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THE NATURAL OPERATORS T|Mfn  T
∗T r∗

AND T|Mfn  Λ
2T ∗T r∗

BY

W. M. MIKULSKI (Kraków)

Abstract. Let r and n be natural numbers. For n ≥ 2 all natural operators T|Mfn  

T ∗T r∗ transforming vector fields on n-manifoldsM to 1-forms on T r∗M = Jr(M,R)0 are
classified. For n ≥ 3 all natural operators T|Mfn  Λ

2T ∗T r∗ transforming vector fields

on n-manifolds M to 2-forms on T r∗M are completely described.

0. Introduction. Let n and r be natural numbers. In this paper we
study the problem how a vector field X on a n-dimensional manifold M
can induce a 1-form A(X) and a 2-form B(X) on the r-cotangent bundle
T r∗M = Jr(M,R)0 ofM . This problem is reflected in the concept of natural
operators A : T|Mfn  T

∗T r∗ and B : T|Mfn  Λ
2T ∗T r∗ in the sense of

Kolář, Michor and Slovák [4].

The first main result of this paper is that for n ≥ 2 the set of all natural
operators A : T|Mfn  T

∗T r∗ is a free 2r-dimensional C∞(Rr)-module, and
we construct explicitly a basis of this module.

The second main result is that for n ≥ 3 the set of all natural operators
B : T|Mfn  Λ

2T ∗T r∗ is a free 2r2-dimensional C∞(Rr)-module, and we
also construct explicitly a basis of this module.

Some natural operators transforming functions, vector fields, forms (etc.)
on some natural bundles F are used practically in all papers in which the
problem of prolongation of geometric structures is considered. That is why
such natural operators are studied. For F = T r∗ such natural operators
are studied or classified in [2], [3], [5], [6], [8], [9], and for F = T 1∗ = T ∗

in [1], [7], [11].

From now on x1, . . . , xn denote the usual coordinates on R
n, and ∂i =

∂/∂xi for i = 1, . . . , n are the canonical vector fields on R
n.

All manifolds are assumed to be finite-dimensional and smooth, i.e. of
class C∞. Maps between manifolds are assumed to be smooth.
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1. The natural operators T|Mfn  T
∗T r∗

1.1. The r-cotangent bundle T r∗. For every n-dimensional manifold M
we have the vector bundle T r∗M = Jr(M,R)0 over M with respect to the
source projection π : T r∗M →M . It is called the r-cotangent bundle of M .
Every embedding ϕ : M → N of n-manifolds induces a vector bundle map
T r∗ϕ : T r∗M → T r∗N , T r∗ϕ(jrxγ) = j

r
ϕ(x)(γ ◦ ϕ

−1), γ : M → R, x ∈ M ,

γ(x) = 0. The correspondence T r∗ :Mfn → VB is a natural vector bundle
over n-manifolds [4].
For r = 1 we have the natural equivalence T 1∗M ∼= T ∗M , j1xγ

∼= dxγ.

1.2. Examples of natural operators T|Mfn  T
∗T r∗

Example 1. Let X be a vector field on an n-manifold M . For every
s = 1, . . . , r we have the map

(s)

X : T r∗M → R,
(s)

X (jrxγ) := (X
sγ)(x),

γ : M → R, x ∈ M , γ(x) = 0, where Xs = X ◦ . . . ◦X (s times). Then for

every s = 1, . . . , r we have the 1-form d
(s)

X on T r∗M . The correspondence
(s)

A : T|Mfn  T
∗T r∗, X 7→ d

(s)

X , is a natural operator.

Example 2. Let X be a vector field on an n-manifold M . For every

s = 1, . . . , r we have the 1-form
〈s〉

X : TT r∗M → R on T r∗M ,

〈s〉

X (v) = 〈dx(X
s−1γ), Tπ(v)〉, v ∈ (TT r∗)xM,

x ∈ M , γ : M → R, γ(x) = 0, pT (v) = jrxγ, p
T : TT r∗M → T r∗M is

the tangent bundle projection. The correspondence
〈s〉

A : T|Mfn  T
∗T r∗,

X 7→
〈s〉

X , is a natural operator.

1.3. The C∞(Rr)-module of natural operators T|Mfn  T
∗T r∗. The

set of all natural operators T|Mfn  T
∗T r∗ is a module over the algebra

C∞(Rr). Indeed, if f ∈ C∞(Rr) and A : T|Mfn  T
∗T r∗ is a natural oper-

ator, then fA : T|Mfn  T
∗T r∗ is given by (fA)(X) = f(

(1)

X, . . . ,
(r)

X )A(X),
X ∈ X (M), M ∈ Obj(Mfn).

1.4. The classification theorem. The first main result of this paper is the
following classification theorem.

Theorem 1. For a natural number n ≥ 2 the C∞(Rr)-module of all
natural operators T|Mfn  T

∗T r∗ is free and 2r-dimensional. The natu-

ral operators
(s)

A and
〈s〉

A for s = 1, . . . , r form a basis of this module over
C∞(Rr).
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The proof of Theorem 1 will occupy the rest of this subsection.

Consider a natural operator A : T|Mfn  T
∗T r∗. Since

(1)

A, . . . ,
(r)

A,
〈1〉

A, . . . ,
〈r〉

A are C∞(Rr)-linearly independent, we need only prove that A is
their linear combination with C∞(Rr)-coefficients.
The following lemma shows that A is uniquely determined by the restric-

tion A(∂1)|(TT
r∗)0R

n.

Lemma 1. If A(∂1)|(TT
r∗)0R

n = 0, then A = 0.

Proof. The proof is standard. We use the naturality of A and the fact
that any non-vanishing vector field is locally ∂1.

So, we will study the restriction A(∂1)|(TT
r∗)0R

n.

Lemma 2. There are f1, . . . , fr ∈ C
∞(Rr) with

(
A−

r∑

s=1

fs
(s)

A
)
(∂1)
∣∣∣(V T r∗)0Rn = 0,

where V T r∗M ⊂ TT r∗M denotes the π-vertical subbundle.

Proof. We have the usual identification (V T r∗)0R
n ∼= T r∗0 R

n × T r∗0 R
n,

d
dt

∣∣
t=0
(u+tw) ∼= (u,w), u,w ∈ T r∗0 R

n. For s = 1, . . . , r we define fs : R
r → R

by

fs(a) = A(∂1)

(
jr0

( r∑

l=1

1

l!
al(x

1)l
)
, jr0

(
1

s!
(x1)s
))
,

a = (a1, . . . , ar) ∈ R
r. We prove that the fs are as required.

For simplicity set Ã := A −
∑r
s=1 fs

(s)

A . Consider γ, η : R
r → R with

γ(0) = η(0) = 0. Define a = (a1, . . . , ar) ∈ R
r and b = (b1, . . . , br) ∈ R

r by

jr0(γ(x
1, 0, . . . , 0)) = jr0

( r∑

l=1

1

l!
al(x

1)l
)
,

jr0(η(x
1, 0, . . . , 0)) = jr0

( r∑

l=1

1

l!
bl(x

1)l
)
.

Using the naturality of Ã with respect to the homotheties (x1, tx2, . . . , txn)
for t 6= 0 and putting t→ 0 we get

Ã(∂1)(j
r
0γ, j

r
0η) = Ã(∂1)(j

r
0(γ(x

1, 0, . . . , 0)), jr0(η(x
1, 0, . . . , 0))).

Then Ã(∂1)(j
r
0γ, j

r
0η) =

∑r
s=1 bsfs(a)−

∑r
s=1 fs(a)bs = 0.

Proof of Theorem 1. Replacing A by A −
∑r
s=1 fs

(s)

A we can assume
that A(∂1)|(V T

r∗)0R
n = 0. It remains to show that there exist g1, . . . , gr ∈
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C∞(Rr) with

A =
r∑

s=1

gs
〈s〉

A.

For s = 1, . . . , r define gs : R
r → R,

gs(a) = A(∂1)

(
T r∗∂2

(
jr0

( r∑

l=1

1

l!
al(x

1)l +
1

(s− 1)!
(x1)s−1x2

)))
,

a = (a1, . . . , ar) ∈ R
r, where T r∗X denotes the complete lifting of a vector

field X ∈ X (M) to T r∗M . We prove that the gs are as required.
By Lemma 1 and A(∂1)|(V T

r∗)0R
n = 0 it is sufficient to show

A(∂1)(T
r∗∂(jr0γ)) =

( r∑

s=1

gs
〈s〉

A
)
(∂1)(T

r∗∂(jr0γ))

for any γ : Rn→R, γ(0) = 0 and any constant vector field ∂ on R
n such that

∂1 and ∂ are linearly independent. Using the naturality of A and
∑r
s=1 gs

〈s〉

A
with respect to linear isomorphisms R

n→R
n preserving ∂1 we can assume

∂ = ∂2. For simplicity set Ã =
∑r
s=1 gs

〈s〉

A .
Consider γ : R

n → R, γ(0) = 0. Define a = (a1, . . . , ar) ∈ R
r by

as = ∂
s
1γ(0) and bs = (∂2∂

s−1
1 γ)(0) for s = 1, . . . , r. Using the naturality of

A with respect to the homotheties (x1, tx2, τx3 . . . , τxn) for t, τ 6= 0 we get
the homogeneity condition

tA(∂1)(T
r∗∂2(j

r
0γ(x

1, x2, . . . , xn)))

= A(∂1)(T
r∗∂2(j

r
0γ(x

1, tx2, τx3, . . . , τxn))).

This type of homogeneity gives A(∂1)(T
r∗∂2(j

r
0γ)) =

∑r
s=1 gs(a)bs by the

homogeneous function theorem [4]. On the other hand Ã(∂1)(T
r∗∂2(j

r
0γ)) =∑r

s=1 gs(a)bs. Then

A(∂1)(T
r∗∂(jr0γ)) =

( r∑

s=1

gs
〈s〉

A
)
(∂1)(T

r∗∂(jr0γ)).

So, A =
∑r
s=1 gs

〈s〉

A .

1.5. Corollaries. Using the homogeneous function theorem, we have the
following corollary of Theorem 1.

Corollary 1. Let n ≥ 2 be a natural number.

(i) If r ≥ 2, then for every linear natural operator A : T|Mfn  T
∗T r∗

there exist real numbers α, β, γ such that

A = α
(1)

A + β pr1
〈1〉

A + γ
〈2〉

A,

where pr1 ∈ C
∞(Rr) is the projection R

r → R on the first factor.
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(ii) If r = 1, then for every linear natural operator A : T|Mfn  T
∗T 1∗

there exist real numbers α, β such that

A = α
(1)

A + β idR

〈1〉

A,

where idR ∈ C
∞(R) is the identity map.

The operator
〈1〉

A can be considered as the well-known canonical 1-form
λr on T r∗, the pull-back (πr1)

∗λ of the Liouville 1-form λ on T ∗ ∼= T 1∗ with
respect to the jet projection πr1 : T

r∗ → T 1∗. Considering the values of
natural operators T|Mfn  T

∗T r∗ at X = 0 we obtain another corollary of
Theorem 1. (For r = 1 we recover the result of [1].)

Corollary 2. For a natural number n ≥ 2 every canonical 1-form on
T r∗ is a constant multiple of λr.

On T ∗M we have the canonical Liouville 1-form λ and the canonical
symplectic 2-form ω = dλ. Under the natural equivalence T 1∗M ∼= T ∗M

we have λ =
〈1〉

A ,
(1)

A (X) = iT ∗Xω, the inner differentiation, and
(1)

X (j1xγ) =
〈dxγ,Xx〉, X ∈ X (M), x ∈ M , γ : M → R, γ(x) = 0, where T ∗X denotes
the complete lifting of X to T ∗M . Thus we have one more corollary of
Theorem 1.

Corollary 3. Let A : T|Mfn  T
∗T ∗ be a natural operator (n ≥ 2).

Then there exist maps f, g : R→ R such that

A(X)η = f(〈η,Xx〉)λη + g(〈η,Xx〉)(iT ∗Xω)η,

where M is an n-manifold , X ∈ X (M), x ∈M , η ∈ T ∗xM .

2. The natural operators T|Mfn  Λ
2T ∗T r∗

2.1. Examples of natural operators T|Mfn  Λ
2T ∗T r∗

Example 3. Let X be a vector field on an n-manifold M . For every

s1, s2 = 1, . . . , r with s1 < s2 we have the 2-form
(s1)

A (X)∧
(s2)

A (X) on T r∗M .

The correspondence
(s1)

A ∧
(s2)

A : T|Mfn  Λ
2T ∗T r∗, X 7→

(s1)

A (X) ∧
(s2)

A (X),
is a natural operator.

Example 4. Let X be a vector field on an n-manifold M . For every

s1, s2 = 1, . . . , r we have the 2-form
(s1)

A (X) ∧
〈s2〉

A (X) on T r∗M . The corre-

spondence
(s1)

A ∧
〈s2〉

A : T|Mfn  Λ
2T ∗T r∗, X 7→

(s1)

A (X)∧
〈s2〉

A (X), is a natural
operator.

Example 5. Let X be a vector field on an n-manifold M . For every

s1, s2 = 1, . . . , r with s1 < s2 we have the 2-form
〈s1〉

A (X)∧
〈s2〉

A (X) on T r∗M .
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The correspondence
〈s1〉

A ∧
〈s2〉

A : T|Mfn  Λ
2T ∗T r∗, X 7→

〈s1〉

A (X) ∧
〈s2〉

A (X),
is a natural operator.

Example 6. Let X be a vector field on an n-manifold M . For every

s = 1, . . . , r we have the 2-form d(
〈s〉

A (X)) on T r∗M . The correspondence

d
〈s〉

A : T|Mfn  Λ
2T ∗T r∗, X 7→ d(

〈s〉

A (X)), is a natural operator.

2.2. The classification theorem. As in Subsection 1.3 the set of all nat-
ural operators T|Mfn  Λ

2T ∗T r∗ is a module over the algebra C∞(Rr).

The second main result of this paper is the following classification theo-
rem.

Theorem 2. For a natural number n ≥ 3 the C∞(Rr)-module of all
natural operators T|Mfn  Λ

2T ∗T r∗ is free and 2r2-dimensional. The col-
lection of natural operators of Examples 3–6 (i.e. the collection consisting of
(s1)

A ∧
(s2)

A for s1, s2 = 1, . . . , r with s1 < s2 and
(s1)

A ∧
〈s2〉

A for s1, s2 = 1, . . . , r

and
〈s1〉

A ∧
〈s2〉

A for s1, s2 = 1, . . . , r with s1 < s2 and d
〈s〉

A for s = 1, . . . , r) is
a basis of this module over C∞(Rr).

The proof of Theorem 2 will occupy the rest of this subsection.

Consider a natural operator B : T|Mfn  Λ
2T ∗T r∗. Since the collection

of natural operators listed in the statement of the theorem is C∞(Rr)-linearly
independent, we need only prove that B is their linear combination with
C∞(Rr)-coefficients.

The following lemma shows that B is uniquely determined by the re-
striction B(∂1)|(TT

r∗
R
n ×T r∗Rn TT

r∗
R
n)0.

Lemma 3. If B(∂1)|(TT
r∗

R
n ×T r∗Rn TT

r∗
R
n)0 = 0, then B = 0.

Proof. The proof is similar to the proof of Lemma 1.

So, we will study the restriction B(∂1)|(TT
r∗

R
n ×T r∗Rn TT

r∗
R
n)0.

Lemma 4. There are f(s1,s2) ∈ C
∞(Rr) for s1, s2 = 1, . . . , r with s1 < s2

such that

(
B −

∑

1≤s1<s2≤r

f(s1,s2)
(s1)

A ∧
(s2)

A
)
(∂1)
∣∣∣(V T r∗Rn ×T r∗Rn V T

r∗
R
n)0 = 0.

Proof. The proof is similar to the one of Lemma 2. We have the identi-
fication

(V T r∗Rn ×T r∗Rn V T
r∗

R
n)0 ∼= T

r∗
0 R

n × T r∗0 R
n × T r∗0 R

n,
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(
d
dt

∣∣
t=0
(u + tv), d

dt

∣∣
t=0
(u + tw)

)
∼= (u, v, w), u, v, w ∈ T r∗0 R

n. For s1, s2 =
1, . . . , r with s1 < s2 we define f(s1,s2) : R

r → R by

f(s1,s2)(a) =B(∂1)

(
jr0

( r∑

l=1

1

l!
al(x

1)l
)
, jr0

(
1

(s1)!
(x1)s1

)
, jr0

(
1

(s2)!
(x1)s2

))
,

a = (a1, . . . , ar) ∈ R
r. We prove that the f(s1,s2) are as required.

Set B̃ := B−
∑
1≤s1<s2≤r

f(s1,s2)
(s1)

A ∧
(s2)

A . Consider γ, η, ̺ : Rn → R with

γ(0) = η(0) = ̺(0) = 0. Define a = (a1, . . . , ar) ∈ R
r, b = (b1, . . . , br) ∈ R

r

and c = (c1, . . . , cr) ∈ R
r by

jr0(γ(x
1, 0, . . . , 0)) = jr0

( r∑

l=1

1

l!
al(x

1)l
)
,

jr0(η(x
1, 0, . . . , 0)) = jr0

( r∑

l=1

1

l!
bl(x

1)l
)
,

jr0(̺(x
1, 0, . . . , 0)) = jr0

( r∑

l=1

1

l!
cl(x

1)l
)
.

Using the naturality of B̃ with respect to the homotheties (x1, tx2, . . . , txn)
for t 6= 0 and putting t→ 0 we get

B̃(∂1)(j
r
0γ, j

r
0η, j

r
0̺)

= B̃(∂1)(j
r
0(γ(x

1, 0, . . . , 0)), jr0(η(x
1, 0, . . . , 0)), jr0(̺(x

1, 0, . . . , 0))).

Consequently,

B̃(∂1)(j
r
0γ, j

r
0η, j

r
0̺) =

∑

1≤s1<s2≤r

(bs1cs2 − bs2cs1)f(s1,s2)(a)

−
∑

1≤s1<s2≤r

f(s1,s2)(a)(bs1cs2 − bs2cs1) = 0.

So, replacing B by B−
∑
1≤s1<s2≤r

f(s1,s2)
(s1)

A ∧
(s2)

A we can assume that

(∗) B(∂1)|(V T
r∗

R
n ×T r∗Rn V T

r∗
R
n)0 = 0.

Lemma 5. Under the assumption (∗) there exist g(s1,s2) ∈ C
∞(Rr) for

s1, s2 = 1, . . . , r and hs ∈ C
∞(Rr) for s = 1, . . . , r such that

(
B−

r∑

s1,s2=1

g(s1,s2)
(s1)

A ∧
〈s2〉

A −
r∑

s=1

hsd
〈s〉

A
)
(∂1)
∣∣∣(V T r∗Rn×T r∗RnTT

r∗
R
n)0=0.

Proof. For s1, s2 = 1, . . . , r define g(s1,s2) : R
r → R by

g(s1,s2)(a) = B(∂1)

((
jr0(γa,s1), j

r
0

(
1

(s2)!
(x1)s2

))
, T r∗∂2(j

r
0(γa,s1))

)
,
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a = (a1, . . . , ar) ∈ R
r, where

γa,s1 =
r∑

l=1

1

l!
al(x

1)l +
1

(s1 − 1)!
(x1)s1−1x2.

For s = 1, . . . , r define hs : R
r → R by

hs(a) = B(∂1)

((
jr0(γa), j

r
0

(
1

(s− 1)!
(x1)s−1x2

))
, T r∗∂2(j

r
0(γa))

)
,

a = (a1, . . . , ar) ∈ R
r, where γa =

∑r
l=1(1/l!)al(x

1)l. We prove that the
g(s1,s2) and hs are as required.

Set

B̃ = B −
r∑

s1,s2=1

g(s1,s2)
(s1)

A ∧
〈s2〉

A −
r∑

s=1

hsd
〈s〉

A.

By (∗), B̃(∂1)|(V T
r∗

R
n ×T r∗Rn V T

r∗
R
n)0 = 0. So, it remains to show that

B̃(∂1)((j
r
0γ, j

r
0η), T

r∗∂(jr0γ)) = 0 for any γ, η : R
n → R with γ(0) = η(0) = 0

and any constant vector field ∂ on R
n. Using the naturality of B̃ with respect

to the linear isomorphisms R
n → R

n preserving ∂1, we can assume that
∂ = ∂2.

Consider γ, η : R
n → R as above. Define al = ∂

l
1γ(0), bl = ∂

l
1η(0),

cl = ∂2∂
l−1
1 γ(0) and dl = ∂2∂

l−1
1 η(0) for l = 1, . . . , r. Let a := (a1, . . . , ar)

∈ R
k. Using the naturality of B̃ with respect to the homotheties at,τ =

(x1, tx2, τx3, . . . , τxn) for t, τ 6= 0 we obtain the homogeneity condition

tB̃(∂1)((j
r
0γ, j

r
0η), T

r∗∂2(j
r
0γ))

= B̃(∂1)((j
r
0(γ ◦ at,τ ), j

r
0(η ◦ at,τ )), T

r∗∂2(j
r
0(γ ◦ at,τ ))).

This implies

B̃(∂1)((j
r
0γ, j

r
0η), T

r∗∂2(j
r
0γ)) =

r∑

s1,s2=1

cs1bs2g(s1,s2)(a) +
r∑

s=1

dshs(a)

−

r∑

s1,s2=1

g(s1,s2)(a)cs1bs2 −

r∑

s=1

hs(a)ds

= 0

by the homogeneous function theorem.

ReplacingB byB−
∑r
s1,s2=1

g(s1,s2)
(s1)

A ∧
〈s2〉

A −
∑r
s=1 hsd

〈s〉

A we can assume
that

(∗∗) B(∂1)|(V T
r∗

R
n ×T r∗Rn TT

r∗
R
n)0 = 0.
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Proof of Theorem 2. For s1, s2 = 1, . . . , r with s1 < s2 define F(s1,s2) :
R
r → R by

F(s1,s2)(a) = B(∂1)(T
r∗∂2(j

r
0(γa,s1,s2)), T

r∗∂3(j
r
0(γa,s1,s2))),

a = (a1, . . . , ar) ∈ R
r, where

γa,s1,s2 =
r∑

l=1

1

l!
al(x

1)l +
1

(s1 − 1)!
(x1)s1−1x2 +

1

(s2 − 1)!
(x1)s2−1x3.

Using (∗∗) we show that B =
∑
1≤s1<s2≤r

F(s1,s2)
〈s1〉

A ∧
〈s2〉

A . (Then the proof

will be complete.) For simplicity denote the last right-hand side by B̃.
First for k = 2, . . . , r define Gk : R

r → R by

Gk(a) = B(∂1)(T
r∗∂2(j

r
0(γ〈a,k〉)), T

r∗∂3(j
r
0(γ〈a,k〉))),

a = (a1, . . . , ar) ∈ R
r, where

γ〈a,k〉 =
r∑

l=1

1

l!
al(x

1)l +
1

(k − 2)!
(x1)k−2x2x3.

By the invariance of B(∂1) with respect to the diffeomorphism replacing
x2 by x3 and x3 by x2 and preserving the other coordinates we see that
Gk = −Gk, i.e. Gk = 0 for k = 2, . . . , r.
By Lemma 3 and (∗∗) to prove B = B̃ it is sufficient to show that

(∗∗∗) B(∂1)(T
r∗∂(jr0γ), T

r∗∂̃(jr0γ)) = B̃(∂1)(T
r∗∂(jr0γ), T

r∗∂̃(jr0γ))

for any γ : Rn → R with γ(0) = 0 and any constant vector fields ∂ and ∂̃

on R
n such that ∂1, ∂ and ∂̃ are linearly independent. Using the naturality

of B and B̃ with respect to linear isomorphisms R
n → R

n preserving ∂1 we
can assume ∂ = ∂2 and ∂̃ = ∂3.
Consider γ : R

n → R, γ(0) = 0. Define al = ∂
l
1γ(0), bl = ∂2∂

l−1
1 γ(0)

and cl = ∂3∂
l−1
1 γ(0) for l = 1, . . . , r. Define also dk = ∂2∂3∂

k−2γ(0) for k =
2, . . . , r. Set a := (a1, . . . , ar) ∈ R

r. Using the naturality of B with respect
to the homotheties at1,t2,τ = (x

1, t1x
2, t2x

3, τx4, . . . , τxn) for t1, t2, τ 6= 0
we get the homogeneity condition

t1t2B(∂1)(T
r∗∂2(j

r
0γ), T

r∗∂3(j
r
0γ))

= B(∂1)(T
r∗∂2(j

r
0(γ ◦ at1,t2,τ )), T

r∗∂3(j
r
0γ ◦ at1,t2,τ ))).

This type of homogeneity gives

B(∂1)(T
r∗∂2(j

r
0γ), T

r∗∂3(j
r
0γ)) =

∑

1≤s1<s2≤r

F(s1,s2)(a)(bs1cs2 − bs2cs1)

+

r∑

k=2

Gk(a)dk
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by the homogeneous function theorem. Then

B(∂1)(T
r∗∂2(j

r
0γ), T

r∗∂3(j
r
0γ)) =

∑

1≤s1<s2≤r

F(s1,s2)(a)(bs1cs2 − bs2cs1)

because Gk = 0 for k = 2, . . . , r. On the other hand

B̃(∂1)(T
r∗∂2(j

r
0γ), T

r∗∂3(j
r
0γ)) =

∑

1≤s1<s2≤r

F(s1,s2)(a)(bs1cs2 − bs2cs1).

Thus we have (∗∗∗). The proof of Theorem 2 is complete.

2.3. Corollaries. Using the homogeneous function theorem, we obtain
the following corollary of Theorem 2.

Corollary 4. Let n ≥ 3 be a natural number.

(i) If r ≥ 2, then for every linear natural operator A : T|Mfn  
Λ2T ∗T r∗ there exist real numbers α, β, γ, δ such that

A = α
(1)

A ∧
〈1〉

A + β
〈1〉

A ∧
〈2〉

A + γ pr1 d
〈1〉

A + δd
〈2〉

A,

where pr1 ∈ C
∞(Rr) is the projection R

r → R on the first factor.

(ii) If r = 1, then for every linear natural operator A : T|Mfn  T
∗T 1∗

there exist real numbers α, β such that

A = α
(1)

A ∧
〈1〉

A + β idR d
〈1〉

A,

where idR ∈ C
∞(R) is the identity map on R.

Considering the values of natural operators T|Mfn  Λ
2T ∗T r∗ at X = 0

we obtain

Corollary 5. For a natural number n ≥ 3 every canonical 2-form on
T r∗ is a constant multiple of dλr, where λr is as in Corollary 2.

For r = 1 we deduce from Theorem 2 the following result.

Corollary 6. Let B : T|Mfn  Λ
2T ∗T ∗ be a natural operator (n ≥ 3).

Then there exist maps f, g : R→ R such that

B(X)η = f(〈η,Xx〉)(λ ∧ iT ∗Xω)η + g(〈η,Xx〉)ωη

where M is an n-manifold , X ∈ X (M), x ∈ M , η ∈ T ∗xM . Here λ and ω
are as in Corollary 3.

3. Remark. What about natural operators A : T|Mfn  T
∗T (r) and

B : T|Mfn  Λ
2T ∗T (r), where T (r)M = (T r∗M)∗ is the linear r-tangent

bundle? It turns out that A = 0 and B = 0, as follows from the following
general fact.
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Theorem 3. If F : Mf → FM is a bundle functor with the point
property , then every natural operator A : T|Mfn  Λ

pT ∗F for n ≥ 2 and
p ≥ 1 is 0.

Proof. We have A : T|Mfn  T
(0,0)F̃ , where F̃ = ΛpTF :Mf → FM.

Of course, F̃ has the point property. So, by the result of [10], A = const ∈ R.
Since A is fibre linear, A = 0.
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