COLLOQUIUM MATHEMATICUM

THE NATURAL OPERATORS $T_{\mid \mathcal{M} f_{n}} \rightsquigarrow T^{*} T^{r *}$ $A N D T_{\mid \mathcal{M} f_{n}} \rightsquigarrow \Lambda^{2} T^{*} T^{r *}$
 BY
 W. M. MIKULSKI (Kraków)

Abstract

Let r and n be natural numbers. For $n \geq 2$ all natural operators $T_{\mid \mathcal{M} f_{n}} \rightsquigarrow$ $T^{*} T^{r *}$ transforming vector fields on n-manifolds M to 1-forms on $T^{r *} M=J^{r}(M, \mathbb{R})_{0}$ are classified. For $n \geq 3$ all natural operators $T_{\mid \mathcal{M} f_{n}} \rightsquigarrow \Lambda^{2} T^{*} T^{r *}$ transforming vector fields on n-manifolds M to 2-forms on $T^{r *} M$ are completely described.

0. Introduction. Let n and r be natural numbers. In this paper we study the problem how a vector field X on a n-dimensional manifold M can induce a 1-form $A(X)$ and a 2-form $B(X)$ on the r-cotangent bundle $T^{r *} M=J^{r}(M, \mathbb{R})_{0}$ of M. This problem is reflected in the concept of natural operators $A: T_{\mid \mathcal{M} f_{n}} \rightsquigarrow T^{*} T^{r *}$ and $B: T_{\mid \mathcal{M} f_{n}} \rightsquigarrow \Lambda^{2} T^{*} T^{r *}$ in the sense of Kolář, Michor and Slovák [4].

The first main result of this paper is that for $n \geq 2$ the set of all natural operators $A: T_{\mid \mathcal{M} f_{n}} \rightsquigarrow T^{*} T^{r *}$ is a free $2 r$-dimensional $\mathcal{C}^{\infty}\left(\mathbb{R}^{r}\right)$-module, and we construct explicitly a basis of this module.

The second main result is that for $n \geq 3$ the set of all natural operators $B: T_{\mid \mathcal{M} f_{n}} \rightsquigarrow \Lambda^{2} T^{*} T^{r *}$ is a free $2 r^{2}$-dimensional $\mathcal{C}^{\infty}\left(\mathbb{R}^{r}\right)$-module, and we also construct explicitly a basis of this module.

Some natural operators transforming functions, vector fields, forms (etc.) on some natural bundles F are used practically in all papers in which the problem of prolongation of geometric structures is considered. That is why such natural operators are studied. For $F=T^{r *}$ such natural operators are studied or classified in [2], [3], [5], [6], [8], [9], and for $F=T^{1 *}=T^{*}$ in [1], [7], [11].

From now on x^{1}, \ldots, x^{n} denote the usual coordinates on \mathbb{R}^{n}, and $\partial_{i}=$ $\partial / \partial x^{i}$ for $i=1, \ldots, n$ are the canonical vector fields on \mathbb{R}^{n}.

All manifolds are assumed to be finite-dimensional and smooth, i.e. of class \mathcal{C}^{∞}. Maps between manifolds are assumed to be smooth.

[^0]
1. The natural operators $T_{\mid \mathcal{M} f_{n}} \rightsquigarrow T^{*} T^{r *}$

1.1. The r-cotangent bundle $T^{r *}$. For every n-dimensional manifold M we have the vector bundle $T^{r *} M=J^{r}(M, \mathbb{R})_{0}$ over M with respect to the source projection $\pi: T^{r *} M \rightarrow M$. It is called the r-cotangent bundle of M. Every embedding $\varphi: M \rightarrow N$ of n-manifolds induces a vector bundle map $T^{r *} \varphi: T^{r *} M \rightarrow T^{r *} N, T^{r *} \varphi\left(j_{x}^{r} \gamma\right)=j_{\varphi(x)}^{r}\left(\gamma \circ \varphi^{-1}\right), \gamma: M \rightarrow \mathbb{R}, x \in M$, $\gamma(x)=0$. The correspondence $T^{r *}: \mathcal{M} f_{n} \rightarrow \mathcal{V B}$ is a natural vector bundle over n-manifolds [4].

For $r=1$ we have the natural equivalence $T^{1 *} M \cong T^{*} M, j_{x}^{1} \gamma \cong d_{x} \gamma$.
1.2. Examples of natural operators $T_{\mathcal{M}_{n}} \rightsquigarrow T^{*} T^{r *}$

Example 1. Let X be a vector field on an n-manifold M. For every $s=1, \ldots, r$ we have the map

$$
\stackrel{(s)}{X}: T^{r *} M \rightarrow \mathbb{R}, \quad \stackrel{(s)}{X}\left(j_{x}^{r} \gamma\right):=\left(X^{s} \gamma\right)(x),
$$

$\gamma: M \rightarrow \mathbb{R}, x \in M, \gamma(x)=0$, where $X^{s}=X \circ \ldots \circ X(s$ times). Then for (s) every $s=1, \ldots, r$ we have the 1 -form $d X$ on $T^{r *} M$. The correspondence ${ }^{(s)}$ (s) $A: T_{\mid \mathcal{M} f_{n}} \rightsquigarrow T^{*} T^{r *}, X \mapsto d X$, is a natural operator.

Example 2. Let X be a vector field on an n-manifold M. For every $s=1, \ldots, r$ we have the 1 -form $\stackrel{\langle s\rangle}{X}: T T^{r *} M \rightarrow \mathbb{R}$ on $T^{r *} M$,

$$
\stackrel{\langle s\rangle}{X}(v)=\left\langle d_{x}\left(X^{s-1} \gamma\right), T \pi(v)\right\rangle, \quad v \in\left(T T^{r *}\right)_{x} M,
$$

$x \in M, \gamma: M \rightarrow \mathbb{R}, \gamma(x)=0, p^{T}(v)=j_{x}^{r} \gamma, p^{T}: T T^{r *} M \rightarrow T^{r *} M$ is the tangent bundle projection. The correspondence $\stackrel{\langle s\rangle}{A}: T_{\mid \mathcal{M} f_{n}} \rightsquigarrow T^{*} T^{r *}$, $X \mapsto \stackrel{\langle s\rangle}{X}$, is a natural operator.
1.3. The $\mathcal{C}^{\infty}\left(\mathbb{R}^{r}\right)$-module of natural operators $T_{\mid \mathcal{M} f_{n}} \rightsquigarrow T^{*} T^{r *}$. The set of all natural operators $T_{\mid \mathcal{M} f_{n}} \rightsquigarrow T^{*} T^{r *}$ is a module over the algebra $\mathcal{C}^{\infty}\left(\mathbb{R}^{r}\right)$. Indeed, if $f \in \mathcal{C}^{\infty}\left(\mathbb{R}^{r}\right)$ and $A: T_{\mid \mathcal{M} f_{n}} \rightsquigarrow T^{*} T^{r *}$ is a natural operator, then $f A: T_{\mid \mathcal{M} f_{n}} \rightsquigarrow T^{*} T^{r *}$ is given by $(f A)(X)=f(\stackrel{(1)}{X}, \ldots, \stackrel{(r)}{X}) A(X)$, $X \in \mathcal{X}(M), M \in \operatorname{Obj}\left(\mathcal{M} f_{n}\right)$.
1.4. The classification theorem. The first main result of this paper is the following classification theorem.

Theorem 1. For a natural number $n \geq 2$ the $\mathcal{C}^{\infty}\left(\mathbb{R}^{r}\right)$-module of all natural operators $T_{\mid \mathcal{M} f_{n}} \rightsquigarrow T^{*} T^{r *}$ is free and $2 r$-dimensional. The natural operators $\stackrel{(s)}{A}$ and $\stackrel{\langle s\rangle}{A}$ for $s=1, \ldots, r$ form a basis of this module over $\mathcal{C}^{\infty}\left(\mathbb{R}^{r}\right)$.

The proof of Theorem 1 will occupy the rest of this subsection.
Consider a natural operator $A: T_{\mid \mathcal{M} f_{n}} \rightsquigarrow T^{*} T^{r *}$. Since $\stackrel{(1)}{A}, \ldots, \stackrel{(r)}{A}$, $\langle 1\rangle \quad\langle r\rangle$ A, \ldots, A are $\mathcal{C}^{\infty}\left(\mathbb{R}^{r}\right)$-linearly independent, we need only prove that A is their linear combination with $\mathcal{C}^{\infty}\left(\mathbb{R}^{r}\right)$-coefficients.

The following lemma shows that A is uniquely determined by the restriction $A\left(\partial_{1}\right) \mid\left(T T^{r *}\right)_{0} \mathbb{R}^{n}$.

Lemma 1. If $A\left(\partial_{1}\right) \mid\left(T T^{r *}\right)_{0} \mathbb{R}^{n}=0$, then $A=0$.
Proof. The proof is standard. We use the naturality of A and the fact that any non-vanishing vector field is locally ∂_{1}.

So, we will study the restriction $A\left(\partial_{1}\right) \mid\left(T T^{r *}\right)_{0} \mathbb{R}^{n}$.
Lemma 2. There are $f_{1}, \ldots, f_{r} \in \mathcal{C}^{\infty}\left(\mathbb{R}^{r}\right)$ with

$$
\left(A-\sum_{s=1}^{r} f_{s}^{(s)} A\right)\left(\partial_{1}\right) \mid\left(V T^{r *}\right)_{0} \mathbb{R}^{n}=0
$$

where $V T^{r *} M \subset T T^{r *} M$ denotes the π-vertical subbundle.
Proof. We have the usual identification $\left(V T^{r *}\right)_{0} \mathbb{R}^{n} \cong T_{0}^{r *} \mathbb{R}^{n} \times T_{0}^{r *} \mathbb{R}^{n}$, $\left.\frac{d}{d t}\right|_{t=0}(u+t w) \cong(u, w), u, w \in T_{0}^{r *} \mathbb{R}^{n}$. For $s=1, \ldots, r$ we define $f_{s}: \mathbb{R}^{r} \rightarrow \mathbb{R}$ by

$$
f_{s}(a)=A\left(\partial_{1}\right)\left(j_{0}^{r}\left(\sum_{l=1}^{r} \frac{1}{l!} a_{l}\left(x^{1}\right)^{l}\right), j_{0}^{r}\left(\frac{1}{s!}\left(x^{1}\right)^{s}\right)\right)
$$

$a=\left(a_{1}, \ldots, a_{r}\right) \in \mathbb{R}^{r}$. We prove that the f_{s} are as required.
For simplicity set $\widetilde{A}:=A-\sum_{s=1}^{r} f_{s} \stackrel{(s)}{A}$. Consider $\gamma, \eta: \mathbb{R}^{r} \rightarrow \mathbb{R}$ with $\gamma(0)=\eta(0)=0$. Define $a=\left(a_{1}, \ldots, a_{r}\right) \in \mathbb{R}^{r}$ and $b=\left(b_{1}, \ldots, b_{r}\right) \in \mathbb{R}^{r}$ by

$$
\begin{aligned}
& j_{0}^{r}\left(\gamma\left(x^{1}, 0, \ldots, 0\right)\right)=j_{0}^{r}\left(\sum_{l=1}^{r} \frac{1}{l!} a_{l}\left(x^{1}\right)^{l}\right) \\
& j_{0}^{r}\left(\eta\left(x^{1}, 0, \ldots, 0\right)\right)=j_{0}^{r}\left(\sum_{l=1}^{r} \frac{1}{l!} b_{l}\left(x^{1}\right)^{l}\right)
\end{aligned}
$$

Using the naturality of \widetilde{A} with respect to the homotheties $\left(x^{1}, t x^{2}, \ldots, t x^{n}\right)$ for $t \neq 0$ and putting $t \rightarrow 0$ we get

$$
\widetilde{A}\left(\partial_{1}\right)\left(j_{0}^{r} \gamma, j_{0}^{r} \eta\right)=\widetilde{A}\left(\partial_{1}\right)\left(j_{0}^{r}\left(\gamma\left(x^{1}, 0, \ldots, 0\right)\right), j_{0}^{r}\left(\eta\left(x^{1}, 0, \ldots, 0\right)\right)\right)
$$

Then $\widetilde{A}\left(\partial_{1}\right)\left(j_{0}^{r} \gamma, j_{0}^{r} \eta\right)=\sum_{s=1}^{r} b_{s} f_{s}(a)-\sum_{s=1}^{r} f_{s}(a) b_{s}=0$.
Proof of Theorem 1. Replacing A by $A-\sum_{s=1}^{r} f_{s} \stackrel{(s)}{A}$ we can assume that $A\left(\partial_{1}\right) \mid\left(V T^{r *}\right)_{0} \mathbb{R}^{n}=0$. It remains to show that there exist $g_{1}, \ldots, g_{r} \in$
$\mathcal{C}^{\infty}\left(\mathbb{R}^{r}\right)$ with

$$
A=\sum_{s=1}^{r} g_{s} \stackrel{\langle s\rangle}{A}
$$

For $s=1, \ldots, r$ define $g_{s}: \mathbb{R}^{r} \rightarrow \mathbb{R}$,

$$
g_{s}(a)=A\left(\partial_{1}\right)\left(T^{r *} \partial_{2}\left(j_{0}^{r}\left(\sum_{l=1}^{r} \frac{1}{l!} a_{l}\left(x^{1}\right)^{l}+\frac{1}{(s-1)!}\left(x^{1}\right)^{s-1} x^{2}\right)\right)\right)
$$

$a=\left(a_{1}, \ldots, a_{r}\right) \in \mathbb{R}^{r}$, where $T^{r *} X$ denotes the complete lifting of a vector field $X \in \mathcal{X}(M)$ to $T^{r *} M$. We prove that the g_{s} are as required.

By Lemma 1 and $A\left(\partial_{1}\right) \mid\left(V T^{r *}\right)_{0} \mathbb{R}^{n}=0$ it is sufficient to show

$$
A\left(\partial_{1}\right)\left(T^{r *} \partial\left(j_{0}^{r} \gamma\right)\right)=\left(\sum_{s=1}^{r} g_{s}^{\langle s\rangle} A\right)\left(\partial_{1}\right)\left(T^{r *} \partial\left(j_{0}^{r} \gamma\right)\right)
$$

for any $\gamma: \mathbb{R}^{n} \rightarrow \mathbb{R}, \gamma(0)=0$ and any constant vector field ∂ on \mathbb{R}^{n} such that ∂_{1} and ∂ are linearly independent. Using the naturality of A and $\sum_{s=1}^{r} g_{s}{ }^{\langle s\rangle}$ with respect to linear isomorphisms $\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ preserving ∂_{1} we can assume $\partial=\partial_{2}$. For simplicity set $\widetilde{A}=\sum_{s=1}^{r} g_{s} \stackrel{\langle s\rangle}{A}$.

Consider $\gamma: \mathbb{R}^{n} \rightarrow \mathbb{R}, \gamma(0)=0$. Define $a=\left(a_{1}, \ldots, a_{r}\right) \in \mathbb{R}^{r}$ by $a_{s}=\partial_{1}^{s} \gamma(0)$ and $b_{s}=\left(\partial_{2} \partial_{1}^{s-1} \gamma\right)(0)$ for $s=1, \ldots, r$. Using the naturality of A with respect to the homotheties $\left(x^{1}, t x^{2}, \tau x^{3} \ldots, \tau x^{n}\right)$ for $t, \tau \neq 0$ we get the homogeneity condition

$$
\begin{aligned}
t A\left(\partial_{1}\right)\left(T ^ { r * } \partial _ { 2 } \left(j _ { 0 } ^ { r } \gamma \left(x^{1}, x^{2}\right.\right.\right. & \left.\left.\left., \ldots, x^{n}\right)\right)\right) \\
& =A\left(\partial_{1}\right)\left(T^{r *} \partial_{2}\left(j_{0}^{r} \gamma\left(x^{1}, t x^{2}, \tau x^{3}, \ldots, \tau x^{n}\right)\right)\right)
\end{aligned}
$$

This type of homogeneity gives $A\left(\partial_{1}\right)\left(T^{r *} \partial_{2}\left(j_{0}^{r} \gamma\right)\right)=\sum_{s=1}^{r} g_{s}(a) b_{s}$ by the homogeneous function theorem [4]. On the other hand $A\left(\partial_{1}\right)\left(T^{r *} \partial_{2}\left(j_{0}^{r} \gamma\right)\right)=$ $\sum_{s=1}^{r} g_{s}(a) b_{s}$. Then

$$
A\left(\partial_{1}\right)\left(T^{r *} \partial\left(j_{0}^{r} \gamma\right)\right)=\left(\sum_{s=1}^{r} g_{s}^{\langle s\rangle} A\right)\left(\partial_{1}\right)\left(T^{r *} \partial\left(j_{0}^{r} \gamma\right)\right)
$$

So, $A=\sum_{s=1}^{r} g_{s} \stackrel{\langle s\rangle}{A}$.
1.5. Corollaries. Using the homogeneous function theorem, we have the following corollary of Theorem 1.

Corollary 1. Let $n \geq 2$ be a natural number.
(i) If $r \geq 2$, then for every linear natural operator $A: T_{\mid \mathcal{M} f_{n}} \rightsquigarrow T^{*} T^{r *}$ there exist real numbers α, β, γ such that

$$
A=\alpha \stackrel{(1)}{A}+\beta \operatorname{pr}_{1} \stackrel{\langle 1\rangle}{A}+\gamma \stackrel{\langle 2\rangle}{A}
$$

where $\operatorname{pr}_{1} \in \mathcal{C}^{\infty}\left(\mathbb{R}^{r}\right)$ is the projection $\mathbb{R}^{r} \rightarrow \mathbb{R}$ on the first factor.
(ii) If $r=1$, then for every linear natural operator $A: T_{\mid \mathcal{M} f_{n}} \rightsquigarrow T^{*} T^{1 *}$ there exist real numbers α, β such that

$$
A=\alpha \stackrel{(1)}{A}+\beta \operatorname{id}_{\mathbb{R}} \stackrel{\langle 1\rangle}{A},
$$

where $\operatorname{id}_{\mathbb{R}} \in \mathcal{C}^{\infty}(\mathbb{R})$ is the identity map.
The operator A can be considered as the well-known canonical 1-form λ^{r} on $T^{r *}$, the pull-back $\left(\pi_{1}^{r}\right)^{*} \lambda$ of the Liouville 1-form λ on $T^{*} \cong T^{1 *}$ with respect to the jet projection $\pi_{1}^{r}: T^{r *} \rightarrow T^{1 *}$. Considering the values of natural operators $T_{\mid \mathcal{M} f_{n}} \rightsquigarrow T^{*} T^{r *}$ at $X=0$ we obtain another corollary of Theorem 1. (For $r=1$ we recover the result of [1].)

Corollary 2. For a natural number $n \geq 2$ every canonical 1 -form on $T^{r *}$ is a constant multiple of λ^{r}.

On $T^{*} M$ we have the canonical Liouville 1-form λ and the canonical symplectic 2-form $\omega=d \lambda$. Under the natural equivalence $T^{1 *} M \cong T^{*} M$ we have $\lambda=\stackrel{\langle 1\rangle}{A}, \stackrel{(1)}{A}(X)=i_{T^{*} X} \omega$, the inner differentiation, and $\stackrel{(1)}{X}\left(j_{x}^{1} \gamma\right)=$ $\left\langle d_{x} \gamma, X_{x}\right\rangle, X \in \mathcal{X}(M), x \in M, \gamma: M \rightarrow \mathbb{R}, \gamma(x)=0$, where $T^{*} X$ denotes the complete lifting of X to $T^{*} M$. Thus we have one more corollary of Theorem 1.

Corollary 3. Let $A: T_{\mid \mathcal{M} f_{n}} \rightsquigarrow T^{*} T^{*}$ be a natural operator $(n \geq 2)$. Then there exist maps $f, g: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
A(X)_{\eta}=f\left(\left\langle\eta, X_{x}\right\rangle\right) \lambda_{\eta}+g\left(\left\langle\eta, X_{x}\right\rangle\right)\left(i_{T^{*} X} \omega\right)_{\eta}
$$

where M is an n-manifold, $X \in \mathcal{X}(M), x \in M, \eta \in T_{x}^{*} M$.
2. The natural operators $T_{\mid \mathcal{M} f_{n}} \rightsquigarrow \Lambda^{2} T^{*} T^{r *}$
2.1. Examples of natural operators $T_{\mid \mathcal{M} f_{n}} \rightsquigarrow \Lambda^{2} T^{*} T^{r *}$

Example 3. Let X be a vector field on an n-manifold M. For every $s_{1}, s_{2}=1, \ldots, r$ with $\underset{\left(s_{1}\right)}{s_{1}}<\underset{\left(s_{2}\right)}{s_{2}}$ we have the 2 -form $A(X) \wedge \underset{\left(s_{1}\right)}{A}(X) \underset{\left(s_{2}\right)}{T^{r *}} M$. The correspondence $A \wedge A: T_{\mid \mathcal{M} f_{n}} \rightsquigarrow \Lambda^{2} T^{*} T^{r *}, X \mapsto A(X) \wedge A(X)$, is a natural operator.

Example 4. Let X be a vector field on $\underset{\left(s_{1}\right)}{\left.\operatorname{ls} s_{2}\right\rangle} n$-manifold M. For every $s_{1}, s_{2}=1, \ldots, r$ we have the 2 -form $A(X) \wedge A(X)$ on $T^{r *} M$. The correspondence $\stackrel{\left(s_{1}\right)}{A} \wedge \stackrel{\left\langle s_{2}\right\rangle}{A}: T_{\mid \mathcal{M} f_{n}} \rightsquigarrow \Lambda^{2} T^{*} T^{r *}, X \mapsto \stackrel{\left(s_{1}\right)}{A}(X) \wedge \stackrel{\left\langle s_{2}\right\rangle}{A}(X)$, is a natural operator.

Example 5. Let X be a vector field on an n-manifold M. For every $\left\langle s_{1}\right\rangle \quad\left\langle s_{2}\right\rangle$ $s_{1}, s_{2}=1, \ldots, r$ with $s_{1}<s_{2}$ we have the 2-form $A(X) \wedge \stackrel{A}{A}(X)$ on $T^{r *} M$.

The correspondence $\stackrel{\left\langle s_{1}\right\rangle}{A} \wedge \stackrel{\left\langle s_{2}\right\rangle}{A}: T_{\mid \mathcal{M} f_{n}} \rightsquigarrow \Lambda^{2} T^{*} T^{r *}, X \mapsto \stackrel{\left\langle s_{1}\right\rangle}{A}(X) \wedge \stackrel{\left\langle s_{2}\right\rangle}{A}(X)$, is a natural operator.

Example 6. Let X be a vector field on an n-manifold M. For every $\langle s\rangle$ $s=1, \ldots, r$ we have the 2 -form $d(A(X))$ on $T^{r *} M$. The correspondence $d \stackrel{\langle s\rangle}{A}: T_{\mid \mathcal{M} f_{n}} \rightsquigarrow \Lambda^{2} T^{*} T^{r *}, X \mapsto d(\stackrel{s\rangle}{A}(X))$, is a natural operator.
2.2. The classification theorem. As in Subsection 1.3 the set of all natural operators $T_{\mid \mathcal{M} f_{n}} \rightsquigarrow \Lambda^{2} T^{*} T^{r *}$ is a module over the algebra $\mathcal{C}^{\infty}\left(\mathbb{R}^{r}\right)$.

The second main result of this paper is the following classification theorem.

TheOrem 2. For a natural number $n \geq 3$ the $\mathcal{C}^{\infty}\left(\mathbb{R}^{r}\right)$-module of all natural operators $T_{\mid \mathcal{M} f_{n}} \rightsquigarrow \Lambda^{2} T^{*} T^{r *}$ is free and $2 r^{2}$-dimensional. The collection of natural operators of Examples 3-6 (i.e. the collection consisting of $\left(s_{1}\right) \quad\left(s_{2}\right)$ $A \wedge A$ for $s_{1}, s_{2}=1, \ldots, r$ with $s_{1}<s_{2}$ and $A \wedge A$ for $s_{1}, s_{2}=1, \ldots, r$ $\left\langle s_{1}\right\rangle\left\langle s_{2}\right\rangle \quad\langle s\rangle$ and $A \wedge A$ for $s_{1}, s_{2}=1, \ldots, r$ with $s_{1}<s_{2}$ and $d A$ for $\left.s=1, \ldots, r\right)$ is a basis of this module over $\mathcal{C}^{\infty}\left(\mathbb{R}^{r}\right)$.

The proof of Theorem 2 will occupy the rest of this subsection.
Consider a natural operator $B: T_{\mid \mathcal{M} f_{n}} \rightsquigarrow \Lambda^{2} T^{*} T^{r *}$. Since the collection of natural operators listed in the statement of the theorem is $\mathcal{C}^{\infty}\left(\mathbb{R}^{r}\right)$-linearly independent, we need only prove that B is their linear combination with $\mathcal{C}^{\infty}\left(\mathbb{R}^{r}\right)$-coefficients.

The following lemma shows that B is uniquely determined by the restriction $B\left(\partial_{1}\right) \mid\left(T T^{r *} \mathbb{R}^{n} \times_{T^{r *} \mathbb{R}^{n}} T T^{r *} \mathbb{R}^{n}\right)_{0}$.

Lemma 3. If $B\left(\partial_{1}\right) \mid\left(T T^{r *} \mathbb{R}^{n} \times_{T^{r *} \mathbb{R}^{n}} T T^{r *} \mathbb{R}^{n}\right)_{0}=0$, then $B=0$.
Proof. The proof is similar to the proof of Lemma 1.
So, we will study the restriction $B\left(\partial_{1}\right) \mid\left(T T^{r *} \mathbb{R}^{n} \times_{T^{r *} \mathbb{R}^{n}} T T^{r *} \mathbb{R}^{n}\right)_{0}$.
Lemma 4. There are $f_{\left(s_{1}, s_{2}\right)} \in \mathcal{C}^{\infty}\left(\mathbb{R}^{r}\right)$ for $s_{1}, s_{2}=1, \ldots, r$ with $s_{1}<s_{2}$ such that

$$
\left(B-\sum_{1 \leq s_{1}<s_{2} \leq r} f_{\left(s_{1}, s_{2}\right)} \stackrel{\left(s_{1}\right)}{A} \wedge \stackrel{\left(s_{2}\right)}{A}\right)\left(\partial_{1}\right) \mid\left(V T^{r *} \mathbb{R}^{n} \times_{T^{r *} \mathbb{R}^{n}} V T^{r *} \mathbb{R}^{n}\right)_{0}=0
$$

Proof. The proof is similar to the one of Lemma 2. We have the identification

$$
\left(V T^{r *} \mathbb{R}^{n} \times_{T^{r *} \mathbb{R}^{n}} V T^{r *} \mathbb{R}^{n}\right)_{0} \cong T_{0}^{r *} \mathbb{R}^{n} \times T_{0}^{r *} \mathbb{R}^{n} \times T_{0}^{r *} \mathbb{R}^{n}
$$

$\left(\left.\frac{d}{d t}\right|_{t=0}(u+t v),\left.\frac{d}{d t}\right|_{t=0}(u+t w)\right) \cong(u, v, w), u, v, w \in T_{0}^{r *} \mathbb{R}^{n}$. For $s_{1}, s_{2}=$ $1, \ldots, r$ with $s_{1}<s_{2}$ we define $f_{\left(s_{1}, s_{2}\right)}: \mathbb{R}^{r} \rightarrow \mathbb{R}$ by
$f_{\left(s_{1}, s_{2}\right)}(a)=B\left(\partial_{1}\right)\left(j_{0}^{r}\left(\sum_{l=1}^{r} \frac{1}{l!} a_{l}\left(x^{1}\right)^{l}\right), j_{0}^{r}\left(\frac{1}{\left(s_{1}\right)!}\left(x^{1}\right)^{s_{1}}\right), j_{0}^{r}\left(\frac{1}{\left(s_{2}\right)!}\left(x^{1}\right)^{s_{2}}\right)\right)$, $a=\left(a_{1}, \ldots, a_{r}\right) \in \mathbb{R}^{r}$. We prove that the $f_{\left(s_{1}, s_{2}\right)}$ are as required.

Set $\widetilde{B}:=B-\sum_{1 \leq s_{1}<s_{2} \leq r} f_{\left(s_{1}, s_{2}\right)} \stackrel{\left(s_{1}\right)}{A} \wedge \stackrel{\left(s_{2}\right)}{A}$. Consider $\gamma, \eta, \varrho: \mathbb{R}^{n} \rightarrow \mathbb{R}$ with $\gamma(0)=\eta(0)=\varrho(0)=0$. Define $a=\left(a_{1}, \ldots, a_{r}\right) \in \mathbb{R}^{r}, b=\left(b_{1}, \ldots, b_{r}\right) \in \mathbb{R}^{r}$ and $c=\left(c_{1}, \ldots, c_{r}\right) \in \mathbb{R}^{r}$ by

$$
\begin{aligned}
& j_{0}^{r}\left(\gamma\left(x^{1}, 0, \ldots, 0\right)\right)=j_{0}^{r}\left(\sum_{l=1}^{r} \frac{1}{l!} a_{l}\left(x^{1}\right)^{l}\right), \\
& j_{0}^{r}\left(\eta\left(x^{1}, 0, \ldots, 0\right)\right)=j_{0}^{r}\left(\sum_{l=1}^{r} \frac{1}{l!} b_{l}\left(x^{1}\right)^{l}\right) \\
& j_{0}^{r}\left(\varrho\left(x^{1}, 0, \ldots, 0\right)\right)=j_{0}^{r}\left(\sum_{l=1}^{r} \frac{1}{l!} c_{l}\left(x^{1}\right)^{l}\right)
\end{aligned}
$$

Using the naturality of \widetilde{B} with respect to the homotheties $\left(x^{1}, t x^{2}, \ldots, t x^{n}\right)$ for $t \neq 0$ and putting $t \rightarrow 0$ we get

$$
\begin{aligned}
& \widetilde{B}\left(\partial_{1}\right)\left(j_{0}^{r} \gamma, j_{0}^{r} \eta, j_{0}^{r} \varrho\right) \\
& \quad=\widetilde{B}\left(\partial_{1}\right)\left(j_{0}^{r}\left(\gamma\left(x^{1}, 0, \ldots, 0\right)\right), j_{0}^{r}\left(\eta\left(x^{1}, 0, \ldots, 0\right)\right), j_{0}^{r}\left(\varrho\left(x^{1}, 0, \ldots, 0\right)\right)\right)
\end{aligned}
$$

Consequently,

$$
\begin{aligned}
\widetilde{B}\left(\partial_{1}\right)\left(j_{0}^{r} \gamma, j_{0}^{r} \eta, j_{0}^{r} \varrho\right)= & \sum_{1 \leq s_{1}<s_{2} \leq r}\left(b_{s_{1}} c_{s_{2}}-b_{s_{2}} c_{s_{1}}\right) f_{\left(s_{1}, s_{2}\right)}(a) \\
& -\sum_{1 \leq s_{1}<s_{2} \leq r} f_{\left(s_{1}, s_{2}\right)}(a)\left(b_{s_{1}} c_{s_{2}}-b_{s_{2}} c_{s_{1}}\right)=0
\end{aligned}
$$

So, replacing B by $B-\sum_{1 \leq s_{1}<s_{2} \leq r} f_{\left(s_{1}, s_{2}\right)} \stackrel{\left(s_{1}\right)}{A} \wedge \stackrel{\left(s_{2}\right)}{A}$ we can assume that (*)

$$
B\left(\partial_{1}\right) \mid\left(V T^{r *} \mathbb{R}^{n} \times_{T^{r *} \mathbb{R}^{n}} V T^{r *} \mathbb{R}^{n}\right)_{0}=0
$$

Lemma 5. Under the assumption $(*)$ there exist $g_{\left(s_{1}, s_{2}\right)} \in \mathcal{C}^{\infty}\left(\mathbb{R}^{r}\right)$ for $s_{1}, s_{2}=1, \ldots, r$ and $h_{s} \in \mathcal{C}^{\infty}\left(\mathbb{R}^{r}\right)$ for $s=1, \ldots, r$ such that
$\left(B-\sum_{s_{1}, s_{2}=1}^{r} g_{\left(s_{1}, s_{2}\right)} \stackrel{\left(s_{1}\right)}{A} \wedge \stackrel{\left\langle s_{2}\right\rangle}{A}-\sum_{s=1}^{r} h_{s} d A\right)\left(\partial_{1}\right) \mid\left(V T^{r *} \mathbb{R}^{n} \times_{T^{r *} \mathbb{R}^{n}} T T^{r *} \mathbb{R}^{n}\right)_{0}=0$.
Proof. For $s_{1}, s_{2}=1, \ldots, r$ define $g_{\left(s_{1}, s_{2}\right)}: \mathbb{R}^{r} \rightarrow \mathbb{R}$ by

$$
g_{\left(s_{1}, s_{2}\right)}(a)=B\left(\partial_{1}\right)\left(\left(j_{0}^{r}\left(\gamma_{a, s_{1}}\right), j_{0}^{r}\left(\frac{1}{\left(s_{2}\right)!}\left(x^{1}\right)^{s_{2}}\right)\right), T^{r *} \partial_{2}\left(j_{0}^{r}\left(\gamma_{a, s_{1}}\right)\right)\right)
$$

$a=\left(a_{1}, \ldots, a_{r}\right) \in \mathbb{R}^{r}$, where

$$
\gamma_{a, s_{1}}=\sum_{l=1}^{r} \frac{1}{l!} a_{l}\left(x^{1}\right)^{l}+\frac{1}{\left(s_{1}-1\right)!}\left(x^{1}\right)^{s_{1}-1} x^{2}
$$

For $s=1, \ldots, r$ define $h_{s}: \mathbb{R}^{r} \rightarrow \mathbb{R}$ by

$$
h_{s}(a)=B\left(\partial_{1}\right)\left(\left(j_{0}^{r}\left(\gamma_{a}\right), j_{0}^{r}\left(\frac{1}{(s-1)!}\left(x^{1}\right)^{s-1} x^{2}\right)\right), T^{r *} \partial_{2}\left(j_{0}^{r}\left(\gamma_{a}\right)\right)\right)
$$

$a=\left(a_{1}, \ldots, a_{r}\right) \in \mathbb{R}^{r}$, where $\gamma_{a}=\sum_{l=1}^{r}(1 / l!) a_{l}\left(x^{1}\right)^{l}$. We prove that the $g_{\left(s_{1}, s_{2}\right)}$ and h_{s} are as required.

Set

$$
\widetilde{B}=B-\sum_{s_{1}, s_{2}=1}^{r} g_{\left(s_{1}, s_{2}\right)} \stackrel{\left(s_{1}\right)}{A} \wedge \stackrel{\left\langle s_{2}\right\rangle}{A}-\sum_{s=1}^{r} h_{s} d \stackrel{\langle s\rangle}{A}
$$

By $(*), \widetilde{B}\left(\partial_{1}\right) \mid\left(V T^{r *} \mathbb{R}^{n} \times_{T^{r *} \mathbb{R}^{n}} V T^{r *} \mathbb{R}^{n}\right)_{0}=0$. So, it remains to show that $\widetilde{B}\left(\partial_{1}\right)\left(\left(j_{0}^{r} \gamma, j_{0}^{r} \eta\right), T^{r *} \partial\left(j_{0}^{r} \gamma\right)\right)=0$ for any $\gamma, \eta: \mathbb{R}^{n} \rightarrow \mathbb{R}$ with $\gamma(0)=\eta(0)=0$ and any constant vector field ∂ on \mathbb{R}^{n}. Using the naturality of \widetilde{B} with respect to the linear isomorphisms $\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ preserving ∂_{1}, we can assume that $\partial=\partial_{2}$.

Consider $\gamma, \eta: \mathbb{R}^{n} \rightarrow \mathbb{R}$ as above. Define $a_{l}=\partial_{1}^{l} \gamma(0), b_{l}=\partial_{1}^{l} \eta(0)$, $c_{l}=\partial_{2} \partial_{1}^{l-1} \gamma(0)$ and $d_{l}=\partial_{2} \partial_{1}^{l-1} \eta(0)$ for $l=1, \ldots, r$. Let $a:=\left(a_{1}, \ldots, a_{r}\right)$ $\in \mathbb{R}^{k}$. Using the naturality of \widetilde{B} with respect to the homotheties $a_{t, \tau}=$ $\left(x^{1}, t x^{2}, \tau x^{3}, \ldots, \tau x^{n}\right)$ for $t, \tau \neq 0$ we obtain the homogeneity condition

$$
\begin{aligned}
& t \widetilde{B}\left(\partial_{1}\right)\left(\left(j_{0}^{r} \gamma, j_{0}^{r} \eta\right), T^{r *} \partial_{2}\left(j_{0}^{r} \gamma\right)\right) \\
& \quad=\widetilde{B}\left(\partial_{1}\right)\left(\left(j_{0}^{r}\left(\gamma \circ a_{t, \tau}\right), j_{0}^{r}\left(\eta \circ a_{t, \tau}\right)\right), T^{r *} \partial_{2}\left(j_{0}^{r}\left(\gamma \circ a_{t, \tau}\right)\right)\right)
\end{aligned}
$$

This implies

$$
\begin{aligned}
\widetilde{B}\left(\partial_{1}\right)\left(\left(j_{0}^{r} \gamma, j_{0}^{r} \eta\right), T^{r *} \partial_{2}\left(j_{0}^{r} \gamma\right)\right)= & \sum_{s_{1}, s_{2}=1}^{r} c_{s_{1}} b_{s_{2}} g_{\left(s_{1}, s_{2}\right)}(a)+\sum_{s=1}^{r} d_{s} h_{s}(a) \\
& -\sum_{s_{1}, s_{2}=1}^{r} g_{\left(s_{1}, s_{2}\right)}(a) c_{s_{1}} b_{s_{2}}-\sum_{s=1}^{r} h_{s}(a) d_{s} \\
= & 0
\end{aligned}
$$

by the homogeneous function theorem.
Replacing B by $B-\sum_{s_{1}, s_{2}=1}^{r} g_{\left(s_{1}, s_{2}\right)} \stackrel{\left(s_{1}\right)}{A} \stackrel{\left\langle s_{2}\right\rangle}{A}-\sum_{s=1}^{r} h_{s} d A$ ws can assume that
$(* *) \quad B\left(\partial_{1}\right) \mid\left(V T^{r *} \mathbb{R}^{n} \times_{T^{r *} \mathbb{R}^{n}} T T^{r *} \mathbb{R}^{n}\right)_{0}=0$.

Proof of Theorem 2. For $s_{1}, s_{2}=1, \ldots, r$ with $s_{1}<s_{2}$ define $F_{\left(s_{1}, s_{2}\right)}$: $\mathbb{R}^{r} \rightarrow \mathbb{R}$ by

$$
F_{\left(s_{1}, s_{2}\right)}(a)=B\left(\partial_{1}\right)\left(T^{r *} \partial_{2}\left(j_{0}^{r}\left(\gamma_{a, s_{1}, s_{2}}\right)\right), T^{r *} \partial_{3}\left(j_{0}^{r}\left(\gamma_{a, s_{1}, s_{2}}\right)\right)\right)
$$

$a=\left(a_{1}, \ldots, a_{r}\right) \in \mathbb{R}^{r}$, where

$$
\gamma_{a, s_{1}, s_{2}}=\sum_{l=1}^{r} \frac{1}{l!} a_{l}\left(x^{1}\right)^{l}+\frac{1}{\left(s_{1}-1\right)!}\left(x^{1}\right)^{s_{1}-1} x^{2}+\frac{1}{\left(s_{2}-1\right)!}\left(x^{1}\right)^{s_{2}-1} x^{3}
$$

Using $(* *)$ we show that $B=\sum_{1 \leq s_{1}<s_{2} \leq r} F_{\left(s_{1}, s_{2}\right)} \stackrel{\left\langle s_{1}\right\rangle}{A} \wedge \stackrel{\left\langle s_{2}\right\rangle}{A}$. (Then the proof will be complete.) For simplicity denote the last right-hand side by \widetilde{B}.

First for $k=2, \ldots, r$ define $G_{k}: \mathbb{R}^{r} \rightarrow \mathbb{R}$ by

$$
G_{k}(a)=B\left(\partial_{1}\right)\left(T^{r *} \partial_{2}\left(j_{0}^{r}\left(\gamma_{\langle a, k\rangle}\right)\right), T^{r *} \partial_{3}\left(j_{0}^{r}\left(\gamma_{\langle a, k\rangle}\right)\right)\right),
$$

$a=\left(a_{1}, \ldots, a_{r}\right) \in \mathbb{R}^{r}$, where

$$
\gamma_{\langle a, k\rangle}=\sum_{l=1}^{r} \frac{1}{l!} a_{l}\left(x^{1}\right)^{l}+\frac{1}{(k-2)!}\left(x^{1}\right)^{k-2} x^{2} x^{3} .
$$

By the invariance of $B\left(\partial_{1}\right)$ with respect to the diffeomorphism replacing x^{2} by x^{3} and x^{3} by x^{2} and preserving the other coordinates we see that $G_{k}=-G_{k}$, i.e. $G_{k}=0$ for $k=2, \ldots, r$.

By Lemma 3 and $(* *)$ to prove $B=\widetilde{B}$ it is sufficient to show that
$(* * *) \quad B\left(\partial_{1}\right)\left(T^{r *} \partial\left(j_{0}^{r} \gamma\right), T^{r *} \widetilde{\partial}\left(j_{0}^{r} \gamma\right)\right)=\widetilde{B}\left(\partial_{1}\right)\left(T^{r *} \partial\left(j_{0}^{r} \gamma\right), T^{r *} \widetilde{\partial}\left(j_{0}^{r} \gamma\right)\right)$
for any $\gamma: \mathbb{R}^{n} \rightarrow \mathbb{R}$ with $\gamma(0)=0$ and any constant vector fields ∂ and $\widetilde{\partial}$ on \mathbb{R}^{n} such that ∂_{1}, ∂ and $\widetilde{\partial}$ are linearly independent. Using the naturality of B and \widetilde{B} with respect to linear isomorphisms $\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ preserving ∂_{1} we can assume $\partial=\partial_{2}$ and $\widetilde{\partial}=\partial_{3}$.

Consider $\gamma: \mathbb{R}^{n} \rightarrow \mathbb{R}, \gamma(0)=0$. Define $a_{l}=\partial_{1}^{l} \gamma(0), b_{l}=\partial_{2} \partial_{1}^{l-1} \gamma(0)$ and $c_{l}=\partial_{3} \partial_{1}^{l-1} \gamma(0)$ for $l=1, \ldots, r$. Define also $d_{k}=\partial_{2} \partial_{3} \partial^{k-2} \gamma(0)$ for $k=$ $2, \ldots, r$. Set $a:=\left(a_{1}, \ldots, a_{r}\right) \in \mathbb{R}^{r}$. Using the naturality of B with respect to the homotheties $a_{t_{1}, t_{2}, \tau}=\left(x^{1}, t_{1} x^{2}, t_{2} x^{3}, \tau x^{4}, \ldots, \tau x^{n}\right)$ for $t_{1}, t_{2}, \tau \neq 0$ we get the homogeneity condition

$$
\begin{aligned}
& t_{1} t_{2} B\left(\partial_{1}\right)\left(T^{r *} \partial_{2}\left(j_{0}^{r} \gamma\right), T^{r *} \partial_{3}\left(j_{0}^{r} \gamma\right)\right) \\
& \left.\quad=B\left(\partial_{1}\right)\left(T^{r *} \partial_{2}\left(j_{0}^{r}\left(\gamma \circ a_{t_{1}, t_{2}, \tau}\right)\right), T^{r *} \partial_{3}\left(j_{0}^{r} \gamma \circ a_{t_{1}, t_{2}, \tau}\right)\right)\right)
\end{aligned}
$$

This type of homogeneity gives

$$
\begin{aligned}
B\left(\partial_{1}\right)\left(T^{r *} \partial_{2}\left(j_{0}^{r} \gamma\right), T^{r *} \partial_{3}\left(j_{0}^{r} \gamma\right)\right)= & \sum_{1 \leq s_{1}<s_{2} \leq r} F_{\left(s_{1}, s_{2}\right)}(a)\left(b_{s_{1}} c_{s_{2}}-b_{s_{2}} c_{s_{1}}\right) \\
& +\sum_{k=2}^{r} G_{k}(a) d_{k}
\end{aligned}
$$

by the homogeneous function theorem. Then

$$
B\left(\partial_{1}\right)\left(T^{r *} \partial_{2}\left(j_{0}^{r} \gamma\right), T^{r *} \partial_{3}\left(j_{0}^{r} \gamma\right)\right)=\sum_{1 \leq s_{1}<s_{2} \leq r} F_{\left(s_{1}, s_{2}\right)}(a)\left(b_{s_{1}} c_{s_{2}}-b_{s_{2}} c_{s_{1}}\right)
$$

because $G_{k}=0$ for $k=2, \ldots, r$. On the other hand

$$
\widetilde{B}\left(\partial_{1}\right)\left(T^{r *} \partial_{2}\left(j_{0}^{r} \gamma\right), T^{r *} \partial_{3}\left(j_{0}^{r} \gamma\right)\right)=\sum_{1 \leq s_{1}<s_{2} \leq r} F_{\left(s_{1}, s_{2}\right)}(a)\left(b_{s_{1}} c_{s_{2}}-b_{s_{2}} c_{s_{1}}\right)
$$

Thus we have $(* * *)$. The proof of Theorem 2 is complete.
2.3. Corollaries. Using the homogeneous function theorem, we obtain the following corollary of Theorem 2.

Corollary 4. Let $n \geq 3$ be a natural number.
(i) If $r \geq 2$, then for every linear natural operator $A: T_{\mid \mathcal{M} f_{n}} \rightsquigarrow$ $\Lambda^{2} T^{*} T^{r *}$ there exist real numbers $\alpha, \beta, \gamma, \delta$ such that

$$
A=\alpha \stackrel{(1)}{A} \wedge \stackrel{\langle 1\rangle}{A}+\beta \stackrel{\langle 1\rangle}{A} \wedge \stackrel{\langle 2\rangle}{A}+\gamma \operatorname{pr}_{1} d \stackrel{\langle 1\rangle}{A}+\delta d \stackrel{\langle 2\rangle}{A}
$$

where $\operatorname{pr}_{1} \in \mathcal{C}^{\infty}\left(\mathbb{R}^{r}\right)$ is the projection $\mathbb{R}^{r} \rightarrow \mathbb{R}$ on the first factor.
(ii) If $r=1$, then for every linear natural operator $A: T_{\mid \mathcal{M} f_{n}} \rightsquigarrow T^{*} T^{1 *}$ there exist real numbers α, β such that

$$
A=\alpha \stackrel{(1)}{A} \wedge \stackrel{\langle 1\rangle}{A}+\beta \operatorname{id}_{\mathbb{R}} d \stackrel{\langle 1\rangle}{A},
$$

where $\mathrm{id}_{\mathbb{R}} \in \mathcal{C}^{\infty}(\mathbb{R})$ is the identity map on \mathbb{R}.
Considering the values of natural operators $T_{\mid \mathcal{M} f_{n}} \rightsquigarrow \Lambda^{2} T^{*} T^{r *}$ at $X=0$ we obtain

Corollary 5. For a natural number $n \geq 3$ every canonical 2 -form on $T^{r *}$ is a constant multiple of $d \lambda^{r}$, where λ^{r} is as in Corollary 2.

For $r=1$ we deduce from Theorem 2 the following result.
Corollary 6. Let $B: T_{\mid \mathcal{M} f_{n}} \rightsquigarrow \Lambda^{2} T^{*} T^{*}$ be a natural operator $(n \geq 3)$. Then there exist maps $f, g: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
B(X)_{\eta}=f\left(\left\langle\eta, X_{x}\right\rangle\right)\left(\lambda \wedge i_{T^{*} X} \omega\right)_{\eta}+g\left(\left\langle\eta, X_{x}\right\rangle\right) \omega_{\eta}
$$

where M is an n-manifold, $X \in \mathcal{X}(M), x \in M, \eta \in T_{x}^{*} M$. Here λ and ω are as in Corollary 3.
3. Remark. What about natural operators $A: T_{\mid \mathcal{M} f_{n}} \rightsquigarrow T^{*} T^{(r)}$ and $B: T_{\mid M f_{n}} \rightsquigarrow \Lambda^{2} T^{*} T^{(r)}$, where $T^{(r)} M=\left(T^{r *} M\right)^{*}$ is the linear r-tangent bundle? It turns out that $A=0$ and $B=0$, as follows from the following general fact.

Theorem 3. If $F: \mathcal{M} f \rightarrow \mathcal{F} \mathcal{M}$ is a bundle functor with the point property, then every natural operator $A: T_{\mid \mathcal{M} f_{n}} \rightsquigarrow \Lambda^{p} T^{*} F$ for $n \geq 2$ and $p \geq 1$ is 0 .

Proof. We have $A: T_{\mid \mathcal{M} f_{n}} \rightsquigarrow T^{(0,0)} \widetilde{F}$, where $\widetilde{F}=\Lambda^{p} T F: \mathcal{M} f \rightarrow \mathcal{F} \mathcal{M}$. Of course, \widetilde{F} has the point property. So, by the result of $[10], A=$ const $\in \mathbb{R}$. Since A is fibre linear, $A=0$.

REFERENCES

[1] M. Doupovec and J. Kurek, Liftings of tensor fields to the cotangent bundle, in: Differential Geom. and Appl. (Brno, 1995), Masaryk Univ., Brno, 1996, 141-150.
[2] —, 一, Some geometrical constructions with (0,2)-tensor fields on higher order cotangent bundles, Ann. Univ. Mariae Curie-Skłodowska 50 (1996), 43-50.
[3] —, —, Torsions of connections on higher order cotangent bundles, ibid. 55 (2001), 15-22.
[4] I. Kolář, P. W. Michor and J. Slovák, Natural Operations in Differential Geometry, Springer, Berlin, 1993.
[5] J. Kurek, Natural affinors on higher order cotangent bundle functor, Arch. Math. (Brno) (28) (1992), 175-180.
[6] -, Natural transformations of higher order cotangent bundle functors, Ann. Polon. Math. 58 (1993), 29-35.
[7] M. Kureš, Connections and torsions on $T T^{*} M$, Ann. Univ. Mariae Curie-Skłodowska 55 (2001), 89-101.
[8] W. M. Mikulski, Some natural constructions on vector fields and higher order cotangent bundles, Monatsh. Math. 117 (1994), 107-119.
[9] —, Natural functions on $T^{*} T^{(r)}$ and $T^{*} T^{r *}$, Arch. Math. (Brno) 31 (1995), 1-7.
[10] -, Natural transformations transforming functions and vector fields to functions on some natural bundles, Math. Bohemica 117 (1992), 217-223.
[11] K. Yano and S. Ishihara, Tangent and Cotangent Bundles, Dekker, New York, 1973.
Institute of Mathematics
Jagiellonian University
Reymonta 4
30-059 Kraków, Poland
E-mail: mikulski@im.uj.edu.pl

[^0]: 2000 Mathematics Subject Classification: Primary 58A20.
 Key words and phrases: natural bundle, natural operator.

