VOL. 93

2002

NO. 1

THE NATURAL OPERATORS $T_{|\mathcal{M}f_n} \rightsquigarrow T^*T^{r*}$ AND $T_{|\mathcal{M}f_n} \rightsquigarrow \Lambda^2 T^*T^{r*}$

BҮ

W. M. MIKULSKI (Kraków)

Abstract. Let r and n be natural numbers. For $n \ge 2$ all natural operators $T_{|\mathcal{M}f_n} \rightsquigarrow T^*T^{r*}$ transforming vector fields on n-manifolds M to 1-forms on $T^{r*}M = J^r(M, \mathbb{R})_0$ are classified. For $n \ge 3$ all natural operators $T_{|\mathcal{M}f_n} \rightsquigarrow \Lambda^2 T^*T^{r*}$ transforming vector fields on n-manifolds M to 2-forms on $T^{r*}M$ are completely described.

0. Introduction. Let n and r be natural numbers. In this paper we study the problem how a vector field X on a n-dimensional manifold M can induce a 1-form A(X) and a 2-form B(X) on the r-cotangent bundle $T^{r*}M = J^r(M, \mathbb{R})_0$ of M. This problem is reflected in the concept of natural operators $A: T_{|\mathcal{M}f_n} \rightsquigarrow T^*T^{r*}$ and $B: T_{|\mathcal{M}f_n} \rightsquigarrow \Lambda^2 T^*T^{r*}$ in the sense of Kolář, Michor and Slovák [4].

The first main result of this paper is that for $n \geq 2$ the set of all natural operators $A: T_{|\mathcal{M}f_n} \rightsquigarrow T^*T^{r*}$ is a free 2*r*-dimensional $\mathcal{C}^{\infty}(\mathbb{R}^r)$ -module, and we construct explicitly a basis of this module.

The second main result is that for $n \geq 3$ the set of all natural operators $B: T_{|\mathcal{M}f_n} \rightsquigarrow \Lambda^2 T^* T^{r*}$ is a free $2r^2$ -dimensional $\mathcal{C}^{\infty}(\mathbb{R}^r)$ -module, and we also construct explicitly a basis of this module.

Some natural operators transforming functions, vector fields, forms (etc.) on some natural bundles F are used practically in all papers in which the problem of prolongation of geometric structures is considered. That is why such natural operators are studied. For $F = T^{r*}$ such natural operators are studied or classified in [2], [3], [5], [6], [8], [9], and for $F = T^{1*} = T^*$ in [1], [7], [11].

From now on x^1, \ldots, x^n denote the usual coordinates on \mathbb{R}^n , and $\partial_i = \partial/\partial x^i$ for $i = 1, \ldots, n$ are the canonical vector fields on \mathbb{R}^n .

All manifolds are assumed to be finite-dimensional and smooth, i.e. of class \mathcal{C}^{∞} . Maps between manifolds are assumed to be smooth.

²⁰⁰⁰ Mathematics Subject Classification: Primary 58A20.

Key words and phrases: natural bundle, natural operator.

1. The natural operators $T_{|\mathcal{M}f_n} \rightsquigarrow T^*T^{r*}$

1.1. The r-cotangent bundle T^{r*} . For every n-dimensional manifold M we have the vector bundle $T^{r*}M = J^r(M, \mathbb{R})_0$ over M with respect to the source projection $\pi: T^{r*}M \to M$. It is called the *r*-cotangent bundle of M. Every embedding $\varphi: M \to N$ of n-manifolds induces a vector bundle map $T^{r*}\varphi: T^{r*}M \to T^{r*}N, T^{r*}\varphi(j_x^r\gamma) = j_{\varphi(x)}^r(\gamma \circ \varphi^{-1}), \gamma: M \to \mathbb{R}, x \in M, \gamma(x) = 0$. The correspondence $T^{r*}: \mathcal{M}f_n \to \mathcal{VB}$ is a natural vector bundle over n-manifolds [4].

For r = 1 we have the natural equivalence $T^{1*}M \cong T^*M$, $j_x^1\gamma \cong d_x\gamma$.

1.2. Examples of natural operators $T_{|\mathcal{M}f_n} \rightsquigarrow T^*T^{r*}$

EXAMPLE 1. Let X be a vector field on an n-manifold M. For every $s = 1, \ldots, r$ we have the map

$$\overset{(s)}{X}: T^{r*}M \to \mathbb{R}, \qquad \overset{(s)}{X}(j_x^r\gamma):=(X^s\gamma)(x),$$

 $\gamma: M \to \mathbb{R}, x \in M, \gamma(x) = 0$, where $X^s = X \circ \ldots \circ X$ (s times). Then for every $s = 1, \ldots, r$ we have the 1-form dX on $T^{r*}M$. The correspondence $A^{(s)}: T_{|\mathcal{M}f_n} \rightsquigarrow T^*T^{r*}, X \mapsto dX$, is a natural operator.

EXAMPLE 2. Let X be a vector field on an *n*-manifold M. For every $s = 1, \ldots, r$ we have the 1-form $\overset{\langle s \rangle}{X} : TT^{r*}M \to \mathbb{R}$ on $T^{r*}M$,

$$\overset{(s)}{X}(v) = \langle d_x(X^{s-1}\gamma), T\pi(v) \rangle, \quad v \in (TT^{r*})_x M,$$

 $x \in M, \gamma : M \to \mathbb{R}, \gamma(x) = 0, p^T(v) = j_x^r \gamma, p^T : TT^{r*}M \to T^{r*}M$ is the tangent bundle projection. The correspondence $\overset{\langle s \rangle}{A} : T_{|\mathcal{M}f_n} \rightsquigarrow T^*T^{r*}, X \mapsto \overset{\langle s \rangle}{X}$, is a natural operator.

1.3. The $\mathcal{C}^{\infty}(\mathbb{R}^r)$ -module of natural operators $T_{|\mathcal{M}f_n} \rightsquigarrow T^*T^{r*}$. The set of all natural operators $T_{|\mathcal{M}f_n} \rightsquigarrow T^*T^{r*}$ is a module over the algebra $\mathcal{C}^{\infty}(\mathbb{R}^r)$. Indeed, if $f \in \mathcal{C}^{\infty}(\mathbb{R}^r)$ and $A: T_{|\mathcal{M}f_n} \rightsquigarrow T^*T^{r*}$ is a natural operator, then $fA: T_{|\mathcal{M}f_n} \rightsquigarrow T^*T^{r*}$ is given by $(fA)(X) = f(X, \ldots, X)A(X), X \in \mathcal{X}(M), M \in \mathrm{Obj}(\mathcal{M}f_n).$

1.4. The classification theorem. The first main result of this paper is the following classification theorem.

THEOREM 1. For a natural number $n \geq 2$ the $\mathcal{C}^{\infty}(\mathbb{R}^r)$ -module of all natural operators $T_{|\mathcal{M}f_n} \rightsquigarrow T^*T^{r*}$ is free and 2r-dimensional. The natural operators A and A for $s = 1, \ldots, r$ form a basis of this module over

ral operators A and A for s = 1, ..., r form a basis of this module over $\mathcal{C}^{\infty}(\mathbb{R}^r)$.

The proof of Theorem 1 will occupy the rest of this subsection.

Consider a natural operator $A : T_{|\mathcal{M}f_n} \rightsquigarrow T^*T^{r*}$. Since $\stackrel{(1)}{A}, \ldots, \stackrel{(r)}{A}, \stackrel{(1)}{A}, \ldots, A$ are $\mathcal{C}^{\infty}(\mathbb{R}^r)$ -linearly independent, we need only prove that A is their linear combination with $\mathcal{C}^{\infty}(\mathbb{R}^r)$ -coefficients.

The following lemma shows that A is uniquely determined by the restriction $A(\partial_1)|(TT^{r*})_0\mathbb{R}^n$.

LEMMA 1. If $A(\partial_1)|(TT^{r*})_0\mathbb{R}^n = 0$, then A = 0.

Proof. The proof is standard. We use the naturality of A and the fact that any non-vanishing vector field is locally ∂_1 .

So, we will study the restriction $A(\partial_1)|(TT^{r*})_0\mathbb{R}^n$.

LEMMA 2. There are $f_1, \ldots, f_r \in \mathcal{C}^{\infty}(\mathbb{R}^r)$ with

$$\left(A - \sum_{s=1}^{r} f_s \overset{(s)}{A}\right) (\partial_1) \left| (VT^{r*})_0 \mathbb{R}^n = 0,\right.$$

where $VT^{r*}M \subset TT^{r*}M$ denotes the π -vertical subbundle.

Proof. We have the usual identification $(VT^{r*})_0 \mathbb{R}^n \cong T_0^{r*} \mathbb{R}^n \times T_0^{r*} \mathbb{R}^n$, $\frac{d}{dt}|_{t=0}(u+tw) \cong (u,w), u, w \in T_0^{r*} \mathbb{R}^n$. For $s = 1, \ldots, r$ we define $f_s : \mathbb{R}^r \to \mathbb{R}$ by

$$f_s(a) = A(\partial_1) \left(j_0^r \left(\sum_{l=1}^r \frac{1}{l!} a_l(x^1)^l \right), j_0^r \left(\frac{1}{s!} (x^1)^s \right) \right),$$

 $a = (a_1, \ldots, a_r) \in \mathbb{R}^r$. We prove that the f_s are as required.

For simplicity set $\widetilde{A} := A - \sum_{s=1}^{r} f_s A^{(s)}$. Consider $\gamma, \eta : \mathbb{R}^r \to \mathbb{R}$ with $\gamma(0) = \eta(0) = 0$. Define $a = (a_1, \dots, a_r) \in \mathbb{R}^r$ and $b = (b_1, \dots, b_r) \in \mathbb{R}^r$ by

$$j_0^r(\gamma(x^1, 0, \dots, 0)) = j_0^r \Big(\sum_{l=1}^r \frac{1}{l!} a_l(x^1)^l\Big),$$

$$j_0^r(\eta(x^1, 0, \dots, 0)) = j_0^r \Big(\sum_{l=1}^r \frac{1}{l!} b_l(x^1)^l\Big).$$

Using the naturality of \widetilde{A} with respect to the homotheties $(x^1, tx^2, \ldots, tx^n)$ for $t \neq 0$ and putting $t \to 0$ we get

$$\widetilde{A}(\partial_1)(j_0^r\gamma, j_0^r\eta) = \widetilde{A}(\partial_1)(j_0^r(\gamma(x^1, 0, \dots, 0)), j_0^r(\eta(x^1, 0, \dots, 0))).$$

Then $\widetilde{A}(\partial_1)(j_0^r\gamma, j_0^r\eta) = \sum_{s=1}^r b_s f_s(a) - \sum_{s=1}^r f_s(a)b_s = 0.$

Proof of Theorem 1. Replacing A by $A - \sum_{s=1}^{r} f_s \overset{(s)}{A}$ we can assume that $A(\partial_1)|(VT^{r*})_0 \mathbb{R}^n = 0$. It remains to show that there exist $g_1, \ldots, g_r \in$

 $\mathcal{C}^{\infty}(\mathbb{R}^r)$ with

$$A = \sum_{s=1}^{r} g_s \overset{\langle s \rangle}{A}.$$

For $s = 1, \ldots, r$ define $g_s : \mathbb{R}^r \to \mathbb{R}$,

$$g_s(a) = A(\partial_1) \left(T^{r*} \partial_2 \left(j_0^r \left(\sum_{l=1}^r \frac{1}{l!} a_l(x^1)^l + \frac{1}{(s-1)!} (x^1)^{s-1} x^2 \right) \right) \right),$$

 $a = (a_1, \ldots, a_r) \in \mathbb{R}^r$, where $T^{r*}X$ denotes the complete lifting of a vector field $X \in \mathcal{X}(M)$ to $T^{r*}M$. We prove that the g_s are as required.

By Lemma 1 and $A(\partial_1)|(VT^{r*})_0\mathbb{R}^n = 0$ it is sufficient to show

$$A(\partial_1)(T^{r*}\partial(j_0^r\gamma)) = \left(\sum_{s=1}^r g_s \overset{\langle s \rangle}{A}\right)(\partial_1)(T^{r*}\partial(j_0^r\gamma))$$

for any $\gamma : \mathbb{R}^n \to \mathbb{R}$, $\gamma(0) = 0$ and any constant vector field ∂ on \mathbb{R}^n such that ∂_1 and ∂ are linearly independent. Using the naturality of A and $\sum_{s=1}^r g_s \overset{\diamond}{A}$ with respect to linear isomorphisms $\mathbb{R}^n \to \mathbb{R}^n$ preserving ∂_1 we can assume

with respect to initial isomorphisms $\mathbb{R}^{(s)} = \partial_2$. For simplicity set $\widetilde{A} = \sum_{s=1}^r g_s A$. Consider $\gamma : \mathbb{R}^n \to \mathbb{R}, \ \gamma(0) = 0$. Define $a = (a_1, \dots, a_r) \in \mathbb{R}^r$ by $a_s = \partial_1^s \gamma(0)$ and $b_s = (\partial_2 \partial_1^{s-1} \gamma)(0)$ for $s = 1, \dots, r$. Using the naturality of A with respect to the homotheties $(x^1, tx^2, \tau x^3 \dots, \tau x^n)$ for $t, \tau \neq 0$ we get the homogeneity condition

$$tA(\partial_1)(T^{r*}\partial_2(j_0^r\gamma(x^1,x^2,\ldots,x^n)))$$

= $A(\partial_1)(T^{r*}\partial_2(j_0^r\gamma(x^1,tx^2,\tau x^3,\ldots,\tau x^n))).$

This type of homogeneity gives $A(\partial_1)(T^{r*}\partial_2(j_0^r\gamma)) = \sum_{s=1}^r g_s(a)b_s$ by the homogeneous function theorem [4]. On the other hand $A(\partial_1)(T^{r*}\partial_2(j_0^r\gamma)) =$ $\sum_{s=1}^{r} g_s(a) b_s$. Then

$$A(\partial_1)(T^{r*}\partial(j_0^r\gamma)) = \Big(\sum_{s=1}^r g_s \overset{\langle s \rangle}{A}\Big)(\partial_1)(T^{r*}\partial(j_0^r\gamma)).$$

So, $A = \sum_{s=1}^{r} g_s \overset{s}{A}$.

1.5. Corollaries. Using the homogeneous function theorem, we have the following corollary of Theorem 1.

COROLLARY 1. Let $n \geq 2$ be a natural number.

(i) If $r \geq 2$, then for every linear natural operator $A: T_{|\mathcal{M}f_n} \rightsquigarrow T^*T^{**}$ there exist real numbers α, β, γ such that

$$A = \alpha \overset{(1)}{A} + \beta \operatorname{pr}_1 \overset{\langle 1 \rangle}{A} + \gamma \overset{\langle 2 \rangle}{A},$$

where $\operatorname{pr}_1 \in \mathcal{C}^{\infty}(\mathbb{R}^r)$ is the projection $\mathbb{R}^r \to \mathbb{R}$ on the first factor.

(ii) If r = 1, then for every linear natural operator $A: T_{|\mathcal{M}f_n} \rightsquigarrow T^*T^{1*}$ there exist real numbers α, β such that

$$A = \alpha \overset{(1)}{A} + \beta \operatorname{id}_{\mathbb{R}} \overset{\langle 1 \rangle}{A},$$

where $id_{\mathbb{R}} \in \mathcal{C}^{\infty}(\mathbb{R})$ is the identity map.

The operator $\stackrel{\langle 1 \rangle}{A}$ can be considered as the well-known canonical 1-form λ^r on T^{r*} , the pull-back $(\pi_1^r)^*\lambda$ of the Liouville 1-form λ on $T^* \cong T^{1*}$ with respect to the jet projection $\pi_1^r : T^{r*} \to T^{1*}$. Considering the values of natural operators $T_{|\mathcal{M}f_n} \rightsquigarrow T^*T^{r*}$ at X = 0 we obtain another corollary of Theorem 1. (For r = 1 we recover the result of [1].)

COROLLARY 2. For a natural number $n \ge 2$ every canonical 1-form on T^{r*} is a constant multiple of λ^r .

On T^*M we have the canonical Liouville 1-form λ and the canonical symplectic 2-form $\omega = d\lambda$. Under the natural equivalence $T^{1*}M \cong T^*M$ we have $\lambda = A$, $A(X) = i_{T^*X}\omega$, the inner differentiation, and $X(j_x^1\gamma) = \langle d_x\gamma, X_x\rangle$, $X \in \mathcal{X}(M)$, $x \in M$, $\gamma : M \to \mathbb{R}$, $\gamma(x) = 0$, where T^*X denotes the complete lifting of X to T^*M . Thus we have one more corollary of Theorem 1.

COROLLARY 3. Let $A: T_{|\mathcal{M}f_n} \to T^*T^*$ be a natural operator $(n \ge 2)$. Then there exist maps $f, g: \mathbb{R} \to \mathbb{R}$ such that

$$A(X)_{\eta} = f(\langle \eta, X_x \rangle) \lambda_{\eta} + g(\langle \eta, X_x \rangle) (i_{T^*X} \omega)_{\eta},$$

where M is an n-manifold, $X \in \mathcal{X}(M), x \in M, \eta \in T_x^*M$.

2. The natural operators $T_{|\mathcal{M}f_n} \rightsquigarrow \Lambda^2 T^* T^{r*}$

2.1. Examples of natural operators $T_{|\mathcal{M}f_n} \rightsquigarrow \Lambda^2 T^* T^{r*}$

EXAMPLE 3. Let X be a vector field on an *n*-manifold M. For every $s_1, s_2 = 1, \ldots, r$ with $s_1 < s_2$ we have the 2-form $\stackrel{(s_1)}{A}(X) \wedge \stackrel{(s_2)}{A}(X)$ on $T^{r*}M$. The correspondence $\stackrel{(s_1)}{A} \wedge \stackrel{(s_2)}{A} : T_{|\mathcal{M}f_n} \rightsquigarrow \Lambda^2 T^* T^{r*}, X \mapsto \stackrel{(s_1)}{A}(X) \wedge \stackrel{(s_2)}{A}(X)$, is a natural operator.

EXAMPLE 4. Let X be a vector field on an n-manifold M. For every $s_1, s_2 = 1, \ldots, r$ we have the 2-form $\stackrel{(s_1)}{A}(X) \wedge \stackrel{\langle s_2 \rangle}{A}(X)$ on $T^{r*}M$. The correspondence $\stackrel{(s_1)}{A} \wedge \stackrel{\langle s_2 \rangle}{A} : T_{|\mathcal{M}f_n} \rightsquigarrow \Lambda^2 T^* T^{r*}, X \mapsto \stackrel{(s_1)}{A}(X) \wedge \stackrel{\langle s_2 \rangle}{A}(X)$, is a natural operator.

EXAMPLE 5. Let X be a vector field on an *n*-manifold M. For every $s_1, s_2 = 1, \ldots, r$ with $s_1 < s_2$ we have the 2-form $\stackrel{\langle s_1 \rangle}{A}(X) \wedge \stackrel{\langle s_2 \rangle}{A}(X)$ on $T^{r*}M$.

The correspondence $\stackrel{\langle s_1 \rangle}{A} \wedge \stackrel{\langle s_2 \rangle}{A} : T_{|\mathcal{M}f_n} \rightsquigarrow \Lambda^2 T^* T^{r*}, X \mapsto \stackrel{\langle s_1 \rangle}{A} (X) \wedge \stackrel{\langle s_2 \rangle}{A} (X),$ is a natural operator.

EXAMPLE 6. Let X be a vector field on an *n*-manifold M. For every $s = 1, \ldots, r$ we have the 2-form $d(\overset{\langle s \rangle}{A}(X))$ on $T^{r*}M$. The correspondence $\overset{\langle s \rangle}{dA}: T_{|\mathcal{M}f_n} \rightsquigarrow \Lambda^2 T^* T^{r*}, X \mapsto d(\overset{\langle s \rangle}{A}(X))$, is a natural operator.

2.2. The classification theorem. As in Subsection 1.3 the set of all natural operators $T_{|\mathcal{M}f_n} \rightsquigarrow \Lambda^2 T^* T^{r*}$ is a module over the algebra $\mathcal{C}^{\infty}(\mathbb{R}^r)$.

The second main result of this paper is the following classification theorem.

THEOREM 2. For a natural number $n \geq 3$ the $C^{\infty}(\mathbb{R}^r)$ -module of all natural operators $T_{|\mathcal{M}f_n} \rightsquigarrow \Lambda^2 T^* T^{r*}$ is free and $2r^2$ -dimensional. The collection of natural operators of Examples 3–6 (i.e. the collection consisting of $\begin{pmatrix} s_1 \\ A \land A \end{pmatrix}$ for $s_1, s_2 = 1, \ldots, r$ with $s_1 < s_2$ and $\begin{pmatrix} s_1 \\ A \land A \end{pmatrix}$ for $s_1, s_2 = 1, \ldots, r$ with $s_1 < s_2$ and $\begin{pmatrix} A \land A \\ A \end{pmatrix}$ for $s_1, s_2 = 1, \ldots, r$ and $A \land A \end{pmatrix}$ for $s_1, s_2 = 1, \ldots, r$ with $s_1 < s_2$ and $dA \land for s = 1, \ldots, r$) is a basis of this module over $C^{\infty}(\mathbb{R}^r)$.

The proof of Theorem 2 will occupy the rest of this subsection.

Consider a natural operator $B: T_{|\mathcal{M}f_n} \rightsquigarrow \Lambda^2 T^* T^{r*}$. Since the collection of natural operators listed in the statement of the theorem is $\mathcal{C}^{\infty}(\mathbb{R}^r)$ -linearly independent, we need only prove that B is their linear combination with $\mathcal{C}^{\infty}(\mathbb{R}^r)$ -coefficients.

The following lemma shows that B is uniquely determined by the restriction $B(\partial_1)|(TT^{r*}\mathbb{R}^n \times_{T^{r*}\mathbb{R}^n} TT^{r*}\mathbb{R}^n)_0$.

LEMMA 3. If $B(\partial_1)|(TT^{r*}\mathbb{R}^n \times_{T^{r*}\mathbb{R}^n} TT^{r*}\mathbb{R}^n)_0 = 0$, then B = 0.

Proof. The proof is similar to the proof of Lemma 1.

So, we will study the restriction $B(\partial_1)|(TT^{r*}\mathbb{R}^n \times_{T^{r*}\mathbb{R}^n} TT^{r*}\mathbb{R}^n)_0$.

LEMMA 4. There are $f_{(s_1,s_2)} \in \mathcal{C}^{\infty}(\mathbb{R}^r)$ for $s_1, s_2 = 1, \ldots, r$ with $s_1 < s_2$ such that

$$\left(B - \sum_{1 \le s_1 < s_2 \le r} f_{(s_1, s_2)} \stackrel{(s_1)}{A} \wedge \stackrel{(s_2)}{A}\right) (\partial_1) \left| (VT^{r*} \mathbb{R}^n \times_{T^{r*} \mathbb{R}^n} VT^{r*} \mathbb{R}^n)_0 = 0.$$

Proof. The proof is similar to the one of Lemma 2. We have the identification

 $(VT^{r*}\mathbb{R}^n \times_{T^{r*}\mathbb{R}^n} VT^{r*}\mathbb{R}^n)_0 \cong T_0^{r*}\mathbb{R}^n \times T_0^{r*}\mathbb{R}^n \times T_0^{r*}\mathbb{R}^n,$

 $\left(\frac{d}{dt}\Big|_{t=0}(u+tv), \frac{d}{dt}\Big|_{t=0}(u+tw)\right) \cong (u, v, w), \ u, v, w \in T_0^{r*}\mathbb{R}^n. \text{ For } s_1, s_2 = 1, \ldots, r \text{ with } s_1 < s_2 \text{ we define } f_{(s_1, s_2)} : \mathbb{R}^r \to \mathbb{R} \text{ by}$

$$f_{(s_1,s_2)}(a) = B(\partial_1) \left(j_0^r \left(\sum_{l=1}^r \frac{1}{l!} a_l(x^1)^l \right), j_0^r \left(\frac{1}{(s_1)!} (x^1)^{s_1} \right), j_0^r \left(\frac{1}{(s_2)!} (x^1)^{s_2} \right) \right),$$

 $a = (a_1, \ldots, a_r) \in \mathbb{R}^r$. We prove that the $f_{(s_1, s_2)}$ are as required.

Set $\widetilde{B} := B - \sum_{1 \leq s_1 < s_2 \leq r} f_{(s_1,s_2)} \stackrel{(s_1)}{A} \wedge \stackrel{(s_2)}{A}$. Consider $\gamma, \eta, \varrho : \mathbb{R}^n \to \mathbb{R}$ with $\gamma(0) = \eta(0) = \varrho(0) = 0$. Define $a = (a_1, \dots, a_r) \in \mathbb{R}^r$, $b = (b_1, \dots, b_r) \in \mathbb{R}^r$ and $c = (c_1, \dots, c_r) \in \mathbb{R}^r$ by

$$j_0^r(\gamma(x^1, 0, \dots, 0)) = j_0^r \left(\sum_{l=1}^r \frac{1}{l!} a_l(x^1)^l\right),$$

$$j_0^r(\eta(x^1, 0, \dots, 0)) = j_0^r \left(\sum_{l=1}^r \frac{1}{l!} b_l(x^1)^l\right),$$

$$j_0^r(\varrho(x^1, 0, \dots, 0)) = j_0^r \left(\sum_{l=1}^r \frac{1}{l!} c_l(x^1)^l\right).$$

Using the naturality of \widetilde{B} with respect to the homotheties $(x^1, tx^2, \ldots, tx^n)$ for $t \neq 0$ and putting $t \to 0$ we get

$$\widetilde{B}(\partial_1)(j_0^r\gamma, j_0^r\eta, j_0^r\varrho) = \widetilde{B}(\partial_1)(j_0^r(\gamma(x^1, 0, \dots, 0)), j_0^r(\eta(x^1, 0, \dots, 0)), j_0^r(\varrho(x^1, 0, \dots, 0))).$$

Consequently,

$$\widetilde{B}(\partial_1)(j_0^r\gamma, j_0^r\eta, j_0^r\varrho) = \sum_{1 \le s_1 < s_2 \le r} (b_{s_1}c_{s_2} - b_{s_2}c_{s_1})f_{(s_1, s_2)}(a) - \sum_{1 \le s_1 < s_2 \le r} f_{(s_1, s_2)}(a)(b_{s_1}c_{s_2} - b_{s_2}c_{s_1}) = 0. \blacksquare$$

So, replacing B by $B - \sum_{1 \le s_1 < s_2 \le r} f_{(s_1,s_2)} \stackrel{(s_1)}{A} \wedge \stackrel{(s_2)}{A}$ we can assume that (*) $B(\partial_1) | (VT^{r*} \mathbb{R}^n \times_{T^r* \mathbb{R}^n} VT^{r*} \mathbb{R}^n)_0 = 0.$

LEMMA 5. Under the assumption (*) there exist $g_{(s_1,s_2)} \in \mathcal{C}^{\infty}(\mathbb{R}^r)$ for $s_1, s_2 = 1, \ldots, r$ and $h_s \in \mathcal{C}^{\infty}(\mathbb{R}^r)$ for $s = 1, \ldots, r$ such that

$$\Big(B - \sum_{s_1, s_2=1}^r g_{(s_1, s_2)} \overset{(s_1)}{A} \overset{\langle s_2 \rangle}{A} - \sum_{s=1}^r h_s d\overset{\langle s \rangle}{A}\Big) (\partial_1) \Big| (VT^{r*} \mathbb{R}^n \times_{T^{r*} \mathbb{R}^n} TT^{r*} \mathbb{R}^n)_0 = 0.$$

Proof. For $s_1, s_2 = 1, \ldots, r$ define $g_{(s_1, s_2)} : \mathbb{R}^r \to \mathbb{R}$ by

$$g_{(s_1,s_2)}(a) = B(\partial_1) \left(\left(j_0^r(\gamma_{a,s_1}), j_0^r\left(\frac{1}{(s_2)!} \left(x^1\right)^{s_2}\right) \right), T^{r*} \partial_2(j_0^r(\gamma_{a,s_1})) \right),$$

 $a = (a_1, \ldots, a_r) \in \mathbb{R}^r$, where

$$\gamma_{a,s_1} = \sum_{l=1}^r \frac{1}{l!} a_l (x^1)^l + \frac{1}{(s_1 - 1)!} (x^1)^{s_1 - 1} x^2.$$

For $s = 1, \ldots, r$ define $h_s : \mathbb{R}^r \to \mathbb{R}$ by

$$h_s(a) = B(\partial_1) \left(\left(j_0^r(\gamma_a), j_0^r \left(\frac{1}{(s-1)!} \, (x^1)^{s-1} x^2 \right) \right), T^{r*} \partial_2(j_0^r(\gamma_a)) \right),$$

 $a = (a_1, \ldots, a_r) \in \mathbb{R}^r$, where $\gamma_a = \sum_{l=1}^r (1/l!)a_l(x^1)^l$. We prove that the $g_{(s_1, s_2)}$ and h_s are as required.

Set

$$\widetilde{B} = B - \sum_{s_1, s_2 = 1}^r g_{(s_1, s_2)} \overset{(s_1)}{A} \wedge \overset{\langle s_2 \rangle}{A} - \sum_{s=1}^r h_s d\overset{\langle s \rangle}{A}.$$

By (*), $\widetilde{B}(\partial_1)|(VT^{r*}\mathbb{R}^n \times_{T^{r*}\mathbb{R}^n} VT^{r*}\mathbb{R}^n)_0 = 0$. So, it remains to show that $\widetilde{B}(\partial_1)((j_0^r\gamma, j_0^r\eta), T^{r*}\partial(j_0^r\gamma)) = 0$ for any $\gamma, \eta : \mathbb{R}^n \to \mathbb{R}$ with $\gamma(0) = \eta(0) = 0$ and any constant vector field ∂ on \mathbb{R}^n . Using the naturality of \widetilde{B} with respect to the linear isomorphisms $\mathbb{R}^n \to \mathbb{R}^n$ preserving ∂_1 , we can assume that $\partial = \partial_2$.

Consider $\gamma, \eta : \mathbb{R}^n \to \mathbb{R}$ as above. Define $a_l = \partial_1^l \gamma(0), \ b_l = \partial_1^l \eta(0), \ c_l = \partial_2 \partial_1^{l-1} \gamma(0)$ and $d_l = \partial_2 \partial_1^{l-1} \eta(0)$ for $l = 1, \ldots, r$. Let $a := (a_1, \ldots, a_r) \in \mathbb{R}^k$. Using the naturality of \widetilde{B} with respect to the homotheties $a_{t,\tau} = (x^1, tx^2, \tau x^3, \ldots, \tau x^n)$ for $t, \tau \neq 0$ we obtain the homogeneity condition

$$tB(\partial_1)((j_0^r\gamma, j_0^r\eta), T^{r*}\partial_2(j_0^r\gamma)) = \widetilde{B}(\partial_1)((j_0^r(\gamma \circ a_{t,\tau}), j_0^r(\eta \circ a_{t,\tau})), T^{r*}\partial_2(j_0^r(\gamma \circ a_{t,\tau}))).$$

This implies

$$\widetilde{B}(\partial_1)((j_0^r\gamma, j_0^r\eta), T^{r*}\partial_2(j_0^r\gamma)) = \sum_{s_1, s_2=1}^r c_{s_1}b_{s_2}g_{(s_1, s_2)}(a) + \sum_{s=1}^r d_sh_s(a) - \sum_{s_1, s_2=1}^r g_{(s_1, s_2)}(a)c_{s_1}b_{s_2} - \sum_{s=1}^r h_s(a)d_s$$
$$= 0$$

by the homogeneous function theorem. \blacksquare

Replacing B by $B - \sum_{s_1,s_2=1}^r g_{(s_1,s_2)} \stackrel{(s_1)}{A} \wedge \stackrel{(s_2)}{A} - \sum_{s=1}^r h_s d \stackrel{\langle s \rangle}{A}$ we can assume that

$$(**) B(\partial_1)|(VT^{r*}\mathbb{R}^n \times_{T^{r*}\mathbb{R}^n} TT^{r*}\mathbb{R}^n)_0 = 0.$$

Proof of Theorem 2. For $s_1, s_2 = 1, \ldots, r$ with $s_1 < s_2$ define $F_{(s_1, s_2)}$: $\mathbb{R}^r \to \mathbb{R}$ by

$$F_{(s_1,s_2)}(a) = B(\partial_1)(T^{r*}\partial_2(j_0^r(\gamma_{a,s_1,s_2})), T^{r*}\partial_3(j_0^r(\gamma_{a,s_1,s_2})))$$

 $a = (a_1, \ldots, a_r) \in \mathbb{R}^r$, where

$$\gamma_{a,s_1,s_2} = \sum_{l=1}^r \frac{1}{l!} a_l (x^1)^l + \frac{1}{(s_1 - 1)!} (x^1)^{s_1 - 1} x^2 + \frac{1}{(s_2 - 1)!} (x^1)^{s_2 - 1} x^3.$$

Using (**) we show that $B = \sum_{1 \le s_1 < s_2 \le r} F_{(s_1,s_2)} \stackrel{\langle s_1 \rangle}{A} \stackrel{\langle s_2 \rangle}{A}$. (Then the proof will be complete.) For simplicity denote the last right-hand side by \widetilde{B} .

First for $k = 2, \ldots, r$ define $G_k : \mathbb{R}^r \to \mathbb{R}$ by

$$G_k(a) = B(\partial_1)(T^{r*}\partial_2(j_0^r(\gamma_{\langle a,k\rangle})), T^{r*}\partial_3(j_0^r(\gamma_{\langle a,k\rangle}))),$$

 $a = (a_1, \ldots, a_r) \in \mathbb{R}^r$, where

$$\gamma_{\langle a,k\rangle} = \sum_{l=1}^{r} \frac{1}{l!} a_l(x^1)^l + \frac{1}{(k-2)!} (x^1)^{k-2} x^2 x^3.$$

By the invariance of $B(\partial_1)$ with respect to the diffeomorphism replacing x^2 by x^3 and x^3 by x^2 and preserving the other coordinates we see that $G_k = -G_k$, i.e. $G_k = 0$ for $k = 2, \ldots, r$.

By Lemma 3 and (**) to prove $B = \tilde{B}$ it is sufficient to show that

$$(***) \qquad B(\partial_1)(T^{r*}\partial(j_0^r\gamma), T^{r*}\widetilde{\partial}(j_0^r\gamma)) = \widetilde{B}(\partial_1)(T^{r*}\partial(j_0^r\gamma), T^{r*}\widetilde{\partial}(j_0^r\gamma))$$

for any $\gamma : \mathbb{R}^n \to \mathbb{R}$ with $\gamma(0) = 0$ and any constant vector fields ∂ and $\overline{\partial}$ on \mathbb{R}^n such that ∂_1 , ∂ and $\overline{\partial}$ are linearly independent. Using the naturality of B and \widetilde{B} with respect to linear isomorphisms $\mathbb{R}^n \to \mathbb{R}^n$ preserving ∂_1 we can assume $\partial = \partial_2$ and $\widetilde{\partial} = \partial_3$.

Consider $\gamma : \mathbb{R}^n \to \mathbb{R}$, $\gamma(0) = 0$. Define $a_l = \partial_1^l \gamma(0)$, $b_l = \partial_2 \partial_1^{l-1} \gamma(0)$ and $c_l = \partial_3 \partial_1^{l-1} \gamma(0)$ for $l = 1, \ldots, r$. Define also $d_k = \partial_2 \partial_3 \partial^{k-2} \gamma(0)$ for $k = 2, \ldots, r$. Set $a := (a_1, \ldots, a_r) \in \mathbb{R}^r$. Using the naturality of B with respect to the homotheties $a_{t_1, t_2, \tau} = (x^1, t_1 x^2, t_2 x^3, \tau x^4, \ldots, \tau x^n)$ for $t_1, t_2, \tau \neq 0$ we get the homogeneity condition

$$t_{1}t_{2}B(\partial_{1})(T^{r*}\partial_{2}(j_{0}^{r}\gamma), T^{r*}\partial_{3}(j_{0}^{r}\gamma)) = B(\partial_{1})(T^{r*}\partial_{2}(j_{0}^{r}(\gamma \circ a_{t_{1},t_{2},\tau})), T^{r*}\partial_{3}(j_{0}^{r}\gamma \circ a_{t_{1},t_{2},\tau}))).$$

This type of homogeneity gives

$$B(\partial_1)(T^{r*}\partial_2(j_0^r\gamma), T^{r*}\partial_3(j_0^r\gamma)) = \sum_{1 \le s_1 < s_2 \le r} F_{(s_1, s_2)}(a)(b_{s_1}c_{s_2} - b_{s_2}c_{s_1}) + \sum_{k=2}^r G_k(a)d_k$$

by the homogeneous function theorem. Then

$$B(\partial_1)(T^{r*}\partial_2(j_0^r\gamma), T^{r*}\partial_3(j_0^r\gamma)) = \sum_{1 \le s_1 < s_2 \le r} F_{(s_1, s_2)}(a)(b_{s_1}c_{s_2} - b_{s_2}c_{s_1})$$

because $G_k = 0$ for k = 2, ..., r. On the other hand

$$\widetilde{B}(\partial_1)(T^{r*}\partial_2(j_0^r\gamma), T^{r*}\partial_3(j_0^r\gamma)) = \sum_{1 \le s_1 < s_2 \le r} F_{(s_1, s_2)}(a)(b_{s_1}c_{s_2} - b_{s_2}c_{s_1}).$$

Thus we have (***). The proof of Theorem 2 is complete.

2.3. Corollaries. Using the homogeneous function theorem, we obtain the following corollary of Theorem 2.

COROLLARY 4. Let $n \geq 3$ be a natural number.

(i) If $r \geq 2$, then for every linear natural operator $A : T_{|\mathcal{M}f_n} \rightsquigarrow \Lambda^2 T^* T^{r*}$ there exist real numbers $\alpha, \beta, \gamma, \delta$ such that

$$A = \alpha \overset{(1)}{A} \wedge \overset{(1)}{A} + \beta \overset{(1)}{A} \wedge \overset{(2)}{A} + \gamma \operatorname{pr}_{1} \overset{(1)}{dA} + \delta \overset{(2)}{A},$$

where $\operatorname{pr}_1 \in \mathcal{C}^{\infty}(\mathbb{R}^r)$ is the projection $\mathbb{R}^r \to \mathbb{R}$ on the first factor.

(ii) If r = 1, then for every linear natural operator $A: T_{|\mathcal{M}f_n} \rightsquigarrow T^*T^{1*}$ there exist real numbers α, β such that

$$A = \alpha \overset{(1)}{A} \wedge \overset{\langle 1 \rangle}{A} + \beta \operatorname{id}_{\mathbb{R}} d \overset{\langle 1 \rangle}{A},$$

where $id_{\mathbb{R}} \in \mathcal{C}^{\infty}(\mathbb{R})$ is the identity map on \mathbb{R} .

Considering the values of natural operators $T_{|\mathcal{M}f_n} \rightsquigarrow \Lambda^2 T^* T^{r*}$ at X = 0 we obtain

COROLLARY 5. For a natural number $n \geq 3$ every canonical 2-form on T^{r*} is a constant multiple of $d\lambda^r$, where λ^r is as in Corollary 2.

For r = 1 we deduce from Theorem 2 the following result.

COROLLARY 6. Let $B: T_{|\mathcal{M}f_n} \rightsquigarrow \Lambda^2 T^*T^*$ be a natural operator $(n \geq 3)$. Then there exist maps $f, g: \mathbb{R} \to \mathbb{R}$ such that

$$B(X)_{\eta} = f(\langle \eta, X_x \rangle)(\lambda \wedge i_{T^*X}\omega)_{\eta} + g(\langle \eta, X_x \rangle)\omega_{\eta}$$

where M is an n-manifold, $X \in \mathcal{X}(M)$, $x \in M$, $\eta \in T_x^*M$. Here λ and ω are as in Corollary 3.

3. Remark. What about natural operators $A : T_{|Mf_n} \rightsquigarrow T^*T^{(r)}$ and $B : T_{|Mf_n} \rightsquigarrow \Lambda^2 T^*T^{(r)}$, where $T^{(r)}M = (T^{r*}M)^*$ is the linear *r*-tangent bundle? It turns out that A = 0 and B = 0, as follows from the following general fact.

THEOREM 3. If $F : \mathcal{M}f \to \mathcal{F}\mathcal{M}$ is a bundle functor with the point property, then every natural operator $A : T_{|\mathcal{M}f_n} \rightsquigarrow \Lambda^p T^*F$ for $n \ge 2$ and $p \ge 1$ is 0.

Proof. We have $A: T_{|\mathcal{M}f_n} \rightsquigarrow T^{(0,0)}\widetilde{F}$, where $\widetilde{F} = \Lambda^p TF: \mathcal{M}f \to \mathcal{F}\mathcal{M}$. Of course, \widetilde{F} has the point property. So, by the result of [10], $A = \text{const} \in \mathbb{R}$. Since A is fibre linear, A = 0.

REFERENCES

- M. Doupovec and J. Kurek, Liftings of tensor fields to the cotangent bundle, in: Differential Geom. and Appl. (Brno, 1995), Masaryk Univ., Brno, 1996, 141–150.
- [2] —, —, Some geometrical constructions with (0,2)-tensor fields on higher order cotangent bundles, Ann. Univ. Mariae Curie-Skłodowska 50 (1996), 43–50.
- [3] —, —, Torsions of connections on higher order cotangent bundles, ibid. 55 (2001), 15–22.
- I. Kolář, P. W. Michor and J. Slovák, Natural Operations in Differential Geometry, Springer, Berlin, 1993.
- J. Kurek, Natural affinors on higher order cotangent bundle functor, Arch. Math. (Brno) (28) (1992), 175–180.
- [6] —, Natural transformations of higher order cotangent bundle functors, Ann. Polon. Math. 58 (1993), 29–35.
- [7] M. Kureš, Connections and torsions on TT*M, Ann. Univ. Mariae Curie-Skłodowska 55 (2001), 89–101.
- W. M. Mikulski, Some natural constructions on vector fields and higher order cotangent bundles, Monatsh. Math. 117 (1994), 107–119.
- [9] —, Natural functions on $T^*T^{(r)}$ and T^*T^{r*} , Arch. Math. (Brno) 31 (1995), 1–7.
- [10] —, Natural transformations transforming functions and vector fields to functions on some natural bundles, Math. Bohemica 117 (1992), 217–223.
- [11] K. Yano and S. Ishihara, Tangent and Cotangent Bundles, Dekker, New York, 1973.

Institute of Mathematics Jagiellonian University Reymonta 4 30-059 Kraków, Poland E-mail: mikulski@im.uj.edu.pl

Received 21 August 2001

(4099)