where $\delta=0.343$. Clearly $\operatorname{Lip}(F)=2$ and $\operatorname{Lip}(g)=3$. We can check that condition (3.18) is satisfied. By our Theorem, equation (3.20) satisfies Hyers-Ulam stability.
4. Proof of Theorem. For simplicity, we apply the notation ξ as in (2.12) and

$$
\begin{equation*}
\eta=\max \left\{\sum_{i=2}^{k} C_{i} \sum_{j=0}^{n_{i}-2} M^{j}, \sum_{i=2}^{k} B_{i} \sum_{j=0}^{n_{i}-2} M^{j}\right\} \tag{4.23}
\end{equation*}
$$

Construct a sequence $\left\{P_{k}(x)\right\}$ of functions as follows. Take $P_{0}(x)=g(x)$ first and then define $P_{k}(x)$ by (2.15) inductively. By Lemma 2.3, both $L P_{k-1}(x)$ and $P_{k}(x)$ are well defined for $k>1$. Lemmas 2.2 and 2.3 also imply that $P_{k}(a)=a, P_{k}(b)=b, \operatorname{Lip}\left(P_{k}\right) \leq M$ and that $L P_{k}$ is an orientationpreserving homeomorphism of I onto itself with $\operatorname{Lip}\left(\left(L P_{k}\right)^{-1}\right) \leq 1 / \xi$.

Now we claim that

$$
\begin{align*}
& \left|P_{k}(x)-P_{k-1}(x)\right| \leq \frac{1}{\xi}\left(\frac{\eta}{\xi}\right)^{k-1} \delta \tag{4.24}\\
& \left|F(x)-L P_{k} \circ P_{k}(x)\right| \leq\left(\frac{\eta}{\xi}\right)^{k} \delta
\end{align*}
$$

for all $x \in I$ and $k=1,2, \ldots$
First (4.24) and (4.25) are obvious when $k=1$. Assume that they are true for the integer k. Then

$$
\begin{align*}
\left|P_{k+1}(x)-P_{k}(x)\right| & =\left|\left(L P_{k}\right)^{-1} \circ F(x)-\left(L P_{k}\right)^{-1} \circ\left(L P_{k}\right) \circ P_{k}(x)\right| \tag{4.26}\\
& \leq \frac{1}{\xi}\left|F(x)-\left(L P_{k}\right) \circ P_{k}(x)\right| \\
& \leq \frac{1}{\xi}\left(\frac{\eta}{\xi}\right)^{k} \delta
\end{align*}
$$

by (4.25). Moreover,

$$
\begin{align*}
F(x)- & L P_{k+1} \circ P_{k+1}(x) \tag{4.27}\\
= & G\left(P_{k+1}(x), P_{k}^{n_{2}-1} \circ P_{k+1}(x), \ldots, P_{k}^{n_{k}-1} \circ P_{k+1}(x)\right) \\
& -G\left(P_{k+1}(x), P_{k+1}^{n_{2}}(x), \ldots, P_{k+1}^{n_{k}}(x)\right) \\
\geq & -\sum_{i=2}^{k} C_{i}\left|P_{k}^{n_{i}-1}-P_{k}^{n_{i}-1}\right| \geq-\sum_{i=2}^{k} C_{i} M^{n_{i}-1}\left|P_{k}-P_{k+1}\right|
\end{align*}
$$

by (1.8), and

$$
\begin{align*}
F(x)-L & P_{k+1} \circ P_{k+1}(x) \tag{4.28}\\
= & G\left(P_{k+1}(x), P_{k}^{n_{2}-1} \circ P_{k+1}(x), \ldots, P_{k}^{n_{k}-1} \circ P_{k+1}(x)\right) \\
& -G\left(P_{k+1}(x), P_{k+1}^{n_{2}}(x), \ldots, P_{k+1}^{n_{k}}(x)\right) \\
\leq & \sum_{i=2}^{k} B_{i}\left|P_{k}^{n_{i}-1}-P_{k}^{n_{i}-1}\right| \leq \sum_{i=2}^{k} B_{i} M^{n_{i}-1}\left|P_{k}-P_{k+1}\right|
\end{align*}
$$

by (1.7). It follows that
(4.29) $\quad\left|F(x)-L P_{k+1} \circ P_{k+1}(x)\right|$

$$
\begin{aligned}
& \leq\left|P_{k}-P_{k+1}\right| \max \left\{\sum_{i=2}^{k} C_{i} \sum_{j=0}^{n_{i}-2} M^{j}, \sum_{i=2}^{k} B_{i} \sum_{j=0}^{n_{i}-2} M^{j}\right\} \\
& \leq \eta\left(\frac{1}{\xi}\left(\frac{\eta}{\xi}\right)^{k} \delta\right)=\left(\frac{\eta}{\xi}\right)^{k+1} \delta
\end{aligned}
$$

by hypotheses $\left(\mathrm{H} 2^{\prime}\right)-\left(\mathrm{H} 3^{\prime}\right)$ and (4.26). Thus (4.24) and (4.25) are proved by induction.

For any positive integers k and s with $k>s$,

$$
\begin{align*}
\left|P_{k}(x)-P_{s}(x)\right| \leq & \left|P_{k}(x)-P_{k-1}(x)\right|+\left|P_{k-1}(x)-P_{k-2}(x)\right| \tag{4.30}\\
& +\ldots+\left|P_{s+1}(x)-P_{s}(x)\right| \\
\leq & \frac{1}{\xi}\left(\frac{\eta}{\xi}\right)^{k-1} \delta+\frac{1}{\xi}\left(\frac{\eta}{\xi}\right)^{k-2} \delta+\ldots+\frac{1}{\xi}\left(\frac{\eta}{\xi}\right)^{s} \delta \\
= & \frac{\delta}{\xi} \cdot \frac{(\eta / \xi)^{s}-(\eta / \xi)^{k}}{1-\eta / \xi}
\end{align*}
$$

by (4.24). Note from (3.18) that $\xi>\eta$. It follows from (4.30) that

$$
\begin{equation*}
\left|P_{k}(x)-P_{s}(x)\right| \rightarrow 0 \quad \text { as } k>s \rightarrow \infty \tag{4.31}
\end{equation*}
$$

As a Cauchy sequence, $\left\{P_{k}(x)\right\}$ converges uniformly in the Banach space $\mathcal{C}(I)$. Let

$$
\begin{equation*}
\lim _{k \rightarrow \infty} P_{k}(x)=f(x) \tag{4.32}
\end{equation*}
$$

Clearly, $f: I \rightarrow I$ is also a Lipschitzian mapping with $\operatorname{Lip}(f) \leq M$. From (4.25),

$$
\begin{align*}
|F(x)-L f \circ f(x)| & =\lim _{k \rightarrow \infty}\left|F(x)-L P_{k} \circ P_{k}(x)\right| \tag{4.33}\\
& \leq \lim _{k \rightarrow \infty}(\eta / \xi)^{k} \delta=0
\end{align*}
$$

i.e., f is a solution of equation (1.4). Furthermore, from (4.24),

$$
\begin{align*}
& |f(x)-g(x)|=\lim _{k \rightarrow \infty}\left|P_{k}(x)-P_{0}(x)\right| \tag{4.34}\\
& \leq \lim _{k \rightarrow \infty}\left\{\left|P_{k}(x)-P_{k-1}(x)\right|+\left|P_{k-1}(x)-P_{k-2}(x)\right|\right. \\
& \left.\quad+\ldots+\left|P_{1}(x)-P_{0}(x)\right|\right\} \\
& \leq \lim _{k \rightarrow \infty}\left\{\frac{1}{\xi}\left(\frac{\eta}{\xi}\right)^{k-1} \delta+\frac{1}{\xi}\left(\frac{\eta}{\xi}\right)^{k-2} \delta+\ldots+\frac{1}{\xi} \delta\right\}=\frac{1}{\xi-\eta} \delta
\end{align*}
$$

This proves (3.17).
Concerning uniqueness, we assume that there is another continuous solution $\phi: I \rightarrow I$ for equation (1.4), which may not be Lipschitzian, such that

$$
|\phi(x)-g(x)| \leq \varepsilon
$$

where $\varepsilon>0$ only depends on δ. Then

$$
\begin{equation*}
G\left(f^{n_{1}}(x), \ldots, f^{n_{k}}(x)\right)=G\left(\phi^{n_{1}}(x), \ldots, \phi^{n_{k}}(x)\right) \tag{4.35}
\end{equation*}
$$

It follows from Lemma 2.1 and hypothesis $\left(\mathrm{H}^{\prime}\right)$ that

$$
\begin{equation*}
C_{1}\left(f^{n_{1}}(x)-\phi^{n_{1}}(x)\right)-\sum_{i=2}^{k} C_{i}\left|f^{n_{i}}(x)-\phi^{n_{i}}(x)\right| \leq 0 \tag{4.36}
\end{equation*}
$$

that is,

$$
\begin{equation*}
\left(C_{1}-\sum_{i=2}^{k} C_{i} \sum_{j=0}^{n_{i}-1} M^{j}\right)\|f-\phi\| \leq 0 \tag{4.37}
\end{equation*}
$$

However, $C_{1}>\sum_{i=2}^{k} C_{i} \sum_{j=0}^{n_{i}-1} M^{j}$ by (3.18). This implies that $\|f-\phi\|=0$, i.e., $f \equiv \phi$.

REFERENCES

[1] C. Borelli, On Hyers-Ulam stability of Hosszú's functional equation, Resultate Math. 26 (1994), 221-224.
[2] C. Borelli and G. L. Forti, On a general Hyers-Ulam stability result, Internat. J. Math. Math. Sci. 18 (1995), 229-236.
[3] G. L. Forti, Hyers-Ulam stability of functional equations in several variables, Aequationes Math. 50 (1995), 143-190.
[4] R. Ger and P. Šemrl, The stability of the exponential equation, Proc. Amer. Math. Soc. 124 (1996), 779-787.
[5] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 222-224.
[6] K. W. Jun, G. H. Kim and Y. W. Lee, Stability of generalized gamma and beta functional equations, Aequationes Math. 60 (2000), 15-24.
[7] J. H. Mai and X. H. Liu, Existence, uniqueness and stability of C^{m} solutions for a kind of iterative functional equation, Sci. in China Ser. A 30 (2000), 129-144 (in Chinese).
[8] K. Nikodem, The stability of the Pexider equations, Ann. Math. Sil. 5 (1991), 91-93.
[9] T. M. Rassias and P. Šemrl, On the behavior of mappings which do not satisfy Hyers-Ulam stability, Proc. Amer. Math. Soc. 114 (1992), 989-993.
[10] —, 一, On the Hyers-Ulam stability of linear mappings, J. Math. Anal. Appl. 173 (1993), 325-338.
[11] J. Si, Existence of local analytic solutions of the iterative equation $\sum_{i=1}^{n} \lambda_{i} f^{i}(z)=$ $F(z)$, Acta Math. Sinica 37 (1994), 590-600 (in Chinese).
[12] -, Continuous solutions for the iterative equation $G\left(f(x), f^{n_{1}}(x), \ldots, f^{n_{k}}(x)\right)$, Chin. J. Math. Res. Exp. 15 (1995), 149-150 (in Chinese).
[13] -, Discussion on the differentiable solutions of an iterative equation, Acta Math. Sinica 39 (1996), 247-256 (in Chinese).
[14] J. Si and W. Zhang, On C^{2} solutions of a functional equation, ibid. 14 (1998), 705-710.
[15] L. Székelyhidi, The stability of the sine and cosine functional equations, Proc. Amer. Math. Soc. 110 (1990), 109-115.
[16] W. N. Zhang, Discussion on the iterated equation $\sum_{i=1}^{n} \lambda_{i} f^{i}(x)=F(x)$, Chin. Sci. Bull. 32 (1987), 1444-1451.
[17] -, Stability of the solution of the iterated equation $\sum_{i=1}^{n} \lambda_{i} f^{i}(x)=F(x)$, Acta Math. Sci. 8 (1988), 421-424.
[18] -, Discussion on the differentiable solutions of the iterated equation $\sum_{i=1}^{n} \lambda_{i} f^{i}(x)$ $=F(x)$, Nonlinear Anal. 15 (1990), 387-398.

Department of Mathematics
Sichuan University
Chengdu, Sichuan 610064
P.R. China

E-mail: wnzhang@scu.edu.cn

[^0]: 2000 Mathematics Subject Classification: 39B12, 37E05.
 Key words and phrases: nonlinear iterative equation, Hyers-Ulam stability, approximate solution, uniform convergence, orientation-preserving homeomorphism.

 Supported by NNSFC(China) Grant \#10171071 and China Education Ministry Research Grants.

