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A COMPLETE ANALOGUE OF HARDY’S THEOREM ON

SEMISIMPLE LIE GROUPS

BY

RUDRA P. SARKAR (Calcutta)

Abstract. A result by G. H. Hardy ([11]) says that if f and its Fourier transform

f̂ are O(|x|me−αx
2

) and O(|x|ne−x
2/(4α)) respectively for some m,n ≥ 0 and α > 0,

then f and f̂ are P (x)e−αx
2

and P ′(x)e−x
2/(4α) respectively for some polynomials P and

P ′. If in particular f is as above, but f̂ is o(e−x
2/(4α)), then f = 0. In this article we

will prove a complete analogue of this result for connected noncompact semisimple Lie
groups with finite center. Our proof can be carried over to the real reductive groups of
the Harish-Chandra class.

1. Introduction. Let G be a connected noncompact semisimple Lie
group with finite center and let K be a maximal compact subgroup of
G. The aim of this article is to provide a complete analogue of the re-
sult of Hardy (described in the abstract) for the full group G of this class.
For a sufficiently nice function f , let FP0(f)(ξ, λ) be its Fourier transform
with respect to the minimal principal series representation (πP0,ξ,λ, HP0,ξ,λ)
where P0 =M0A0N0 is a minimal cuspidal parabolic subgroup, λ ∈ a

∗
0C and

ξ ∈ E2(M0), E2(M0) being the set of discrete series representations of M0.
Suppose ‖FP0(f)(ξ, λ)‖ is the operator norm of FP0(f)(ξ, λ) relative to the
norm of HP0,ξ,λ. Let d be the distance on the symmetric space G/K induced
by the Riemannian metric on it. We define σ(x) = d(xK, o) where o = eK.
All other notation is explained in the next section. The main result of this
article is the following.

Theorem 1.1. Let f be a measurable function on G such that

(1.1) |f(x)| ≤ Ce−ασ(x)2Ξ(x)(1 + σ(x))M for all x ∈ G,
(1.2) ‖FP0(f)(ξ, λ)‖ ≤ Cξe−β|λ|

2

(1 + |λ|)N for all (ξ, λ) ∈ E2(M0)× ia∗0,
where M > 0 and N are integers and α, β, C,Cξ are positive constants with

αβ=1/4. Then for any fixed ξ∈E2(M0), F u,vP0 (f)(ξ, λ)=Pβ,u,v(λ)e
β(λ21+...+λ

2
n)

or 0 for all λ = (λ1, . . . , λn) ∈ a
∗
0C = C

n and u, v ∈ HP0,ξ,λ, where Pβ,u,v is
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a polynomial which depends on β, u, v and degPβ,u,v ≤ min(M+2|Σ+0 |, N),
|Σ+0 | being the set of cardinality of the set of indivisible positive roots of G.
In particular if f satisfies (1.1) and FP0(f)(ξ, λ) is o(e

−β|λ|2) for (ξ, λ) ∈
E2(M0)× ia∗0 and αβ = 1/4 then f = 0.
It can be shown that the function f in the above theorem can be uniquely

determined from only FP0(f) on E2(M0) × a
∗
0C. The above theorem may

therefore be considered as the completion of the effort to generalize Hardy’s
theorem to groups in the Harish-Chandra class.

We supplement Theorem 1.1 by showing the optimality of the estimates
and thereby justify the appearance of Ξ there. We also illustrate by an ex-
ample that if we have an adequate knowledge of the subquotients of the
principal series representations, then it is possible to characterize the func-
tion more explicitly from similar estimates. This example also explains the
role played by the polynomials in the estimates in accommodating nontriv-
ial isotypic components of the function within the consideration of Hardy’s
theorem.

Our article follows the pattern of its predecessors, especially of [23] and
[19].

We conclude with a brief review of related results. Hardy proved his the-
orem on R in [11]. A well known stronger version, which we have generalized
(given in the abstract), can be found e.g. in [15]. For Lie groups Hardy’s the-
orem was first taken up by Sitaram and Sundari in [23]. This has attracted
considerable attention in recent years. Different versions of this theorem
were proved for semisimple Lie groups, symmetric spaces, nilpotent groups,
Heisenberg groups and solvable extensions of H-type groups. Among these
many articles, [6], [7], [19], [21], [22] and [23] itself have dealt with semisimple
Lie groups and Riemannian symmetric spaces. (See [8] for a comprehensive
survey and references for Hardy’s theorem on other groups.) Except for [19]
and [21], all the results are analogues of the second half of Hardy’s theorem
where the estimates force the function to be zero. These results are usually
viewed as mathematical uncertainty principle. The second part of Theorem
1.1 is stronger than these results and provides the best possible uncertainty
(see Section 4).

2. Notation and preliminaries. We follow these standard practices:

(i) Lower case German letters denote the Lie algebras of the groups
denoted by the corresponding upper case Roman letters.

(ii) For any Lie algebra a, a∗ is its real dual and a
∗
C
is the complexification

of a∗.

(iii) For a group M , E2(M) denotes the set of (equivalence classes of)
discrete series representations of M .
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(iv) C,C ′ etc. are used to denote constants (real or complex) whose
value might change from line to line. Polynomials are denoted by P , P ′.
We use subscripts of C or P when needed to indicate their dependence on
parameters of interest. We may not repeat mentioning these at the particular
places.

LetG be a connected noncompact semisimple Lie group with finite center
and let K be a fixed maximal compact subgroup of G.

Let G = KA0N0 be an Iwasawa decomposition of G and let P0 =
M0A0N0 be the minimal parabolic subgroup corresponding to this Iwasawa
decomposition. Let Σ(g, a0) be the set of restricted roots, Σ

+ be the set of
positive restricted roots which is chosen once for all and Σ+0 be the set of
indivisible positive roots. Denote the underlying set of simple roots by ∆0
and the corresponding positive Weyl chamber in a0 by a

+
0 . Then G has a

decomposition G = KA+0 K, where A
+
0 = exp a

+
0 .

For each subset of ∆0, we have a standard parabolic subgroup P con-
taining P0. The minimal parabolic subgroup P0 corresponds to the null set
and G itself corresponds to the full set ∆0. A parabolic subgroup P with
Langlands decomposition P =MPAPNP is called cuspidal when E2(MP ) is
nonempty.

For ξ ∈ E2(M0) and λ ∈ a
∗
0C = C

n, the minimal principal series rep-
resentation πP0,ξ,λ defined on the Hilbert space HP0,ξ,λ is induced from the
representation ξ⊗exp(λ)⊗1 of P0. The induction is normalized so that πP,ξ,λ
is unitary if λ is pure imaginary. For a suitable function f , let FP0(f)(ξ, λ)
denote its Fourier transform with respect to πP0,ξ,λ.

For a standard cuspidal parabolic subgroup P containing P0 with Lang-
lands decomposition P = MPAPNP , MP is generally a noncompact and
disconnected reductive subgroup of the Harish-Chandra class (see [12]),
and AP ⊂ A0, NP ⊂ N0 and MP ⊃ M0. Since P is cuspidal, E2(MP ) is
nonempty. To each such P we associate a series of admissible representa-
tions πP,ξ,λ = ind

G
P (ξ ⊗ exp(λ) ⊗ 1) on the Hilbert space HP,ξ,λ, inducing

from the representation ξ⊗exp(λ)⊗1 of P , where ξ ∈ E2(MP ) and λ ∈ a
∗
PC
.

Again, πP,ξ,λ is unitary if λ ∈ ia∗P . As in the minimal case, for ξ ∈ E2(MP )
and λ ∈ a

∗
PC
, FP (f)(ξ, λ) denotes the Fourier transform of f , when it ex-

ists, with respect to the nonminimal cuspidal principal series representation
πP,ξ,λ. Discrete series representations in this set up can be thought of as in-
duced from the parabolic subgroup G itself. However we denote the Fourier
transform of a function f with respect to π ∈ E2(G) by FD(f)(π). It is known
that the elements in E2(G), i.e. the discrete series, are explicitly embedded
in the nonunitary minimal principal series (see [17]).

LetK ′ = K∩MP = K∩P . ThenK ′ is the maximal compact subgroup of
MP and M0 ⊂ K ′ ⊂MP . Let MP = K ′A1N1 be an Iwasawa decomposition
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of MP . Then A0 = APA1 and N0 = NPN1 and M0 is the centralizer of A1
in K ′. Therefore P1 =M0A1N1 is a minimal parabolic subgroup of MP .
Now take σ ∈ E2(MP ) and ν ∈ ia∗P . Then πP,σ,ν is unitary. If ν is also

regular, i.e. 〈β, ν〉 6= 0 for all roots β of (g, aP ), then it is irreducible. As noted
above, the discrete series representations are explicitly embedded in the
nonunitary principal series. Therefore there exist σ̃ ∈ E2(M0) and µ1 ∈ a

∗
1C

so that σ is infinitesimally embedded in ωσ̃µ1 = ind
MP
M0A1N1

(σ̃ ⊗ eµ1 ⊗ 1),
which is a nonunitary minimal principal series representation of MP . Then
it can be shown that πP,ω,ν is canonically equivalent to πP0,σ̃,iν⊕µ1 and hence
πP,σ,ν is infinitesimally embedded in the nonunitary minimal principal series
πP0,σ̃,iν⊕µ1 of G. Thus embedding of the nonminimal principal series in the
minimal ones is obtained from embedding of the discrete series through
a double induction (see [16, p. 240]). For a detailed description of these
representations we also refer to [26].
Let dk and da be respectively the Haar measures on K and A andT

K dk = 1. The norm induced by the Killing form 〈 , 〉 of g on a and on

its dual a∗ are both denoted by | · |. Then σ(expH) = |H| = 〈H,H〉1/2 for
H ∈ a0. Let ̺0 =

1
2

∑
γ∈Σ+mγγ,mγ being the multiplicity of the root γ, and

let Ξ(x) be φ0, i.e. the elementary spherical function with parameter 0. The
following estimate of Harish-Chandra ([13, Section 9]) will be useful for us:

e−̺0(H) ≤ Ξ(expH) ≤ Ce−̺0(H)(1 + |H|)|Σ+0 | for all H ∈ a
+
0 .(2.1)

This estimate of Ξ is sufficient for the proof of the main theorem. Nonethe-
less let us record the exact estimate of Ξ due to Anker ([2]) for future use:

Ξ(expH) ≍
{ ∏

γ∈Σ+0

(1 + γ(H))
}
e−̺0(H) for all H ∈ a

+
0(2.2)

where f1(x) ≍ f2(x) means there exist positive constants C ≤ C ′ such that
Cf2(x) ≤ f1(x) ≤ C ′f2(x).
The Haar measure dx on G can be normalized so that dx=J(a)dk1dadk2,

where J(a) =
∏
γ∈Σ+(e

γ(log a) − e−γ(log a))mγ is the Jacobian of the KA+0 K-
decomposition of G. Clearly,

|J(a)| ≤ Ce2̺0(log a).(2.3)

We can choose an orthonormal basis of HP,ξ,λ consisting of K-finite
vectors. Let u, v be two elements of this basis. Then F u,vP (f)(ξ, λ) denotes
the (u, v)th matrix coefficient of the operator FP (f)(ξ, λ). Precisely,

F u,vP (f)(ξ, λ) =
\
G

f(x)〈πP,ξ,λ(x)u, v〉 dx.

Let (δ1, δ2) ∈ K̂ × K̂. Assume that u and v transform according to δ1
and δ2 respectively. Then, using the arguments of Miličić ([18, p. 83], see
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also [22, 4.2]) we have

|〈πP,ξ,λ(x)u, v〉| ≤ Cδ1,δ2φλR+̺P−̺0(x) for all x ∈ G(2.4)

where φλ is the elementary spherical function with parameter λ, λR is the
real part of λ and ̺P is the half sum of the positive roots of (P,AP ). Note
that λR and ̺P are extended to a0 by defining them trivially on a1 = a

⊥
P

which is the orthocomplement of aP in a0 with respect to the Killing form
(see [18]). If f is a biinvariant function and ξ0 is the trivial representation

of M0, then F
0,0
P0
(f)(ξ0, λ) =

T
G f(x)φλ(x) dx will also be denoted by f̂(λ).

3. Proof of the theorem. We shall use the following Phragmén–Lin-
delöf theorem, a proof of which can be found in [5].

Theorem 3.1 (Phragmén–Lindelöf). Let D = {reiθ | r ≥ 0, |θ| ≤
π/(2α)}, α > 1/2. Suppose f is an analytic function on D such that

|f(z)| ≤M <∞ for r ≥ 0, θ = ± π

2α
,

|f(z)| ≤ Cerβ , β < α, z ∈ D,
where D denotes the closure of D. Then |f(z)| < M for z ∈ D.
Now we will prove a complex-analytic result using the above theorem.

Lemma 3.2. Let f be an entire function on C
n for some n ≥ 1 such that

|f(z)| ≤ C1eβ|z|
2

(1 + |z|)r for all z ∈ C
n,(3.1)

|f(x)| ≤ C2e−β|x|
2

(1 + |x|)s for all x ∈ R
n,(3.2)

for positive β and integers r, s > 0. Then f(z) = P (z)e−β(z
2
1+...+z

2
n) for

z = (z1, . . . , zn) ∈ C
n where P is a polynomial with degP ≤ min(r, s).

Proof. The lemma will be proved by induction on n. Assume that the
result is true for n = 1, . . . ,m − 1. For z ∈ C

m write z = (z̃, zm) where
z̃ = (z1, . . . , zm−1) ∈ C

m−1 and zm ∈ C.

Let f be an entire function on C
m which satisfies (3.1) and (3.2) for n =

m. For x̃ ∈ R
m−1 and z ∈ C, let fx̃(z) = f(x̃, z). Then for each x̃ ∈ R

m−1, fx̃
is an entire function on C which satisfies (3.1) and (3.2) for n = 1. Therefore

by induction hypothesis, for each x̃ ∈ R
m−1, f(x̃, z) = fx̃(z) = h(x̃, z)e

−βz2

where h(x̃, z) is a polynomial in z for each fixed x̃ ∈ R
m−1. Then h(x̃, z) =

f(x̃, z)eβz
2

. As f is analytic on C
m, h(x̃, z) is a restriction of an analytic

function on R
m−1 × C and hence f(z) = f(z̃, z) = h(z̃, z)e−βz

2

.

Now for z̃ ∈ C
m−1, x ∈ R, consider the function h(z̃, x) = f(z̃, x)eβx

2

.
For fixed x ∈ R, h(z̃, x) is entire on C

m−1 and satisfies (3.1) and (3.2) for n =

m− 1. Hence again by induction hypothesis, h(z̃, x)=Px(z̃)e−β(z
2
1+...+z

2
m−1)

where for each fixed x ∈ R, Px is a polynomial in z̃. But as Px(z̃) =
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h(z̃, x)eβ(z
2
1+...+z

2
m−1), P (z̃, x) = Px(z̃) is the restriction of an analytic map

on C
m−1 × R. Therefore h(z) = h(z̃, z) = Pz(z̃)e

−β(z21+...+z
2
m−1). Hence

f(z) = fz̃(z) = h(z̃, z)e
−βz2 = Pz(z̃)e

−β(z21+...+z
2
m−1)e−βz

2
m

= Pz(z̃)e
−β(z21+...+z

2
m).

Note that Pz(z̃) is also a polynomial in z for fixed z̃, as e
−β(z21+...+z

2
m−1) is

independent of z and h(z̃, z) is a polynomial in z for fixed z̃. Now as P (z) =
Pz(z̃) is separately polynomial in z and in z̃, P is a polynomial in z = (z̃, z)

(see [20]). Therefore, f(z) = P (z)e−β(z
2
1+...+z

2
m) for some polynomial P .

Comparing f with (3.1) and (3.2), we have degP ≤ min(r, s).
The argument will be complete if we prove the case n = 1.

Proof for n = 1. Let f = fe + fo where fe and fo are respectively the
even and odd parts of f .
Consider ψ(z) = fe(

√
z). Then ψ is also entire and by (3.1) and (3.2)

respectively, it satisfies the inequalities

|ψ(z)| ≤ Ceβ|z|(1 + |z|)r′ for z ∈ C,(3.3)

|ψ(x)| ≤ C ′e−βx(1 + x)s′ for x ∈ R
+,(3.4)

for some positive r′ and s′.
We first show that for s′′ ≥ max{r′, s′},

|ψ(z)eβz| ≤ C(1 + |z|)s′′ for z ∈ C.(3.5)

Let DΘ = {z = reiθ | 0 ≤ θ ≤ Θ} for Θ ∈ (0, π). Define

w(z,Θ) = w(r, θ, Θ) = exp

[
βize−iΘ/2

sin(Θ/2)

]

(see [5]). Then

|w(r, 0, Θ)| = eβr,(3.6)

|w(r,Θ,Θ)| = e−βr,(3.7)

w(z,Θ)→ eβz as Θ → π.(3.8)

Let F ′(z) = w(z,Θ)ψ(z)/(z + i)s
′′

for z ∈ DΘ. From (3.6) and (3.4) we
have

|F ′(x)| = |F ′(r)| ≤ C (1 + r)
s′

(i+ r)s′′
≤M for x ∈ R

+.

Again from (3.7) and (3.3), we get

|F ′(reiΘ)| ≤ C (1 + r)
r′

(i+ r)s
′′
≤M

for some M > 0. Therefore, by Theorem 3.1, we have |F ′(z)| ≤ M on DΘ.
Now from (3.8), we conclude that on {z ∈ C | ℑz ≥ 0}, |ψ(z)eβz/(z + i)s′′ |



HARDY’S THEOREM 33

≤M . Similarly we can prove that on the lower half plane |ψ(z)eβz/(z − i)s′′ |
≤M . Combining them we get (3.5).
From (3.5) we get, for z ∈ C, ψ(z) = P1(z)e

−βz for some polynomial P1.
Therefore,

fe(z) = P1(z
2)e−βz

2

.(3.9)

Now let g(z) = fo(z)/z. Then g(z) is an even entire function which
satisfies (3.1) and (3.2) for n = 1 and hence,

fo(z) = zP2(z
2)e−βz

2

(3.10)

for some polynomial P2. Therefore f(z) = P (z)e−βz
2

for some polyno-
mial P .

Proof of Theorem 1.1. We can choose an orthonormal basis of HP0,ξ,λ
adapted to the decomposition of πP0,ξ,λ into different K-types. Let (δ1, δ2) ∈
K̂ × K̂ and let u and v be two elements of this basis of HP0,ξ,λ which
transform according to δ1 and δ2 respectively.

From (2.4), taking P = P0, we have

|〈πP0,ξ,λ(x)u, v〉| ≤ Cδ1,δ2φλR
(x) for all x ∈ G.(3.11)

Now as |φλ(a)| ≤ eλ
+
R
(log a)Ξ(a) (see [10, Prop. 4.6.1]), we have

|〈πP0,ξ,λ(a)u, v〉| ≤ Ceλ
+
R
(log a)Ξ(a).(3.12)

Here λ+
R
is the Weyl translate of λR which is dominant, i.e. belongs to the

positive Weyl chamber.

For (ξ, λ) ∈ E2(M0)× a
∗
0C, the (u, v)th matrix coefficient of FP0(f)(ξ, λ)

is

F u,vP0 (f)(ξ, λ) =
\
G

f(x)〈πP0,ξ,λ(x)u, v〉 dx.(3.13)

Therefore,

|F u,vP0 (f)(ξ, λ)| =
∣∣∣
\
A+0

f(a)〈πP0,ξ,λ(a)u, v〉J(a) da
∣∣∣.(3.14)

We will show that for each ξ ∈ E2(M0), F u,vP0 (f)(ξ, λ) is an entire function
in λ ∈ a

∗
0C and

|F u,vP0 (f)(ξ, λ)| ≤ Ce
β|λ|2(1 + |λ|)M ′ for all λ ∈ C

n(3.15)

where M ′ =M + 2|Σ+0 |.
We rewrite the condition (1.1) as

(3.16) |f(k1ak2)|
≤ Ce−α|log a|2Ξ(a)(1 + |log a|)M for all k1, k2 ∈ K, a ∈ A+0 .
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Let |F u,vP0 (f)(ξ, λ)| = I. Then from (3.14), using (3.16), (2.3) and (3.12), for
all ξ ∈ E2(M0) and λ ∈ a

∗
0C = C

n, we have

I ≤ C
\
A+0

e−α|log a|
2

eλ
+
R
(log a)Ξ(a)2(1 + |log a|)Me2̺0(log a)da.

Now applying (2.1), we get, for M ′ =M + 2|Σ+0 |,
I ≤ C

\
A+0

e−α|log a|
2

eλ
+
R
(log a)e−2̺0(log a)(1 + |log a|)M ′e2̺0(log a) da

= C
\
A+0

e−α|log a|
2

eλ
+
R
(log a)(1 + |log a|)M ′ da

≤ C
\
a0

e−α|H|
2

eλ
+
R
(H)(1 + |H|)M ′dH,

where H = log a, i.e. H ∈ a0 such that expH = a, dH is the Lebesgue
measure on a0. Suppose HλR

corresponds to λ+
R
via the isomorphism of a∗0

with a0 through the Killing form (i.e. λ
+
R
(H) = 〈H,HλR

〉 for all H) so that
|λ+

R
| = |HλR

|. Then
I ≤ Ce|HλR

|2/(4α)
\
a0

e−α〈H−HλR
/(2α),H−HλR

/(2α)〉(1 + |H|)M ′dH

From this, by translation invariance of Lebesgue measure, we have

I ≤ Ce|HλR
|2/(4α)(1 + |HλR

|)M ′
\
a0

e−α|H|
2

(1 + |H|)M ′dH

≤ C(1 + |λ|)M ′e|λ|2/(4α)
\
a0

e−α|H|
2

(1 + |H|)M ′ dH (as |λ+
R
| = |λR| ≤ |λ|)

= C ′(1 + |λ|)M ′eβ|λ|2 (as β = 1/(4α)),

for ξ ∈ E2(M0) and λ ∈ a
∗
0C = C

n. This proves (3.15).
Let Fξ(λ) = F

u,v
P0
(f)(ξ, λ) and let H(λ) = Fξ(iλ). By (1.2) every matrix

entry of F u,vP0 (f)(ξ, λ) satisfies

|FP0(f)u,v(ξ, λ)| ≤ Cξe−β|λ|
2

(1 + |λ|)N for all (ξ, λ) ∈ E2(M0)× ia∗0.
From this and (3.15), by Lemma 3.2, we have

Fξ(iλ) = H(λ) = P
′(λ)e−β(z

2
1+...+z

2
n) = P (iλ)eβ((iz1)

2+...+(izn)2),

where P (λ) = P ′(−iλ) and degP ≤ {M ′, N}. Hence
F u,vP0 (ξ, λ) = Fξ(λ) = P (λ)e

β(z21+...+z
2
n),(3.17)

with P as above. This proves the first part of the theorem.
Now if |F u,vP0 (f)(ξ, λ)| is o(e

−β(z21+...+z
2
n)) then (1.2) is satisfied and hence

by (3.17), for λ ∈ ia∗0 we have F
u,v
P0
(f)(ξ, λ) = P (λ)e−β(r

2
1+...+r

2
n) where λ =
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(ir1, . . . , irn), ri ∈ R, for i = 1, . . . , n. But then |F u,vP0 (f)| cannot be o(e
−β|λ|2)

for λ ∈ ia∗0 unless P ≡ 0, which would imply that F
u,v
P0
(f)(ξ, ·) ≡ 0 on a

∗
0C.

As this is true for all basis elements u, v ∈ HP0,ξ,λ, for all ξ ∈ E2(M0), FP0(f)
is identically zero on E2(M0)× a

∗
0C.

We will now see that FP (f) ≡ 0 on E2(MP ) × a
∗
PC
for any standard

cuspidal parabolic subgroup P containing P0 and FD(f) ≡ 0 on E2(G).
Minimal and nonminimal principal series and discrete series represen-

tations are admissible. Unitary nonminimal principal series representations
and discrete representations are infinitesimally equivalent to subrepresen-
tations of minimal principal series representations (see Section 3). If two
admissible representations are infinitesimally equivalent then they have the
same set ofK-finite matrix coefficients (see [16, p. 211]). Since FP0(f) ≡ 0 on
E2(M0)× a

∗
0C, clearly all K-finite matrix coefficients of FP0(f)(ξ, λ) are zero

for all (ξ, λ) ∈ E2(M0)× a
∗
0C and hence by the above argument, all K-finite

matrix coefficients of FP (f)(ξ, λ) are also zero for all (ξ, λ) ∈ E2(MP )×a
∗
PC
.

Therefore FP (f) ≡ 0 on E2(MP )× a
∗
PC
. For the same reason FD(f) ≡ 0 on

E2(G).
As Plancherel measure has support only on πP,ξλ for standard cuspidal

parabolic subgroups P = MPAPNP , ξ ∈ E2(MP ) and λ ∈ ia∗P and on
the discrete series representations E2(G), by the Plancherel Theorem f = 0
almost everywhere (see [27, II, p. 421]).

4. Examples and remarks

1. In Theorem 1.1 if in particular N < 0 then clearly f = 0 (compare
with Theorem 4.2(iv) below). Note that here αβ = 1/4 and hence it is
stronger than the following theorem of [6]:

Theorem 4.1 (Cowling–Sitaram–Sundari). Let f be a measurable func-
tion on G such that

|f(k1ak2)| ≤ Ce−α(|log a|)
2

for all k1, k2 ∈ K, a ∈ A+0 ,(4.1)

‖FP0(f)(ξ, λ)‖ ≤ Cξe−β|λ|
2

for all (ξ, λ) ∈ E2(M0)× ia∗0,(4.2)

where α, β, C,Cξ are positive constants. If αβ > 1/4, then f = 0.

Proof. It is possible to choose α′ < α and β′ < β so that α′β′ = 1/4.
Then f and FP0(f) satisfy (1.1) and (1.2) with α, β replaced by this α

′, β′

and for some N < 0. Therefore f = 0 by the last part of Theorem 1.1.

The results obtained in [23], [22] and [7] follow from the above theorem in
[6] and hence also follow from Theorem 1.1. Thus in semisimple Lie groups,
Theorem 1.1 with N < 0 provides the strongest uncertainty principle in the
form of Hardy’s theorem. It is also the best in view of the first part of the
theorem.
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2. In the proof of Theorem 1.1, we have shown that if for a function f ,
FP0(f)(ξ, λ) can be defined on a

∗
0C for all ξ ∈ E2(M0) and is identically zero

there, then f = 0. Now if two functions f1 and f2 satisfy (1.1), then for
i = 1, 2, FP0(fi)(ξ, ·) is entire on a

∗
0C for all ξ ∈ E2(M0). If FP0(f1)(ξ, λ) =

FP0(f2)(ξ, λ) for all ξ ∈ E2(M0) and λ ∈ a
∗
0C, then clearly, f1 = f2 as

FP0(f1 − f2) ≡ 0 on E2(M0) × a
∗
0C. Thus the function f satisfying (1.1) is

uniquely determined by its Fourier transform with respect to the minimal
(unitary and nonunitary) principal series.

3. To complete the picture we should show that if we replace Ξ by
Ξ l for some l ∈ [0, 1) in (1.1), then there are functions other than what
we have characterized, satisfying this modified estimate while their Fourier
transforms still satisfy (1.2). This will ensure that the estimates in Theorem
1.1 (and in Theorem 4.3 below) are optimal.

Example. Let G = SL2(C) and K be its maximal compact subgroup
SU(2). Then

A =

{
at =

(
et 0
0 e−t

) ∣∣∣∣ t ∈ R

}
.

Let α be the unique positive root given by α(log at) = t. Every λ ∈ C can
then be identified with an element in aC by λ = λα. In this identification,
the unitary spherical principal series representations are given by elements
of R, the Plancherel measure is |c(λ)|−2 = |λ|2 and the elementary spherical
function φλ(at) = 2 sin(λt)/(λ sinh(2t)). Also |λ| = |λ|/4 and σ(at) = 4|t|
and ̺ = 2 (see [14, p. 432], [25, p. 313] and [23]).

For a suitable function f on R, let f̃ be its Euclidean Fourier transform
and A : C∞c (K/G/K) → C∞c (R)

even be the Abel transform, defined by
A(f)(a) = e̺(log a)

T
N f(an) dn.

Define a function g in the Schwartz space C2(K/G/K) by ĝ(λ) =

ψ̃(λ)ĥ(λ)P (λ) for λ ∈ R, where ψ is an even function in C∞c (R) with sup-

port [−s, s] for some s > 0, ĥ(λ) = e−λ
2/4 for λ ∈ R and P (λ) is an even

polynomial on R.

By Fourier inversion, we get

g(at) = C
\
R

ψ̃(λ)e−λ
2/4P (λ)

sin(λt)

λ sinh(2t)
λ2 dλ

=
C

sinh(2t)

\
R

ψ̃(λ)e−λ
2/4λP (λ) sin(λt) dλ =

C

sinh(2t)
(ψ ∗E h′)(t),

where h(t) = e−t
2

, h′(t) = P ′(t)h(t) for some polynomial P ′ and ∗E is the
Euclidean convolution. Therefore,
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|g(at)| ≤
C

|sinh 2t| e
−t2e2st(1 + |t|)M

≤ Ce−σ(at)2/16e−(1−s)2t(1 + |t|)M

= Ce−σ(at)
2/16e−(1−s)2t(1 + |t|)M

≤ Ce−σ(at)2/16Ξ(at)1−s(1 + |t|)M ,
for some M > 0. Now if we choose s so that 1− s > 0, then g satisfies
(4.3) |g(x)| ≤ Ce−σ(x)2/16Ξ(x)l(1 + σ(x))M

for some l ∈ (0, 1) and M > 0.

Its Fourier transform is ĝ(λ) = ψ̃(λ)ĥ(λ)P (λ) for λ ∈ R. As ψ̃ is bounded
on R,

|ĝ(λ)| ≤ C ′e−4|λ|2(1 + |λ|)N on R for some N > 0.(4.4)

As the Euclidean Fourier transform of the Abel transform of a biin-
variant C∞c -function is the same as its group Fourier transform, g(x) =
A−1(ψ) ∗ h(D; ·) where D is a left G-invariant differential operator which is
also right K-invariant and of even order. As ψ can be any even C∞-function
on R with support {t | |t| ≤ s} for some s ∈ (0, 1), g(x) can be f ∗h(D; ·)(x)
for some biinvariant C∞c -function f with support {x | σ(x) ≤ s} for some
s ∈ (0, 1) (see [1]).
Note that if we take f to be any biinvariant C∞c -function (i.e. s is any

positive number), then these g’s will serve as examples of functions which
satisfy (1.1) and (1.2) for αβ < 1/4.

4. For a function f as in Theorem 1.1, an exact description of the matrix
coefficient functions F u,vP0 (f) requires a complete knowledge of the proper-
ties of the matrix coefficients of the representations 〈πP0,ξ,λ(x)u, v〉. Un-
fortunately this is not available in general, because it needs an exhaustive
understanding of the subquotients of the principal series representations.
For instance, for fixed ξ ∈ M̂0, the λ’s in a

∗
0C for which the (u, v)th matrix

coefficient 〈πP0,ξ,λ(x)u, v〉 is identically zero will show up in F
u,v
P0
(f)(ξ, λ).

The following example shows that we can have more explicit results where
these are known completely.

Example. Let G be SL2(R). Then K is the circle T = {kθ | θ ∈ [0, 2π)}
and M = M0 = {0, π}. Then M̂ = {ξ0, ξ1}, of which ξ0 is the trivial repre-
sentation.K-types are parametrized by integers as K̂ = {χn | n ∈ Z}, where
χn(kθ) = einθ. The (m,n)th isotypic component of f is denoted by fm,n.
When restricted to M , every χn contains exactly one copy of either ξ0 or ξ1
according as n is even or odd. For ξ ∈ M̂ and λ ∈ a

∗
0,C = C, let (πξ,λ, Hξ) be

the principal series representation where Hξ is a subspace of L
2(K) (com-

pact picture) and the action of πξ,λ is given by 4.1 of [4]. For details on the
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parametrization of the representations and their realization on L2(K), we
refer to [4]. The function en : kθ 7→ einθ on K is in L2(K) and it transforms
according to theK-type χn. Let Z

ξ be the set of even or odd integers accord-
ing as ξ = ξ0 or ξ = ξ1. Then {en | n ∈ Z

ξ} is an orthonormal basis for Hξ.
It can be shown easily that Fm,nP0 (f) = FP0(fm,n). Also as m,n determines

a ξ ∈ M̂ by χm, χn|M ⊃ ξ, we may write Fm,nP0 (f)(λ) for F
m,n
P0
(f)(ξ, λ),

omitting the obvious ξ. It is known that for a fixed ξ ∈ M̂ , there are ex-
actly |m− n|/2 points λ in C where the matrix coefficient 〈πξ,λ(x)em, en〉
is zero for all x ∈ G (see [4, Proposition 7.1]). These are precisely those λ’s
where πξ,λ has an irreducible subrepresentation which contains em but not
en. Therefore if for a function f , F

m,n
P0
(f)(λ) can be defined on the whole

of C, then λ 7→ Fm,nP0 (f)(λ) has at least |m− n|/2 zeros each of order one.
This observation and Theorem 1.1 yield the following result on SL2(R).

Theorem 4.2. Let f be a measurable function on SL2(R) which satisfies
(1.1) and (1.2) and let αβ = 1/4. Then:

(i) if |m− n|/2 ≤ min(M +2, N), then Fm,nP0 (f)(λ) = Pβ(m,n, λ)e
βλ2,

λ ∈ C,

(ii) if |m− n|/2 > min(M + 2, N), then fm,n = 0,
(iii) if N = 0 then fm,n = 0 for m 6= n and Fn,nP0 (f)(λ) = Cβ,ne

βλ2 ,
λ ∈ C,

(iv) if N < 0 then f = 0.

Proof. Theorem 1.1 yields (i) with degPβ(m,n, λ) ≤ min(M + 2, N)
as |Σ+0 | = 1 for SL2(R). Now by the above observation F

m,n
P0
(f)(λ) has

at least |m− n|/2 zeros. Therefore if |m− n|/2 > min(M + 2, N), then
Fm,nP0 (f)(λ) = 0 for λ ∈ C. Since Fm,nP0 (f) = FP0(fm,n), (ii) is proved. The
first part of (iii) follows from (ii) while degPβ(m,n, λ) ≤ min(M + 2, N)
implies the second part. Lastly, (iv) follows from (ii).

For a detailed account on Hardy’s theorem on SL2(R) we refer to [21].

5. This concluding discussion aims at explaining the analogy of our re-
sult with the original theorem of Hardy on R which characterizes polynomial
times the Gauss kernel (cte

−x2/(4t)). The Gauss kernel is the fundamental
solution of the heat equation of the Laplace operator. For semisimple Lie
groups its analogue is the heat kernel {ht | t > 0}, the fundamental solu-
tion of the heat equation ∆u = ∂

∂tu for the Laplace–Beltrami operator ∆
on G/K. Details on this topic can be found for example in [24]. It is well
known that the heat kernel ht on G/K is given by (see [9])

ht(x) =
1

|W |
\
ia∗0

et(|λ|
2+|̺0|2)φλ(x)|c(λ)|−2 dλ,(4.5)
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where |c(λ)|−2 is the Plancherel measure and φλ is the elementary spherical
function. Thus ht is biinvariant and ĥt(ξ0, λ) = e

t(|λ|2+|̺0|2), where ξ0 is the
trivial representation of M0.
A number of authors studied the estimates of the heat kernel. See for

instance [3] and the references therein. In [3] Anker and Ji have finally proved
a sharp estimate for ht. In view of (2.2) that estimate reduces to

(4.6) ht(expH)

≍ t−n/2e−|̺0|2tΞ(expH)
{ ∏

γ∈Σ+0

(1 + t+ 〈γ,H〉)(mγ+m2γ)/2−1
}
e−|H|

2/(4t)

for t > 0 and H ∈ a
+
0 . It follows that ht(x) satisfies (1.1) for α = 1/(4t). It

is also clear that ĥt(ξ0, λ) satisfies (1.2) for N = 0. The analogy of our result
with Hardy’s original theorem will be perhaps more apparent if we use the
heat kernel to re-state it as follows.

Theorem 4.3. Let f be a measurable function on G such that

(4.7) |f(x)| ≤ C(1 + σ(x))Mht1(x) for all x ∈ G
(4.8) ‖FP0(f)(ξ, λ)‖ ≤ Cξ(1+ |λ|)N ĥt2(ξ0, λ) for all (ξ, λ) ∈ E2(M0)×ia∗0,
for integers M > 0 and N , positive constants C,Cξ, and t1, t2 > 0. If t1 =

t2 = t, then F u,vP0 (f)(ξ, λ) = ĥt(ξ0, λ)Pξ,u,v(λ) for all (ξ, λ) ∈ E2(M0) × a
∗
0C

such that u, v ∈ HP0,ξ,λ, Pξ,u,v(λ) being a polynomial which depends on
ξ, u, v. If t1 < t2 then f = 0.

The example on SL2(C) points out that if t1 > t2, then there are other
functions satisfying the estimates.
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