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LP(R™) BOUNDS FOR
COMMUTATORS OF CONVOLUTION OPERATORS
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GUOEN HU (Zhengzhou), QIYU SUN (Singapore)
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Abstract. The LP”(R"™) boundedness is established for commutators generated by
BMO(R"™) functions and convolution operators whose kernels satisfy certain Fourier trans-
form estimates. As an application, a new result about the L” (R™) boundedness is obtained
for commutators of homogeneous singular integral operators whose kernels satisfy the
Grafakos—Stefanov condition.

1. Introduction. We will work in R", n > 1. Let T be a standard
Calderén-Zygmund operator and b € BMO(R™). Define the first order com-
mutator of T" and b by

Ty f(x) = b(x)T f(x) = T(bf)(x).

In the remarkable work [3], Coifman and Meyer observed that the LP(R™)
(1 < p < 00) boundedness of T, can be obtained from the weighted LP(R"™)
estimates with A, weights for the operator 7', where A, denotes the weight
function class of Muckenhoupt (see [7, Chapter V| for definition and prop-
erties of A,). Alvarez, Bagby, Kurtz and Pérez [2] developed the idea of
Coifman and Meyer, and established a generalized boundedness result for
commutators of linear operators. They showed that if 1 < p,q < 0o, and the
linear operator 7' is bounded on LP(R™ w(x)dz) with bound independent
of w for any w € A, then for any positive integer £ and b € BMO(R"), the
kth order commutator of T' defined by

Ty f () = b(2)To k1 f () = Ty ra (bf) (), Toof (x) = Tf(x)
is bounded on LP(R™) with bound C(n, k,p)||b|\]’§Mo(Rn). In [5], Hu consid-

ered the L?(R™) boundedness for commutators of convolution operators and
proved the following result.

2000 Mathematics Subject Classification: Primary 42B20.

Key words and phrases: commutator, singular integral, BMO(R"), Fourier transform
estimate.

The research was supported by the NSF of Henan Province.

(11]



12 G. HU ET AL.

THEOREM H. Let k be a positive integer, K(x) be a function on R™\{0}
and K(z) = .7 Kj(x). Suppose that there are some constants C' > 0,
0<A<1/2 and a > k+ 1 such that for each j € Z,

IKilln <€, VR lleo < C,
|K;(€)] < Cmin{A|27¢], log™"(2 + [27¢])}.
Then for b € BMO(R™) and 0 < v < 1 such that av > k+1, the commutator
Toif(x) = | (b(z) = b(y) K (x —y)f(y)dy, [ e CRY),
Rn
. . —av+k+1
is bounded on L*(R™) with bound C(n,k,,v)log (1/A)||b‘|]gMO(R")‘

In this paper, we will continue the study begun in [5]. By Fourier trans-
form estimates and approximation of the identity, we will establish the
LP(R™) boundedness for commutators of convolution operators. We remark

that in this paper, we are very much motivated by the work of Watson [8];
some ideas are from Pérez’s paper [6]. For a function f on R™, denote by

f the Fourier transform of f. For a nonnegative integer m, let b, (1) =
tlog™(2+t). For a locally integrable function f and a bounded measurable
set £ with Lebesgue measure |F|, define

. 1
”fHL(logL)m,E = lnf{)\ >0: E S @m<!f(_)\y)\) dy < 1}
E

and

HfHexp(Ll/m),E = inf {)‘ >0: E S €xXp (#) dy <25
E

Our main result is

THEOREM 1. Let k be a positive integer, K(x) be a function on R™\ {0}
and Kj(r) = K(z)X{2i<|z|<2i+1}(T) for j € Z, where xa is the character-
istic function of the set A. Suppose that there exist constants C > 0 and
a >k + 1 such that for each j € Z,

q SO K ©) < Cmin{|2e] log (2 + [27€))
VK|l < C27.
Then for b € BMO(R"™) and 2a/(2a — (K + 1)) < p < 2a/(k + 1), the
commutator
(2)  Tipf(a) = § (b(x) = b)) Kz - 9)f@)dy.  feCFRY,
Rn
is bounded on LP(R™) with bound C(n,k,p, 04)Hb||’]§MO(Rn).

As an application of Theorem 1, we will obtain
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THEOREM 2. Let k be a positive integer and b € BMO(R"™), 2 be ho-
mogeneous of degree zero and have mean value zero. Suppose that for some
a>k+1,

(3) sup | !Nﬂ)<kg ! >ad0<:oo

C€S7L71 gn—1 |9 N C|
Then for 2a/(2a — (k+ 1)) < p < 2a/(k + 1), the commutator defined by

2z —y)

Ty if(x) = | (b(x) — b(y)) iz — gl

Rn

is bounded on LP(R™) with bound C(n,k,p, a)HbH’]gMO(Rn).

f(y)dy

REMARK. The size condition (3) for o > 1 was introduced by Grafakos
and Stefanov [4] in order to study the L?(R") boundedness for the homoge-
neous singular integral operator defined by

— Qx—vy
Tfa) = | 20
o 12—l

f(y) dy.

It has been proved in [4] that there exist integrable functions on S™"~1 which
are not in H'(S™"~1), but satisfy (3) for all @ > 1. Thus our Theorem 2 shows
that there exists 2 € L'(S™~1)\ H!(S"!) such that the corresponding
commutator Ty is bounded on LP(R™) for all 1 < p < oo and a positive
integer k.

2. Proof of theorems. By the estimates used in [4], it is easy to see that
Theorem 2 follows from Theorem 1 directly, so we only prove Theorem 1.
We begin with some preliminary lemmas.

LEMMA 1. Let m and k be integers such that 0 < m < k. Suppose that
f and g are functions on R™ with compact support. Then for any bounded
measurable set F,

1
I£ * gy < ClELE {05 o (V) 2o <1}
Rn

xnﬁ{x>o:éﬂéf%(mgm>dx§1}

Proof. Without loss of generality, we may assume that

. 1 |f($)|> } 1
infdA>0:— @km<— dr <1lp = ——+.
>0 i) X Mgl
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Thus, by homogeneity,
. 1 7@ gl 1
f i\ P | ———F— <lp=-.
in {)\>0 |E|Rsn k < \ dr < 5

Therefore,
1

7 § B Nl do < 1

Suppose that supp g is contained in some ball B. By the Jensen inequality,

B

9y
< [ 21— 1)l - ) M &y

) 9l
Let B be the support of f. Invoking the Jensen inequality again, we obtain
P (Pr—m (| * g()]))
- (S 9(x — )| §pn Po—m (IS (2)] - lgl1) dz D (|f ()] - llgll) dy )
-l lgllx $gn Pr—m (1£(2)] - llgll1) d=

gz =l 1B\ Pe-m(f W) llgll1)
< | ¢m< lgllx >§Rn Pi—m(|f(2)] - lgll) dz

which via the Young inequality gives

[ @on (@ (1  gl@))) da < | @m<M> iy,

B K lgllx

Note that for each t > 0, @y (t) < @, (Pr—m (t)). Thus,

1 Ig(w)|'|E|>
calli <inf{A>0: Oy | i ) de
1 * 9l (og L)+, B { [ RS ( gl

=B gl mf{A>0 é, | o ('g;m))dxgl}.

This leads to our desired estimate. m

B

dy,
R’IL

IN
[t
N——

LEMMA 2. Let k be a positive integer and b € BMO(R™), K(x) be a
function on R™ \ {0} such that for all R >0 and |y| < R/2,

> d | |K(z —y) — K(z)|dz
d>1  B(0,2¢+1R)\B(0,2¢R)

+ Z 1B(0,2°R)| - | K(- — y) — K()ll L(tog 1)*, B0,2¢+1 R)\B(0,24R) < A.
d>1
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Suppose that for each 0 < m < k, the operator
Tymf(x) = | (b(x) — b)) K(z —y)f(y) dy
Rn
is bounded on L?(R™) with bound Cr [0l Byio®ny- Then the commutator T i

is a bounded operator on LP(R™) with bound C(A + anzo C’m)||b||’f3MO(Rn)
forall 1 <p < .

Proof. Without loss of generality, we may assume that ||b|gyo®n) = 1.
By duality, it suffices to prove that for 0 < m <k and 1 < p < 2,

(4) 1Ty fly < C(A+DC) 1Sl
1=0

We shall carry out the argument by induction on the order m. For m = 0,
it is obvious that the operator Tj ¢ is bounded from L!(R") to weak L!(R")
with bound C(Cy + A), and the estimate (4) holds for m = 0. Now let m be
a positive integer and m < k. We assume that (4) holds for all 0 <! < m—1.
By the Marcinkiewicz interpolation theorem, it is enough to show that for
each 1 <p < 2and A > 0,

(5) {2 : Tomf(2) > N} < CXP (443G I
=0

For given f € LP(R™) and A > 0, applying the Calderén—Zygmund
decomposition of |f|P at the level AP, we can write f(x) = g(z) + h(x),
where [|glloc < CA, [lgll, < C[fllp; h(x) = >_; hj(x), h; is supported on Qj,

foo By (@) dz = 0, §|y(@)P de < CAIQ,] and 32, [Q;] < CA~P]f 2. The
L?(R™) boundedness of T, states that
{o : Tymg(@) > M < A2 Tomgll3 < CATPIIFIR.

For each fixed j, let y? and 7; be the center and the side length of Q. Set
B; = B(y?,élnrj) and E = J; B;. It is obvious that

|E| < CD Q51 < CAP|If|E.
J

Thus, the proof of (5) can be reduced to proving that for A > 0,
{z e R"\ E: [Tymh(z)| > A} < CATP[[f]7.

For each fixed j, denote by mp, (b) the mean value of b on B;. With the aid
of the formula

(b(x) = b(y))™ = (b(x) — mp, (b))
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we have

Tymh(z) = > (b(z) — mp, (b)) Th;(x)

- Z_: CﬁnTb,z(Z(b(-) - mBj(b))m—lhj) (z).
=0 j

Let 1 < pg < p and r = p/pg. For each fixed 0 < I < m — 1, our inductive
hypothesis together with the Holder inequality tells us that

Hx cR" : ‘Tb,l(Z(b(.) - mBj(b))m—lhj) (:c)‘ > )\}‘

<A [T (00 =m0 )|
. 0
J
-1
O(A+ X0 )A 37§ Ibly) = mas, (0)] |y ()] dy
i=0 ji B
-1
cla+y i)
=0
, 1/r’ 1/r
x 30 16) = ms, @)D ay ) (] g1 dy)
Jj  Bj B;

< C(A + lic) 3 1Byl < C(A + lici)xmﬁg
1=0 j =0

J

Observe that @,,(t) = tlog™(2+1t) is a Young function and its complemen-
tary Young function is ¥, (t) ~ et"’™ . For y € @; and positive integer d,
it follows from the generalized Holder inequality (see [1, Chapter 8] or [6,
p. 168]) that

V1K (@ —y) = k(z —yd)| - [b(x) — mp, (b)[™ do
QdBj\Qdlej
< Clmp; —maap, O™ | |K(z—y) — Kz —y;)| da

QdB]'\Qd_lBj

+C [b(2) — maap, (0)]"|K (2 — y) — K(z — )| de

ZdBj \2dilBj

<cd™ | |K(z—y) - K@ - )l de
QdBj\Qd_lBj
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+ C|2dBj| “|[(b(z) — Maap; (b))m”exp(Ll/m),dej
x |K(-—y)— K(-— yg)HL(logL)"udej\zd—lBj
<cam | |K@-y) - K- )l d
24 B;\24-1 B

+ CIQdBj‘ K —y) = K(-— yg)HL(logL)m,dej\Qd—lBja

where in the last but one inequality, we have invoked the fact that
Imp; (b) — maap, (b)] < Cd||bllBmon),

and in the last inequality, we have used the John—Nirenberg inequality which
states that for some positive constants A1, Ao,

1 S exp (’b(z) — maap, (b)|

2/B;]

is, A1|b]|Bmo®n)

By the vanishing mean value of h;, we see that for each fixed j,

| Ib(@) = mp, (0)|"|Th;(x)| dz

R"\ B,
= | 1@ = ma, 0] § (K@~ ) ~ Kz = yo)lh(y) dy| de
R"\ B, R™
<y § i)
d=1 B;
< f @) =m0 K (@ — ) = K (o — o)l do dy

QdBj\2dlej

< CA | |hi(y)ldy < CAIB;|" /7|, < CANQ;1,
B;

which in turn implies

H:c ER\E: Y [b(x) —ma, ()] |Thy(x)| > AH

<A | Ibla) = m, O Th(@)|de < CAY Q] < CAXTIFI.

J Rr\E J
Combining the estimates above yields the desired estimate. m

Proof of Theorem 1. By duality, it suffices to consider the case 2 < p <
2a/(k + 1). As in the proof of [8, Theorem 1], let ¢ € C§°(R™) be a radial
nonnegative function such that {;, ¢(z)dz = 1, supp¢ C {z : 2] < 1/4}.
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For | € Z, set ¢(w) = 27" ¢(27'x). For a positive integer 7, define

Kj(x)= Y Kixij(x).

l=—0c0

Let S; be the convolution operator whose kernel is K j- Note that

|f1-(€) — 1] < Cmin{|2"79¢[, 1}, [[Ver—;(€)lloc < C2777.
Now the Fourier transform estimate of K; gives
1K1 ()¢i—;(€) — Ki(€)] < Cmin{279 |2k, log ™ (2 + [2'¢])},
and
IV(Ki61-5) = VEilloo < IVEllscllfr—j — Uloo + [ Killoo | V1|00 < C2".

This together with Theorem H says that for 0 < m < k, b € BMO(R") and
0 < v < 1 such that av > k+ 1,

| To,m f = Sjvm fllz < Cln,m)[bllEro@n i~ " HIfll2,  0<m < k.
By the L?*(R") boundedness of T, ,,, we know that for all positive integers j

and 0 < m <k, S} m is also bounded on L?(R™) with bound ClolEvown)-
Note that

(6) 1951 5 f — Sasppfll2 < C2WFHRFVI| £l

Therefore, the series

(7) Ty = Srwk + Y _(Sareripn — S2ipn)
=0

converges in the L?(R™) operator norm.

Now we turn to the LP(R™) boundedness of Sy, ;.. For y € R", it is easy
to verify that

I¢1-5( = 9) = ¢1—;5(-) Iy < Cmin{1, 27" [yl},

61-5( = y) = b1 (oo < C27CHDED |,
Set Ao = R~"j*min{1,27|y|/R}. Straightforward computation shows that
if |y| < R/2 and R ~ 2!, then

CR" S |1 (2 — ?i\)o— b1—;(2)| log" (2 n |1 (2 — ?i\)o— ¢l—j(z)’> ds

Rn

9—(n+1)(1—5)
< C’j_k logk (2 + vl )

R min{1, 27]y|/ R}

2(n+1)j’ ’ 2(n+t1)j p
—k k Y k
< CJ7 " max { log (2 + 2(n+1)lR—n>’lOg <2 + 2(n+1)l2jR—n> } <C.
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Thus,

inf{)\>0: \qbz_j(z—y)—qﬁz—j(Z)!)sz1}

b
[B(0,2R) \ B(0, R)| 5 ( A

< CR™™j* min{1, 27|y|/R}.
Note that for R > 0 and |y| < R/2,

155 (- = y) — K5 ()l Log £)*, B(0,2R)\B(0, R)

< Z [ K+ 1 (- —y) — Ki % 1 ()|l Log L)%, B(0,2R)\B(0,R)-
2R

Applying Lemma 1, we find that for I € Z such that 2! ~ R,
1 * ¢ (- — y) — K1 % 15 ()l Ltog L)%, B(0,2R)\ B(0,R)
1
1B(0,2R) \ B(0, R)|

x RS ¢k<|¢lj(z - y; - ¢lj(z)’> dz < 1}HK1!1

SCinf{)\>0:

< CR™™j* min{1,27|y|/R}.
On the other hand, it is easy to verify that

VK@ —y) - K@) de < Y K+ gi—j(- —y) — Ko+ ()|
R<|z|<2R 2~R

< Z Kl ll¢i—5 (- —y) — b5 ()]l

2lx~R
< C'min{1,2’|y|/R}.
This leads to

> dk | |Kj(z —y) — K;(2)| da
d=1  B(0,2¢+1R)\B(0,2¢R)

+ 3 B0, 2°R)| - | K;(- — 1) — Kj ()l Lgtog £)*, B0,2041 RN\ B0,24R)
a1

< Cj* Y (27R)" min{1,27~|y|/R}(2'R) ™" + Y _ d" min{1,2/"|y|/R}
d=1 d=1
< erk-i-l'
Lemma 2 now shows that for 1 < p < oo,

(8) 1S9+, kf = Saap e 1o < C2EDI Bl ns0 0 | 1l
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By the Riesz—Thorin interpolation theorem, it follows from the inequalities
(6) and (8) that for 2 < p < oo and any 6y > 0,

9)  [S2+1 kS — S2ip ik fllp
< C(n, k,p, o, v, 00)20 2/PHEHIR0IT b8 oy 1 F ]

For each fixed 2 < p < 2a/(k + 1), we can choose 6y > 0 small enough and
0 < v < 1 such that —2av/p+k+1+6y < 0. So summing up the inequalities
(9) over all nonnegative integers j shows that the series (7) converges in the
LP(R™) operator norm. This completes the proof of Theorem 1. m
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