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THE NATURAL OPERATORS Ty, ~ T*T"
AND Ty, ~ A2T*T"

BY

W. M. MIKULSKI (Krakéw)

Abstract. Let r and n be natural numbers. For n > 2 all natural operators 1)y, ~

T*T"* transforming vector fields on n-manifolds M to 1-forms on T"*M = J"(M,R)g are
classified. For n > 3 all natural operators T| s, ~> A2T*T"™ transforming vector fields
on n-manifolds M to 2-forms on T"*M are completely described.

0. Introduction. Let n and r be natural numbers. In this paper we
study the problem how a vector field X on a n-dimensional manifold M
can induce a 1-form A(X) and a 2-form B(X) on the r-cotangent bundle
T™*M = J"(M,R)q of M. This problem is reflected in the concept of natural
operators A : Tipqy, ~ T*T™ and B : Tiaqy, ~ A2T*T" in the sense of
Kolér, Michor and Slovék [4].

The first main result of this paper is that for n > 2 the set of all natural
operators A : Tj gz, ~ T*T" is a free 2r-dimensional C>°(R")-module, and
we construct explicitly a basis of this module.

The second main result is that for n > 3 the set of all natural operators
B : Tjpy, ~» A*T*T™ is a free 2r*-dimensional C*(R")-module, and we
also construct explicitly a basis of this module.

Some natural operators transforming functions, vector fields, forms (etc.)
on some natural bundles F' are used practically in all papers in which the
problem of prolongation of geometric structures is considered. That is why
such natural operators are studied. For ' = T"* such natural operators
are studied or classified in [2], [3], [5], [6], [8], [9], and for F = T'* = T*
in [1], [7], [11].

From now on z-,...,z" denote the usual coordinates on R”, and 9; =
d/0z" for i = 1,...,n are the canonical vector fields on R".

1

All manifolds are assumed to be finite-dimensional and smooth, i.e. of
class C*>°. Maps between manifolds are assumed to be smooth.
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1. The natural operators Ty, ~ T*T"™

1.1. The r-cotangent bundle T"*. For every n-dimensional manifold M
we have the vector bundle T™*M = J"(M,R)y over M with respect to the
source projection w : T"*M — M. It is called the r-cotangent bundle of M.
Every embedding ¢ : M — N of n-manifolds induces a vector bundle map
T : T™"M — TN, T™p(jzy) = jomYoe ™), v : M - Rz € M
v(xz) = 0. The correspondence T"* : M f, — VB is a natural vector bundle
over n-manifolds [4].

For r = 1 we have the natural equivalence T*M = T*M, jly = d,~.

1.2. Ezamples of natural operators Ty, ~ T*T™

ExXAMPLE 1. Let X be a vector field on an n-manifold M. For every
s=1,...,r we have the map
(s)

(s)
X:T"M - R, X(jiv) = (X°y)(x),
v: M —R, ze M, y(x)=0, where X°* = X o...0 X (s times). Then for

(s)
every s = 1,...,r we have the 1-form dX on T"*M. The correspondence
(s) (s)
A Tipmy, ~ TT™, X — dX, is a natural operator.

EXAMPLE 2. Let X be a vector field on an n-manifold M. For every

(s)
s=1,...,r we have the 1-form X : TT™M — Ron T"*M,

(s)

X(v) = (do(X* 1), Tr(v)), ve (TT™),M,
v € M,y : M — R, v(x) =0, p'(v) = jivy, pt' : TT"™*M — T"™*M is

the tangent bundle projection. The correspondence A : Tjpgp, ~ T*T",
(s)
X — X, is a natural operator.

1.3. The C*>(R")-module of natural operators Tips, ~» T*T7*. The
set of all natural operators Tirqy, ~ T*T"" is a module over the algebra
C*(R"). Indeed, if f € C>*(R") and A : Tipqy, ~ T*T"* is a natural oper-

1 (r)
ator, then fA : Ty, ~ T*T" is given by (fA)(X) = f(X,..., X)A(X),
X € X(M), M € Obj(Mf,).

1.4. The classification theorem. The first main result of this paper is the
following classification theorem.

THEOREM 1. For a natural number n > 2 the C*>(R")-module of all
natural operators Tipy, ~» T*T" is free and 2r-dimensional. The natu-

(s) (s)
ral operators A and A for s = 1,...,r form a basis of this module over

C>(R™).
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The proof of Theorem 1 will occupy the rest of this subsection.
(€Y) (r)
Consider a natural operator A : Tjrqy, ~ T*T"*. Since A,..., A,

(1) (r)
A, ..., A are C*°(R")-linearly independent, we need only prove that A is

their linear combination with C*°(R")-coefficients.
The following lemma shows that A is uniquely determined by the restric-
tion A(al ) ‘ (TTT*)O]RH .

LEMMA 1. If A(0)|(TT™)R™ =0, then A = 0.

Proof. The proof is standard. We use the naturality of A and the fact
that any non-vanishing vector field is locally 0;. =

So, we will study the restriction A(0y)|(TT™)oR™.
LEMMA 2. There are f1,..., fr € C(R") with

(4= 3 £.2)@|vTrern ~0,
s=1

where VI™*M C TT™ M denotes the m-vertical subbundle.

Proof. We have the usual identification (VT"*)oR"™ = Ti*R™ x Tj*R",
uttw) = (u,w),u,w € T§*R™. For s =1,...,r we define fs : R" - R

fula) = A(®) <J<Z jah )i (5 @),

a = (ay,...,a,) € R". We prove that the f, are as required.

o
by

~ (s)
For simplicity set A := A — > "_, fs A. Consider 7,1 : R” — R with
~v(0) = n(0) = 0. Define a = (a1,...,a,) € R" and b = (by,...,b,) € R" by

. ey

B0 0) = G5 (Y pae)!),
=1

-7 1 -7 - 1 1\

@t 0,..,0) = G5 (3 ")),

=1 "

Using the naturality of A with respect to the homotheties (z!,t2?, ..., tz")

for t # 0 and putting t — 0 we get
A@0) - dom) = A@) G5 (1,0, 0)), 55 (n(z*,0,...., 0))).
Then A(91) (57, 55m) = Siey befol@) = S0y fu(a)by = 0. m

(s)
Proof of Theorem 1. Replacing A by A — > _| fs A we can assume
that A(01)[(VT"*)oR™ = 0. It remains to show that there exist gq,...,g, €
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C*>*(R") with T
A= ZgSA.
s=1

For s =1,...,r define g5 : R" — R,

e = 00 (170 (353 o)+ (g ) ) ).

a=(ay,...,ar) € R", where T"*X denotes the complete lifting of a vector
field X € X (M) to T"* M. We prove that the g, are as required.
By Lemma 1 and A(0)[(VT"™)oR"™ = 0 it is sufficient to show

A(@:)(T735) (ng )@@ 00i)

for any v : R” — R, 7(0) = 0 and any constant vector field 9 on R"™ such that
(s)
01 and 0 are linearly independent. Using the naturality of A and >._, gs A

with respect to linear isomorphisms R™ — R"™ preserving J; we can assume
(s)
d = 8,. For simplicity set A = S 1 gsA.

Consider v : R* — R, (0) = 0. Define a = (a1,...,a,) € R" by
as = 0;v(0) and by = (Ggaf_lfy)(()) for s =1,...,r. Using the naturality of
A with respect to the homotheties (z!,t2? 723 ..., 72") for t,7 # 0 we get
the homogeneity condition

LA (T 055 (a2, ., ™))
= A(O)(T™0x(joy(xt ta?, a3, ... T2™))).
This type of homogeneity gives A(d1)(T"*02(jiv)) = Y. ._; 9s(a)bs by the
homogeneous function theorem [4]. On the other hand A(00) (T 7)) =
> gs(a)bs. Then

4@ 0G) = (X 004 ) @700

(s)
So, A=>"_9;A. m

1.5. Corollaries. Using the homogeneous function theorem, we have the
following corollary of Theorem 1.

COROLLARY 1. Let n > 2 be a natural number.

(i) If r» > 2, then for every linear natural operator A : Tipqyg, ~ T*T"
there exist real numbers «, 3,7y such that
1) (1) (2)
A=aA+Ppry A+~vA4A,

where pry € C*(R") is the projection R” — R on the first factor.
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(ii) If r =1, then for every linear natural operator A : Ty, ~ T*T*
there exist real numbers o, 3 such that

1) (1)
A=aA +pidr A,
where idg € C*°(R) is the identity map.

1
The operator <A> can be considered as the well-known canonical 1-form
A" on T the pull-back (77)*) of the Liouville 1-form X on T* = T with
respect to the jet projection 77 : T™* — T'*. Considering the values of
natural operators Tiry, ~> T*T"* at X = 0 we obtain another corollary of
Theorem 1. (For » = 1 we recover the result of [1].)

COROLLARY 2. For a natural number n > 2 every canonical 1-form on
T is a constant multiple of \".

On T*M we have the canonical Liouville 1-form A\ and the canonical

symplectic 2-form w = d\. Under the natural equivalence T M = T*M
(1) (@) (1)
we have A = A, A(X) = ir-xw, the inner differentiation, and X (jlvy) =

(dpy, Xg), X € X(M), x € M,y : M — R, y(z) = 0, where 7" X denotes
the complete lifting of X to 7™ M. Thus we have one more corollary of
Theorem 1.

COROLLARY 3. Let A : Tpqy, ~» T*T* be a natural operator (n > 2).
Then there exist maps f,g: R — R such that

A(X)W = f((anm>))‘77 + g(<777 Xa:>)(iT*XW)m
where M is an n-manifold, X € X(M), x € M, n € T M.

2. The natural operators Tjry, ~ A2T*TT*
2.1. Examples of natural operators Tirqy, ~ A2T*Tr*

ExaMPLE 3. Let X be a vector field on an n-manifold M. For every

(s1) (s2)
s1,82 = 1,...,7r with s; < sy we have the 2-form A (X)A A (X)on T™* M.
(s1) (s2) (s1) s2)
The correspondence A A A : Tinqy, ~> A2T*T™, X — A (X)N A (X),

is a natural operator.

EXAMPLE 4. Let X be a vector field on an n-manifold M. For every

(s1) (s2)
s1,82 = 1,...,7 we have the 2-form A (X)A A (X) on T"*M. The corre-

(s1)  (s2) (s1) (s2)
spondence A A A : Tiny, ~» A2T*T™, X — A (X)A A (X), is anatural

operator.

ExXAMPLE 5. Let X be a vector field on an n-manifold M. For every

(s1) (s2)
s1,82 = 1,...,7 with s < sy we have the 2-form A (X)A A (X)onT™* M.
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(s1)  (s2) (s1) (s2)
The correspondence A A A : Tiny, ~» A2T*T™, X — A (X)N A (X),

is a natural operator.

EXAMPLE 6. Let X be a vector field on an m-manifold M. For every
(s)
s = 1,...,7 we have the 2-form d( A (X)) on T"*M. The correspondence

(s) (s)
dA : Ty, ~ A2T*T™, X — d(A(X)), is a natural operator.

2.2. The classification theorem. As in Subsection 1.3 the set of all nat-
ural operators Tipqy, ~> A*T*T" is a module over the algebra C>(R").

The second main result of this paper is the following classification theo-
rem.

THEOREM 2. For a natural number n > 3 the C*°(R")-module of all
natural operators Tiay, ~ A2T*T" s free and 2r?-dimensional. The col-

lection of natural operators of Examples 3—6 (i.e. the collection consisting of

(s1) (s2) (s1) (s2)

ANA forsy,so=1,...,7r with sy <sgand AN A forsi,so=1,...,r
(s1) (s2) (s)

and A N A for s1,89=1,...,r with s; < sy and dA for s=1,...,r) is

a basis of this module over C*>(R").

The proof of Theorem 2 will occupy the rest of this subsection.

Consider a natural operator B : Tirqs, ~ A2T*T7*. Since the collection
of natural operators listed in the statement of the theorem is C*>°(R")-linearly
independent, we need only prove that B is their linear combination with
C>(R")-coefficients.

The following lemma shows that B is uniquely determined by the re-
striction B(O1)|(TT™*R™ Xpregn TT™*R™)p.

LEMMA 3. If B(0)|(TT™R™ Xprsgn TT™*R™)o = 0, then B = 0.
Proof. The proof is similar to the proof of Lemma 1. =
So, we will study the restriction B(01)|(TT™*R™ Xpregn TT™*R™)g.

LEMMA 4. There are f(s, s,y € C(R") for 51,82 = 1,...,7r with 51 < 53
such that

(s1) (s2)
(B= Y fomAnA )(81)‘(VTT*R” Xpregn VIT*R™) = 0.

1<s51<s52<r

Proof. The proof is similar to the one of Lemma 2. We have the identi-
fication

(VT™*R" Xpregn VI R™) = TP R™ x Ty*R™ x T}*R",
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(%!tzo(u +tv),%‘t:0(u+ tw)) = (u,v,w), u,v,w € Ty*R™. For s1,s2 =
1,...,r with s; < s2 we define f(,, ,,) : R" — R by

Fo o) = B0 (3 (l; g )i (o )it () )

a=(ai,...,a;) € R". We prove that the f, ,,) are as required.

~ (s1) (s2)
Set B := B—ZlgsKsst f(s1,50) AN A . Consider v,7, 0 : R" — R with

~v(0) = n(0) = 0(0) = 0. Define a = (ay,...,a,) € R", b= (by,...,b.) € R"
and ¢ = (c1,...,¢.) € R" by

0., 0) = (3 frante)),

=1
-7 1 -7 - 1 1\l
ittt 0.0 = 35 (3 ),
=1 "
. 1 r a 1 1\
et 00 = g5 (X e,
=1

Using the naturality of B with respect to the homotheties (z!,t22, ..., tz")
for t # 0 and putting t — 0 we get

5(81)(35%1'677,1'6@)
= B(01)(jo(v(z",0,...,0)), 45 (n(z",0,...,0)), 45 (e(z",0,...,0))).

Consequently,

B0y, d6m 350) = D (bsyCss = bsyCs ) fss,02 ()
1<s1<s2<r
- Z f(81,$2)(a)(b51052 - bS2CS1) =0. =
1<s1<s2<r

(s1) (s2)
So, replacing B by B — Zl§51<52§r J(s1,0) A N A we can assume that

(%) B(Oy)|[(VT™*R™ Xpregn VIT*R™)g = 0.
LEMMA 5. Under the assumption (*) there exist g, s,y € C*(R") for
s1,82=1,...,7 and hs € C*(R") for s=1,...,r such that

r (o) (s2) o (o)
(B— 3 Geren AN A —ZhsdA)(81)‘(VT’"*R”XTMR”TTT*R”)O:0.
s=1

S1,52=1

Proof. For s1,s2 = 1,...,7 define g, ,,) : R" — R by

@) = O (35,35 gy ) ) T 02l ) ),
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a=(ay,...,a,) € R", where

r

1 1 o
Ya,s1 :Zﬁal( 1)l+m(xl) 1—1,.2
=1

For s =1,...,r define hy : R" — R by

mata) = 300 (500035 (g () ) 70t ).

a = (al,...,aT) € R", where Yo = 2;21(1/l!)al($1)l. We prove that the
J(s1,s0) and hg are as required.
Set

(s1) 52

) T
Z 9(s1, 52)_/4 A Zh dA

81,52=1

By (%), B(81)|(VT"™R"™ Xpregn VIT"™*R™)q = 0. So, it remains to show that
B(01)((j5,36m), T 0(jgy)) = O for any v, n : R" — R with v(0) = n(0) =0
and any constant vector field 0 on R™. Using the naturality of B with respect
to the linear isomorphisms R"™ — R™ preserving 0, we can assume that
0 = 0s.

Consider v, : R” — R as above. Define a; = 91v(0), by = 9in(0),
e = 0,077 14(0) and d; = 920" 'n(0) for I = 1,...,7. Let a := (a1,...,a,)
€ RF. Using the naturality of B with respect to the homotheties a;, =

(2t tx? 723, .. 7a™) for t,7 # 0 we obtain the homogeneity condition

tB(01) (35, dom), T 2(357))
= B(01)((o(voatr),jo(noars)), T 02(j (v 0 at,r)))-
This implies

T

B(O)((j67,36m). T 02(07) = D €o1bsyGisrom)(a +Zdh

s1,52=1
Z 9(51782)(0’)631632 - Zhs(a)ds
s81,52=1 s=1
=0

by the homogeneous function theorem. m

(s1) (s2) (s)
Replacing B by B— 251 o1 Y(s1,s0) ANA =370 hod A we can assume

that
(xx) B(0)|[(VT™* R"™ Xprsga TT™*R™)o = 0.
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Proof of Theorem 2. For s1,s3 = 1,...,7 with s; < sz define Fi,, ,) :
R" — R by

F(sl,SQ)(a) = B(al)(Tr*a2(j6(7a,81752))7TT*83(.7'5(7@,81,82)))7

a=(ay,...,a,) € R", where

<1 1
e = 2 e+ Gy
=1

1
, (zt)s1 12 + o) (zh)s2 123,

(s1) (s2)
Using (#*) we show that B = 21§51<52§T Fis, 55y A N A . (Then the proof

will be complete.) For simplicity denote the last right-hand side by B.
First for k = 2,...,r define G : R" — R by

Gr(a) = B(01)(T" 02016 (Vak)))> T 03(50 (Via,k))))
a=(ay,...,a,) € R", where
1

ﬁal(xl)l +
=1

r

1
(k —2)!

Va,k) = ()" 22?2,
By the invariance of B(0;) with respect to the diffeomorphism replacing
22 by 2% and 22 by 22 and preserving the other coordinates we see that
Gk = —Gk, i.e. Gk =0 fork:2,...,r. .

By Lemma 3 and (xx) to prove B = B it is sufficient to show that
(k) BO)(T™0(i5), T™0(g)) = B@)(T™(i5), T 9(i57))
for any v : R — R with v(0) = 0 and any constant vector fields 9 and d
on R™ such that 01, 0 and 0 are linearly independent. Using the naturality
of B and B with respect to linear isomorphisms R" — R™ preserving d; we
can assume 0 = 09 and 9 = 0s.

Consider v : R" — R, 7(0) = 0. Define a; = d}~(0), b = 920" 1~(0)
and ¢; = 6385_17(0) for I =1,...,r. Define also dj, = 9,039%27(0) for k =

2,...,7r. Set a := (ay,...,a,) € R". Using the naturality of B with respect

to the homotheties ay, 1, » = (2!, t12% tox3, 724, ... 72") for t1,ta, 7 # 0

we get the homogeneity condition

t1t2B(01)(T"02(jo), T 95 (55 7))
= B(01)(T"" 02(jg (v © At 2,7)), T O3(Jo v © auy t,7)))-
This type of homogeneity gives

B(al)(TT*GQ(]SV)vTT*83(]67)) = Z F(51752)(a)(b51052 - bSZCSI)

1<s1<s2<r

+ Z Gk(a)dk
k=2
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by the homogeneous function theorem. Then
BO)(T™02(j57): T 05(67) = D Flor,e)(@)(bs, 55 = bscsy)
1<s1<s2<r
because G = 0 for k =2,...,r. On the other hand
B@)(T™ 02567, T™05(57) = D Flaruan) (0)(bay €y = buges,)-
1<s1<s2<r
Thus we have (x*x). The proof of Theorem 2 is complete. m

2.3. Corollaries. Using the homogeneous function theorem, we obtain
the following corollary of Theorem 2.

COROLLARY 4. Let n > 3 be a natural number.

(i) If r > 2, then for every linear natural operator A : T\rgf, ~
A2T*T"* there exist real numbers o, 3,7,8 such that

1 (L (1 (2 (1) (2)
A=aANA+PBANA+ypridA +0dA,

where pry € C>(R") is the projection R™ — R on the first factor.
(ii) If r =1, then for every linear natural operator A : Ty, ~ T*T'*
there exist real numbers o, 3 such that
1 (D 1)
A=aANA+pFidgdA,
where idg € C*>(R) is the identity map on R.

Considering the values of natural operators Tjrs, ~ A2T*T™ at X =0
we obtain

COROLLARY 5. For a natural number n > 3 every canonical 2-form on
T is a constant multiple of d\", where X" is as in Corollary 2.

For » = 1 we deduce from Theorem 2 the following result.

COROLLARY 6. Let B : Tpqy, ~> A*T*T* be a natural operator (n > 3).
Then there exist maps f,g: R — R such that

B(X)n = f(<77aXa:>)(>‘ A iT*Xw)n + g(<77aX1>)w77

where M is an n-manifold, X € X(M), x € M, n € T;M. Here X\ and w
are as in Corollary 3.

3. Remark. What about natural operators A : Tjxry, ~ T*T() and
B : Tiprg, ~ A*T*T™) | where T M = (T"*M)* is the linear r-tangent
bundle? It turns out that A = 0 and B = 0, as follows from the following
general fact.
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THEOREM 3. If F : Mf — FM is a bundle functor with the point
property, then every natural operator A : Tiaqy, ~ APT*F for n > 2 and
p>11s0.

Proof. We have A : Tjpqy, ~ TOOF where F = APTF : Mf — FM.

Of course, F has the point property. So, by the result of [10], A = const € R.
Since A is fibre linear, A=0. m

REFERENCES

[1] M. Doupovec and J. Kurek, Liftings of tensor fields to the cotangent bundle, in:
Differential Geom. and Appl. (Brno, 1995), Masaryk Univ., Brno, 1996, 141-150.

[2] —, —, Some geometrical constructions with (0,2)-tensor fields on higher order
cotangent bundles, Ann. Univ. Mariae Curie-Sktodowska 50 (1996), 43-50.

[3] —, —, Torsions of connections on higher order cotangent bundles, ibid. 55 (2001),
15-22.

[4] I Kolaf, P. W. Michor and J. Slovdk, Natural Operations in Differential Geometry,
Springer, Berlin, 1993.
[5] J. Kurek, Natural affinors on higher order cotangent bundle functor, Arch. Math.
(Brno) (28) (1992), 175-180.
[6] —, Natural transformations of higher order cotangent bundle functors, Ann. Polon.
Math. 58 (1993), 29-35.
[7] M. Kures, Connections and torsions on TT*M, Ann. Univ. Mariae Curie-Skto-
dowska 55 (2001), 89-101.
[8] W. M. Mikulski, Some natural constructions on vector fields and higher order cotan-
gent bundles, Monatsh. Math. 117 (1994), 107-119.
[9] —, Natural functions on T*T") and T*T"*, Arch. Math. (Brno) 31 (1995), 1-7.
[10] —, Natural transformations transforming functions and vector fields to functions
on some natural bundles, Math. Bohemica 117 (1992), 217-223.
[11] K. Yano and S. Ishihara, Tangent and Cotangent Bundles, Dekker, New York, 1973.

Institute of Mathematics
Jagiellonian University
Reymonta 4

30-059 Krakow, Poland
E-mail: mikulski@im.uj.edu.pl

Received 21 August 2001 (4099)



