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and BERTHA TOMÉ (México)
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Abstract. We describe the structure of all indecomposable modules in standard coils
of the Auslander–Reiten quivers of finite-dimensional algebras over an algebraically closed
field. We prove that the supports of such modules are obtained from algebras with sincere
standard stable tubes by adding braids of two linear quivers. As an application we obtain
a complete classification of non-directing indecomposable modules over all strongly simply
connected algebras of polynomial growth.

Introduction. Let K be an algebraically closed field, and A a basic,
connected, finite-dimensional K-algebra. We denote by modA the category
of finite-dimensional right A-modules, by indA the full subcategory of modA
consisting of a complete set of non-isomorphic indecomposable A-modules,
by ΓA the Auslander–Reiten quiver of A and by τ = τA the Auslander–
Reiten translation in ΓA. We identify the vertices of ΓA with the corre-
sponding modules in indA, and the components of ΓA with the correspond-
ing full subcategories of indA. A component Γ of ΓA is called standard if Γ
is equivalent to the mesh-category K(Γ ) of Γ (see [10], [24]). It was shown in
[31] that every standard component of ΓA with infinitely many τ -orbits and
without projective and injective modules is a stable tube, that is, a transla-
tion quiver of the form ZA∞/(τ r) for some r ≥ 1. A module X in indA is
called directing if it does not lie on a cycle X = X0 → X1 → · · · → Xr = X,
r ≥ 1, of non-zero non-isomorphisms in indA. The structure of directing
modules is fairly well understood (see [8], [11], [12], [20], [21], [25]) because
as shown in [24] their supports are tilted algebras. On the other hand, the
Auslander–Reiten quiver ΓA of an algebra A admits at most finitely many
τA-orbits containing directing modules (see [22], [29]).
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[67]



68 P. MALICKI ET AL.

In this paper we are interested in the structure of (non-directing) inde-
composable modules lying in standard Auslander–Reiten components with
oriented cycles. Our knowledge of such components is still relatively poor. In
general, we only know that if Γ is a standard component of the Auslander–
Reiten quiver ΓA of an algebra A, then all but finitely many τ -orbits in Γ
are periodic, and hence Γ admits at most finitely many modules of any fixed
dimension d [31].

Important examples of standard Auslander–Reiten components with ori-
ented cycles are provided by all stable tubes of the Auslander–Reiten quivers
of concealed-canonical algebras. Recall that an algebra A is called concealed-

canonical [16] if it is of the form EndC(T ) where C is a canonical algebra
(in the sense of Ringel [24]) and T is a tilting C-module which is a direct
sum of indecomposable C-modules of positive rank. Tame concealed alge-
bras and tubular algebras, described completely in [9], [15], [24], form the
class of all concealed-canonical algebras which are of tame representation
type.

In [3], [4] Assem and the second named author introduced the notion of
admissible operations which generalized that of branch extensions or coex-
tensions of [14], [24]. These allowed one to define and describe components of
an Auslander–Reiten quiver called coils, and then a class of algebras, called
coil enlargements of tame concealed algebras. This class of algebras is of fun-
damental interest in the study of simply connected algebras of polynomial
growth. Namely, it was shown in [34] (see also [33]) that if A is a strongly
simply connected algebra of polynomial growth then any non-directing inde-
composable A-module is a module over a full convex subcategory of A which
is a coil enlargement of a tame concealed algebra. Moreover, tame coil en-
largements of tame concealed algebras (called coil algebras) are crucial in the
study of representation-infinite selfinjective algebras of polynomial growth
(see [6], [19], [26]).

Further, it was shown in [1] that all representation-infinite algebras which
are tilting-cotilting equivalent to tame concealed and tubular algebras are
special types (branch enlargements) of coil enlargements of tame concealed
algebras. In [7] coil enlargements of arbitrary algebras with weakly sepa-
rating families of (standard) stable tubes were introduced and investigated.
This class of (usually wild) algebras contains the class of quasi-tilted alge-
bras of canonical type [18]. The sincere standard stable tubes have been
extensively investigated (see [16], [17], [23], [24], [30]–[32], [35], [36]). In par-
ticular, it has been shown in [23] that an algebra A is concealed-canonical
if and only if ΓA admits a sincere (standard) stable tube without external
short cycles. Moreover, as shown in [36], there are many algebras of arbi-
trary (finite or infinite) global dimension whose Auslander–Reiten quivers
admit sincere (even faithful) stable tubes of arbitrarily large rank.
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The main aim of this paper is to describe the structure of all indecom-
posable modules in standard coils of the Auslander–Reiten quivers of coil
enlargements of algebras whose Auslander–Reiten quiver admits a sincere
standard stable tube. As an application we get a complete classification of
non-directing indecomposable modules over all strongly simply connected
algebras of polynomial growth.

The paper is organized as follows. In Section 1 we fix the notation and
recall the notions of admissible operations and coils. Section 2 is devoted
to the coil enlargements of algebras with a sincere standard stable tube
and to the structure of indecomposable modules in the coils obtained in
this enlargement process. In Section 3 we formulate our main result on the
structure of algebras which admit (weakly) sincere indecomposable modules
lying in coils. In Section 4 we prove the implications (i)⇒(ii) and (i)⇒(iii)
of Theorem 3.3, by describing all (weakly) sincere indecomposable modules
over braid algebras. Sections 5–7 are devoted to the proof of the implica-
tion (ii)⇒(i) of Theorem 3.3, which completes the proof of our main result
(since the implication (iii)⇒(ii) is trivial). As an application of our main
results we give in Section 8 (Theorem 8.4) a complete classification of non-
directing indecomposable modules over strongly simply connected algebras
of polynomial growth. In Section 9 we present some examples.

1. Admissible operations and coils

1.1. Throughout this paper, K will denote a fixed algebraically closed
field. An algebra A will always mean a basic, connected, associative, finite-
dimensional K-algebra with an identity. Thus there exists a connected bound
quiver (QA, IA) and an isomorphism A ∼= KQA/IA. Equivalently, A =
KQA/IA may be considered as a K-linear category whose object class A0 is
the set of points of QA, and the set of morphisms A(x, y) from x to y is the
quotient of the K-vector space KQA(x, y) of all formal linear combinations
of paths in QA from x to y by the subspace IA(x, y) = KQA(x, y)∩ IA (see
[10]). A full subcategory C of A is called convex (in A) if any path in A
with source and target in C lies entirely in C. It is called triangular if QC

contains no oriented cycle.
By an A-module is meant a finitely generated right A-module. We de-

note by modA the category of A-modules and by indA the full subcategory
consisting of a complete set of representatives of the isomorphism classes
of indecomposable A-modules. For a point i in QA, we denote by S(i)
the corresponding simple A-module and by P (i) (or I(i)) the projective
cover (or injective envelope, respectively) of S(i). The dimension-vector of a
module M is the vector dim M = (dimK HomA(P (i), M))i∈A0

. The support

of an A-module M is the full subcategory Supp M of A with object class
{i ∈ A0 | HomA(P (i), M) 6= 0}.
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1.2. Given a standard component Γ of ΓA, and an indecomposable mod-
ule X in Γ , the support S(X) of the functor HomA(X,−) |Γ is the K-linear
category defined as follows [5]. Let HX denote the full subcategory of Γ con-
sisting of the indecomposable modules M in Γ such that HomA(X, M) 6= 0,
and IX denote the ideal of HX consisting of the morphisms f : M → N
(with M, N in HX) such that HomA(X, f) = 0. We define S(X) to be
the quotient category HX/IX . Following the above convention, we usually
identify the K-linear category S(X) with its quiver.

A translation quiver Γ is called a tube [14], [24] if it contains a cyclical
path and if its underlying topological space is homeomorphic to S1 × R

+

(where S1 is the unit circle, and R
+ the non-negative real line). A tube has

only two types of arrows: pointing to infinity and pointing to the mouth.
This also applies to sectional paths, that is, paths x0 → x1 → · · · → xm in
Γ such that xi−1 6= τxi+1 for all i, 0 < i < m. A maximal sectional path
consisting of arrows pointing to infinity (or to the mouth) is called a ray

(or a coray, respectively). Tubes containing neither projective vertices nor
injective vertices are called stable. They are of the form ZA∞/(τ r), r ≥ 1.
The rank of a stable tube Γ is the least positive integer r such that τ rx = x
for all x in Γ . A tube of rank r = 1 is called homogeneous.

1.3. The one-point extension of the algebra A by an A-module X is the
matrix algebra

A[X] =

[
A 0
X K

]

with the usual addition and multiplication of matrices. The quiver of A[X]
contains QA as a full subquiver and there is an additional (extension)
point which is a source. The A[X]-modules are usually identified with the
triples (V, M, ϕ), where V is a K-vector space, M an A-module and ϕ :
V → HomA(X, M) is a K-linear map. An A[X]-linear map (V, M, ϕ) →
(V ′, M ′, ϕ′) is then identified with a pair (f, g), where f : V → V ′ is K-
linear, g : M →M ′ is A-linear and ϕ′f = HomA(X, g)ϕ. One defines dually
the one-point coextension [X]A of A by X.

1.4. A coil is a translation quiver constructed inductively from a stable
tube by a sequence of operations called admissible. Our first task is thus to
define the latter. Throughout this section, let A be an algebra, and Γ be a
standard component of ΓA. For an indecomposable module X in Γ , called
the pivot, the admissible operation to be applied to Γ depends on the shape
of the support S(X) of HomA(X,−) |Γ .

(ad 1) Assume S(X) consists of an infinite sectional path starting at X:

X = X0 → X1 → X2 → · · ·
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Thus the component Γ may look as follows:

X0

##G
GG

G τ
−

A X0

&&MMM
M

X1

99tttt

%%JJJJJ τ
−

A X1
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MM

X2

88qqqqq
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−
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. . .

. . .

In this case, we let t ≥ 1 be a positive integer,

D = Tt(K) =




K 0 . . . 0
K K . . . 0
...

. . .
...

K . . . . . . K




the full t × t lower triangular matrix algebra, and Y1, . . . , Yt the indecom-
posable injective D-modules with Y = Y1 being the unique indecomposable
projective-injective. We define the modified algebra A′ of A to be the one-
point extension

A′ = (A×D)[X ⊕ Y ],

and the modified component Γ ′ of Γ to be

where Zij = (K, Xi ⊕ Yj, ( 1
1 )) for i ≥ 0 and 1 ≤ j ≤ t, and X ′

i = (K, Xi, 1)
for i ≥ 0. The morphisms are defined in the obvious way. The translation τ ′

of Γ ′ is defined as follows: τ ′Zij = Zi−1,j−1 if i ≥ 1, j ≥ 2, τ ′Zi1 = Xi−1 if
i ≥ 1, τ ′Z0j = Yj−1 if j ≥ 2, Z01 = P is projective, τ ′X ′

0 = Yt, τ
′X ′

i = Zi−1,t

if i ≥ 1, τ ′(τ−1Xi) = X ′
i provided Xi is not an injective A-module, otherwise

X ′
i is injective in Γ ′. For the remaining vertices of Γ ′, the translation τ ′

coincides with the translation of Γ , or ΓD, respectively.
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If t = 0, we define the modified algebra A′ to be the one-point extension
A′ = A[X] and the modified component Γ ′ to be the component obtained
from Γ by inserting only the sectional path consisting of the vertices X ′

i,
i ≥ 0.

Intuitively, this operation amounts to “opening” the component Γ along
the arrows Xi → τ−1

A Xi−1, and then “glueing” Γ with ΓD by inserting
the infinite rectangle (indicated by the dashed lines in the figure above)
consisting of the vertices Zij and X ′

i. This rectangle is equal to the support
S(P ) in Γ ′ of the functor HomA′(P,−) |Γ ′ , where P is the new projective. We
say that Γ ′ is obtained from Γ and ΓD by inserting the rectangle determined

by P .

The non-negative integer t is such that the number of infinite sectional
paths parallel to X0 → X1 → X2 → · · · in the inserted rectangle equals
t + 1. We call t the parameter of the operation.

In case Γ is a stable tube, it is clear that any module on the mouth of
Γ satisfies the condition for being a pivot for the above operation. Actually,
the above operation is, in this case, the tube insertion as considered in [14].

(ad 2) Assume S(X) to consist of two sectional paths starting at X, the
first infinite and the second finite with at least one arrow:

Yt ← · · · ← Y2 ← Y1 ← X = X0 → X1 → X2 → · · ·

where t ≥ 1. In particular, X is necessarily injective. The component Γ may
then look as follows:

Yt
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We define the modified algebra A′ of A to be the one-point extension A′ =
A[X] and the modified component Γ ′ of Γ to be
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where Zij = (K, Xi ⊕ Yj, ( 1
1 )) for i ≥ 1 and 1 ≤ j ≤ t, and X ′

i = (K, Xi, 1)
for i ≥ 0. The morphisms are the obvious ones. The translation τ ′ of Γ ′

is defined as follows: P = X ′
0 is projective-injective, τ ′Zij = Zi−1,j−1 if

i ≥ 2, j ≥ 2, τ ′Zi1 = Xi−1 if i ≥ 1, τ ′Z1j = Yj−1 if j ≥ 2, τ ′X ′
i = Zi−1,t

if i ≥ 2, τ ′X ′
1 = Yt, τ

′(τ−1Xi) = X ′
i provided Xi is not an injective A-

module, otherwise X ′
i is injective in Γ ′. For the remaining vertices of Γ ′, the

translation τ ′ coincides with the translation τ of Γ .

Intuitively, the above operation amounts to “opening” the component Γ
along the arrows Xi → τ−1

A Xi−1, “plugging in” a new projective-injective
P and inserting the infinite rectangle (indicated by the dashed lines in the
figure above) consisting of the vertices Zij and X ′

i. On the other hand, those
modules M such that there is a walk from M to τ−1

A Yj−1 for some j, 2 <

j ≤ t, not factoring through one of the arrows Yj → τ−1
A Yj−1 are “removed”

from the component. The inserted rectangle is equal to the support S(P ) in
Γ ′ of the functor HomA′(P,−) |Γ ′ , where P is the new projective-injective.
We say that Γ ′ is obtained from Γ by inserting the rectangle determined

by P .

The integer t ≥ 1 is such that the number of infinite sectional paths
parallel to X0 → X1 → X2 → · · · in the inserted rectangle equals t + 1. We
call t the parameter of the operation.

(ad 3) Assume S(X) to consist of two parallel sectional paths, the first
infinite and starting at X, the second finite with at least one arrow

Y1 → Y2 → · · · → Yt

↑ ↑ ↑
X = X0 → X1 → · · · → Xt−1 → Xt → · · ·

where t ≥ 2. In particular, Xt−1 is necessarily injective. The component Γ
may then look as follows:
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We define the modified algebra A′ of A to be the one-point extension A′ =
A[X] and the modified component Γ ′ of Γ to be

if t is odd, while

if t is even, where Zij = (K, Xi ⊕ Yj , ( 1
1 )) for i ≥ 1, 1 ≤ j ≤ i and j ≤ t,

and X ′
i = (K, Xi, 1) for i ≥ 1. The morphisms are the obvious ones. The

translation τ ′ of Γ ′ is defined as follows: P = X ′
0 is projective, τ ′Zij =

Zi−1,j−1 if i ≥ 2, 2 ≤ j ≤ t, τ ′Zi1 = Xi−1 if i ≥ 1, τ ′X ′
i = Yi if 1 ≤ i ≤ t,

τ ′X ′
i = Zi−1,t if i ≥ t + 1, τ ′Yj = X ′

j−2 if 2 ≤ j ≤ t, τ ′(τ−1Xi) = X ′
i if
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i ≥ t provided Xi is not an injective A-module, otherwise X ′
i is injective

in Γ ′. In both cases, X ′
t−1 is injective. For the remaining vertices of Γ ′, the

translation τ ′ coincides with the translation τ of Γ .
Intuitively, the above operation amounts to “opening” the component

Γ along the arrows Xi → τ−1
A Xi−1, “plugging in” a new projective P and

inserting the infinite rectangle (indicated by the dashed lines in the figure
above) consisting of the vertices Zij and X ′

i. On the other hand, those mod-
ules M such that there is a walk from M to τ−1

A Yj−1 for some j, 2 ≤ j ≤ t,

not factoring through one of the arrows Yj → τ−1
A Yj−1 are “removed” from

the component. The reason for the appearance of the two cases depending
on the parity of t follows from easy combinatorial considerations involving
the length functions [4, (4.4)]. The inserted rectangle is equal to the support
S(P ) in Γ ′ of the functor HomA′(P,−) |Γ ′ , where P is the new projective.
We say that Γ ′ is obtained from Γ by inserting the rectangle determined

by P .

The integer t ≥ 2 is such that the number of infinite sectional paths
parallel to X0 → X1 → X2 → · · · in the inserted rectangle equals t + 1. We
call t the parameter of the operation.

Finally, together with each (ad 1), (ad 2) or (ad 3) operation, we con-
sider its dual, denoted by (ad 1∗), (ad 2∗) and (ad 3∗), respectively. These
six operations are called the admissible operations.

Clearly, the admissible operations can be defined as operations on trans-
lation quivers rather than on Auslander–Reiten components. The definitions
are obvious (see [3] or [30] for the details).

Definition. A translation quiver Γ is called a coil if there exists a
sequence of translation quivers Γ0, Γ1, . . . , Γm = Γ such that Γ0 is a stable
tube and, for each i (0 ≤ i < m), Γi+1 is obtained from Γi by an admissible
operation.

Observe that the present notion of coil is clearly a natural generalization
of the notion of coherent tube: indeed, any stable tube is (trivially) a coil,
and a tube can be characterized to be a coil such that each admissible
operation in the sequence defining it is of type (ad 1) or (ad 1∗). Also, a coil
without injectives (or without projectives) is a tube. A quasi-tube (in the
sense of [27]) is a coil having the property that each admissible operation in
the sequence defining it is of type (ad 1), (ad 2), (ad 1∗) or (ad 2∗).

It follows from the definition that coils share many properties with tubes.
For instance, all but finitely many vertices in a coil belong to a cyclical path.
A vertex x in a coil Γ is said to belong to the mouth of Γ if x is the starting,
or ending, vertex of a mesh in Γ with a unique middle term. Also, Γ contains
a (maximal) tube as a cofinite full translation subquiver. Arrows of this tube
point either to the mouth or to infinity. An infinite sectional path in Γ
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x = x1
α1−→ x2

α2−→ · · · → xi
αi−→ xi+1 → · · ·

is called a ray if there exists i0 ≥ 1 such that, for all i ≥ i0, the arrow
αi points to infinity. Corays are defined dually. Thus the parameter of an
(ad 1), (ad 2) or (ad 3) operation (or (ad 1∗), (ad 2∗) or (ad 3∗)) is used to
measure the number of rays (or corays, respectively) inserted in the coil by
the operation.

2. Coil enlargements of sincere standard stable tubes

2.1. Throughout the paper, C denotes an algebra with a fixed standard
stable tube T = ZA∞/(τ r) of ΓC containing an indecomposable sincere
module. It is well known that then all indecomposable modules in T whose
distance to the mouth is at least r are sincere, and hence all but finitely
many modules in T are sincere (see [24, (3.1)]). We note that the class of
such algebras C is wide and contains all concealed canonical algebras (hence
all tame concealed and tubular algebras) [16], [17], [32], or more generally,
all generalized canonical algebras [36].

Following [7], an algebra B is said to be a coil enlargement of C using

modules from T if there is a sequence of algebras C = C0, C1, . . . , Cm = B
such that, for each 0 ≤ j < m, Cj+1 is obtained from Cj by an admissible
operation with the pivot either in the stable tube Γ0 = T (if j = 0) or in
the coil Γj of ΓCj

obtained from Γ0 by means of the sequence of admissible
operations done so far. The sequence C = C0, C1, . . . , Cm = B is then called
an admissible sequence. In this process we get a standard coil C = Γm in ΓB

(see [3], [4], [5] or [7]). We note that in general C does not contain sincere
indecomposable modules.

The aim of this paper is to describe the structure of all indecomposable
modules lying in the coil C of a coil enlargement B of C using modules
from T . The indecomposable modules in C may be divided into two disjoint
classes: the indecomposable modules whose restriction to C is zero, and the
remaining ones. The supports of indecomposable modules of the first class
are representation-finite simply connected algebras [10], and consequently,
those indecomposable modules are known (see [8], [11], [12], [25]). Therefore,
it remains to describe the indecomposable modules in C having non-zero
restriction to C.

2.2. Definition. A module M in C is called weakly sincere if M has
non-zero restriction to C and SuppM contains any object of B which is not
in C.

The following theorem will play a crucial role in our investigation of coils
which admit weakly sincere indecomposable modules.
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2.3. Theorem. Let B be a coil enlargement of C using modules from

T and C be the standard coil of ΓB obtained by the corresponding sequence

of admissible operations. Then:

(i) There is a unique maximal branch coextension B− of B which is a

(full) convex subcategory of B, and B can be obtained from B− by a sequence

of admissible operations of types (ad 1), (ad 2), (ad 3).

(ii) There is a unique maximal branch extension B+ of B which is a (full)
convex subcategory of B, and B can be obtained from B+ by a sequence of

admissible operations of types (ad 1∗), (ad 2∗), (ad 3∗).

Proof. (i) and (ii) are direct consequences of the proof of [7, Theo-
rem 3.5].

2.4. Let C be an algebra and Γ0 be a standard stable tube of ΓC . If
the pair (A, Γ ), formed by an algebra A and a component Γ of ΓA, is ob-
tained from the pair (C, Γ0) by a sequence of admissible operations, then
the corresponding sequence of modified algebras and components

(C, Γ0) = (C0, Γ0), (C1, Γ1), . . . , (Cn, Γn) = (A, Γ )

is called a defining sequence for (A, Γ ).

A defining sequence (C, Γ0) = (C0, Γ0), (C1, Γ1), . . . , (Cn, Γn) = (A, Γ ) is
called reduced if, for any i (1 ≤ i ≤ n), whenever (Ci, Γi) is obtained from
(Ci−1, Γi−1) by an operation of type (ad 2), (ad 2∗), (ad 3) or (ad 3∗), then
there is no defining sequence (C, Γ0) = (B0, ∆0), (B1, ∆1), . . . , (Bt, ∆t) =
(Ci, Γi) such that (Ci, Γi) is obtained from (Bt−1, ∆t−1) by an operation of
type (ad 1) or (ad 1∗). In this case, the corresponding sequence of admissible
operations is also called reduced.

In other words, a sequence of admissible operations transforming (C, Γ0)
into (A, Γ ) is reduced if the operations that appear before each (ad 2), (ad 3),
(ad 2∗) or (ad 3∗) operation in the sequence are only those that do not com-
mute with such an operation (see [7, (3.1)]).

We shall keep the notation introduced above throughout the rest of the
paper.

2.5. In this section we will be concerned with a more general situation.
The results obtained here will be quite useful in the rest of our work.

Let C be an algebra and Γ0 be a standard coil in ΓC . Assume that (A, Γ )
is obtained from (C, Γ0) by a sequence of n (ad 1) operations. Then we have
the following definitions.

The projectives inserted in Γ0 by the above operations are called con-

secutive if:

(i) each operation has parameter zero,
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(ii) for 1 ≤ i < n, the pivot of the (i + 1)th operation is the unique
projective inserted by the ith operation.

The projectives inserted in Γ0 by the above operations are called line-

coline consecutive if:

(i) each operation but the last has parameter zero,

(ii) for 1 ≤ i < n, the pivot of the (i + 1)th operation is the unique
projective inserted by the ith operation.

The projectives inserted in Γ0 by the above operations are said to be in

line or aligned if, for 1 ≤ i < n, the pivot of the (i + 1)th operation is either
the simple projective inserted by the ith operation, or an (ad 1)-pivot on the
ray starting at the unique projective inserted by the ith operation.

Note that if the unique projective P inserted by the ith operation is not
injective, then P is the only (ad 1)-pivot on the ray starting at P , and thus
the pivot of the (i + 1)th operation. If P is injective, then there are at least
two (ad 1)-pivots on the ray starting at P , and thus the pivot of the (i+1)th
operation may not be P . If we assume that the pivot of the sequence of
(ad 1) operations that transforms (C, Γ0) into (A, Γ ) is the indecomposable
C-module E, then the bound quiver of A has, in each of the three situations
described above, the following form:

◦oo . . .oo ◦oo

◦oo . . .oo ◦oo // ◦ // . . . // ◦

◦oo . . .oo ◦oo // . . . // ◦ . . .oo ◦oo // . . .

all bound by the relations of C[E] and, in the last case, possibly by additional
zero relations from points on the line to points in suppE.

Lemma. Let C be an algebra and Γ0 be a standard coil in ΓC . Assume

that (A, Γ ) is obtained from (C, Γ0) by a sequence of n (ad 1) operations with

pivot E, and that there is a sincere A-module U in Γ . Then the projectives

inserted by these operations in Γ0 are in line, and U |C is a sincere module

in Γ0 lying on the ray that starts at E.

Proof. By induction on n. Let (C, Γ0) = (A0, Γ0), (A1, Γ1), . . . , (An, Γn)
= (A, Γ ) be the corresponding sequence of modified algebras and compo-
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nents. Since U is sincere and Γ is standard, U lies on the ray containing all
the projectives inserted in Γn−1 by the nth operation, and U ′ = U |An−1

is
a sincere module in Γn−1 lying on the ray that starts at the pivot X of the
nth operation. Again, since U ′ is sincere and Γn−1 is standard, U ′ lies on
the ray starting at P , where P is either the simple projective or the unique
projective inserted in Γn−2 by the (n−1)th operation. Hence the ray [X,∞)
is contained in the maximal ray [P,∞). If P is the simple projective inserted
by the (n−1)th operation, then the unique (ad 1)-pivot on the ray [P,∞) is
P , and thus X ∼= P . The same is true if P is the unique projective inserted
by the (n−1)th operation and P is not injective. If P is injective, then X is
any (ad 1)-pivot on the ray [P,∞). The proof is completed by applying the
induction hypothesis to (An−1, Γn−1). Note that if P is injective, then also
radP is injective.

2.6. Corollary. Let C be an algebra and Γ0 be a standard coil in ΓC .

Let (A, Γ ) be obtained from (C, Γ0) by a sequence of (ad 1) operations with

pivot E such that the projectives inserted in Γ0 by those operations are in

line. Then an A-module U is a sincere indecomposable in Γ if and only if

U |C is a sincere indecomposable in Γ0 lying on the ray that starts at E and

U(x) = K for every vertex x ∈ QA \QC .

Proof. Let U be a sincere A-module in Γ . From (2.5) it follows that U |C
is a sincere indecomposable in Γ0 lying on the ray that starts at E, and
dimKHomA(P (x), U) = 1 for every vertex x ∈ QA \QC .

Conversely, if U is as stated above, then it follows from the description
of the modified component after applying an (ad 1) operation that U is a
sincere module in Γ lying on the ray that contains all the projectives inserted
by the last operation.

2.7. Returning to our original problem, we first assume that Γ contains
projectives or injectives, but not both. By duality, we may assume that Γ
contains only projectives. Then Γ is obtained from Γ0 by a sequence of
(ad 1)’s, for the remaining operations give rise to injectives in Γ . Thus Γ is
a standard non-stable tube and A is a branch extension of C. From (2.5) we
obtain a better description of A and Γ . Let E in Γ0 be the pivot of C-module
which is the pivot of the sequence of (ad 1)’s that transforms (C, Γ0) into
(A, Γ ). Then the bound quiver of A has the following form:

◦

aaCCC

}}{{
{

◦oo . . .oo ◦oo // . . . // ◦ . . .oo ◦oo // . . . // ◦ . . .oo

bound by the relations of C[E].
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The sincere non-stable tube Γ has the following shape:
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The following result is a direct consequence of (2.6).

Theorem. Let (A, Γ ) be obtained from (C, Γ0) by a sequence of (ad 1)
operations with pivot E such that the projectives inserted in Γ0 by those op-

erations are in line. Then an A-module U is a weakly sincere indecomposable

module in Γ if and only if there exists an indecomposable C-module M in

Γ0 lying on the ray starting at E such that U is isomorphic to

M KZZ
��

Koo . . .oo Koo // . . . // K . . .oo Koo // . . . // K . . .oo

Moreover , U is sincere if and only if M is sincere.

2.8. We now assume that Γ contains projectives and injectives. We first
consider the case where (A, Γ ) is obtained from (C, Γ0) by a sequence of
(ad 1) and (ad 1∗) operations. By [7, (3.1), (3.2)], we can replace this se-
quence by another one in which all the (ad 1)’s appear first, leading to
(A+, Γ+) (see [7, (3.5)]), and then all the (ad 1∗)’s follow.

Lemma. Assume that (A, Γ ) is obtained from (C, Γ0) by a sequence of

admissible operations consisting of a block of (ad 1)’s followed by a block of

(ad 1∗)’s, and that there is a sincere A-module U in Γ . Let (A+, Γ+) denote

the term of the defining sequence of (A, Γ ) obtained by the block of (ad 1)’s.
Then:

(i) The projectives inserted in Γ0 by the block of (ad 1)’s are in line.

(ii) The injectives inserted in Γ+ by the block of (ad 1∗)’s are in line.
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Proof. Since Γ+ is a standard coil in ΓA+ , (ii) follows from the dual of
(2.5). By the same result, U |A+ is a sincere indecomposable in Γ+. Hence
(i) follows from (2.5).

Let E in Γ0 be the pivot of the block of (ad 1)’s, and E′ in Γ+ be the
pivot of the block of (ad 1∗)’s. There are three possible situations:

1. E and E′ are both C-modules and E 6∼= E′.
2. E and E′ are both C-modules and E ∼= E′.
3. E′ is any (ad 1∗)-pivot (not isomorphic to E) on the sectional path

from E to the mouth of Γ+.

The bound quiver of A then has the following form:

QC
wvutpqrs

a

~~}}
}

. . .oo ◦oo // . . . // ◦ . . .oo ◦oo // . . . // ◦ · · ·L1
oo

◦

◦
  A

AA

b // . . . // ◦ . . .oo ◦oo // . . . // ◦ . . .oo ◦oo // · · ·L1

bound by the relations of [E′](C[E]), an additional zero relation from a to b
in case 2, and possibly additional zero relations from points on L1 to points
on L2 in case 3.

The sincere tube Γ in ΓA has one of the following shapes:
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Theorem. Let (A, Γ ) be obtained from (C, Γ0) by a sequence of ad-

missible operations consisting of a block of (ad 1) operations with pivot E,
followed by a block of (ad 1∗) operations with pivot E′, such that the pro-

jectives (respectively , injectives) inserted by the first (respectively , the last)
block are in line. Then an A-module U is a weakly sincere indecomposable

in Γ if and only if there exists an indecomposable C-module M in Γ0 lying

on the intersection of the ray that starts at E and the coray that ends at

E′|C such that U is isomorphic to

K

||yyy
Koo . . .oo Koo // . . . // K . . .oo Koo // . . . // K . . .oo

M

""E
EE

K // K // . . . // K . . .oo Koo // . . . // K . . .oo Koo // . . .

Moreover , U is sincere if and only if M is sincere.

Proof. Let (A+, Γ+) be as in the preceding lemma. Since the coray that
ends at E′|C in Γ0 is the coray through E′ in Γ+, the proof follows from
(2.6) and its dual.

3. Coils with weakly sincere indecomposable modules

3.1. The aim of this section is to describe all coil enlargements B of the
algebra C, using modules from the standard stable tube T , which admit
a (weakly) sincere indecomposable module lying in the standard coil C ob-
tained from T by the corresponding coil enlargement. We shall show that
any such algebra B can be obtained from C by adding a suitable braid of
two linear quivers.

In order to formulate our main result, we define some families of bound
quiver algebras KQ/I, and then introduce the notion of a braid algebra.

In the bound quivers (Q, I) listed below we use the following notation:

(i) The unoriented edge ◦ ◦ means ◦ // ◦ or ◦ ◦oo .

(ii) ◦
α2 // ◦ // . . . // ◦

αr−1// ◦
αr

��>
>>

>

◦

α1
??����

β1
��>

>>
>

______________ ◦ r, s ≥ 2

◦
β2

// ◦ // . . . // ◦
βs−1

// ◦
βs

??����

means that αr . . . α2α1 − βs . . . β2β1 ∈ I but αr . . . α2α1 6∈ I and βs . . . β2β1

6∈ I.

(iii) ◦
α1 //X Y Z [ \ ] ^ _ ` a b c d e f◦

α2 // ◦ // . . . // ◦
αr // ◦ r ≥ 2

means that αr . . . α2α1 ∈ I but αr . . . α3α2 6∈ I, αr−1 . . . α2α1 6∈ I.

(iv) ⋆
α1 //◦

α2 //◦ // . . . //◦
αr //•

β1 //◦
β2 //◦ // . . . //◦

βs //⋆ , r, s ≥ 1,
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means that possibly there are sequences 1 ≤ i1 < . . . < it ≤ r and 1 ≤ j1 <
. . . < jt ≤ s such that the paths βjl

βjl−1 . . . β1αr . . . αil+1αil , for 1 ≤ l ≤ t,
belong to I.

(v)

Cgfed`abc
◦

}}{{
{

◦

◦
!!C

CC

◦

means the extension-coextension algebra [N ](C[M ]) = ([N ]C)[M ] given by
two different modules M and N lying on the mouth of T .

(vi)

Cgfed`abc
◦

}}{{
{

◦
!!C

CC

◦

means the extension-coextension algebra [M ′](C[M ]) where M is a module
lying on the mouth of T and M ′ = (K, M, id) is the new indecomposable
projective module of the one-point extension C[M ] of C by M .

(vii)

Cgfed`abc
ar
◦

����
��

ar−1

◦oo . . .oo a2

◦oo a1

⋆oo

•

��9
99

9

◦
b1

// ◦
b2

// . . . // ◦
bs−1

// ⋆
bs

means that the restrictions of P (a1), . . . , P (ar) (respectively, I(b1), . . . , I(bs))
to C are equal to a module M lying on the mouth of T , and possibly there
are sequences 1 ≤ i1 < . . . < it ≤ r and 1 ≤ j1 < . . . < jt ≤ s such that the
paths from ail to bjl

, for all 1 ≤ l ≤ t, belong to I.

By a regular braid algebra of degree n ≥ 0 we mean an algebra Bn of the
form

Conmlhijk
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. .
.

�����

. . .
��;

;;
. .

.

�����

. . .
��;

;;
. .

.

�����

. . .
��;

;;

◦
�����

◦
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88F
8

-

◦
�����x

�
�

◦
��8

88F
8

-

◦
�����x
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�

◦
��8

88F
8

-

◦
�����x

�
�

◦
��8

88
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��8

88 ◦
����� ��8

88 ◦
����� ��8

88 · · · ◦
����� ��8

88 ◦
�����

◦
��;

;;
◦

�����
◦

��;
;;

◦
�����

◦ ◦ ◦
��;

;;
◦

�����. . .
��8

88
. .

.

�����

. . .
��8

88
. .

.

�����

. . .
��8

88
. .

.

�����
◦
w′

1

◦
w′

2

◦
w′

n

where B0 = C.
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(viii) For a regular braid algebra Bn, n ≥ 0,

Bn
gfed`abc

◦

����� ��=
==

�
�
�
�
�
�
�
�
�
�
�

. .
.

�����

.
. .

��=
==

◦

�����
◦

��<
<<

◦

��<
<<

◦

�����
◦

��=
==

◦

�����. .
.

��=
==

.
. .

�����
◦

means a regular braid algebra of degree n + 1.

3.2. Consider now the following families of bound quiver algebras KQ/I:

(1)

Conmlhijk
◦

}}{{
{

◦ · · · ◦ ◦

◦

◦
!!C

CC

◦ ◦ · · · ◦ ◦

(2)

Conmlhijk
◦

}}{{
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◦oo · · ·oo ◦oo ⋆oo // ◦ ◦ · · · ◦ ◦
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!!C
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◦ // ◦ // · · · // ◦ // ⋆ ◦oo ◦ · · · ◦ ◦
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(4)
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(19)
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(23)
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By a braid algebra on C we mean a connected convex subcategory of
one of the bound quiver algebras (1)–(25) containing the algebra C and the
vertices w, w′, u, u′, v and v′ (whenever they exist).

Now we are able to state our main result.

3.3. Theorem. Let C be an algebra, T a sincere standard stable tube

of ΓC , B a coil enlargement of C using modules from T , and C the stan-

dard coil of ΓB obtained from T by the corresponding sequence of admissible

operations. Then the following conditions are equivalent :

(i) B is a braid algebra on C.

(ii) C admits a weakly sincere indecomposable B-module.

(iii) C admits a sincere indecomposable B-module.
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3.4. In this section we will consider the case where (A, Γ ) is obtained
from (C, Γ0) by a sequence of (ad 1), (ad 1∗), (ad 2) and (ad 2∗) operations.
By [7, (3.3)], we may assume that the sequence consists only of (ad 1), (ad 1∗)
and (ad 2) operations. In fact, we assume that there are m ≥ 2 (ad 2)’s in
the sequence, and, for 1 ≤ i ≤ m, we denote by (Bi, Γi) the term in the
defining sequence of (A, Γ ) corresponding to the ith (ad 2), by (B′

i, Γ
′
i ) the

term preceding the latter, and by Pi the projective-injective inserted in Γ ′
i

by the ith (ad 2). We will also assume that the defining sequence of (A, Γ )
is reduced.

Two situations are possible:

(a) There is no (ad 1∗) between the (m− 1)th and mth (ad 2)’s, that is,
(Bm, Γm) is obtained from (Bm−1, Γm−1) by a sequence of (ad 1)’s followed
by an (ad 2).

(b) There is at least one (ad 1∗) between the (m−1)th and mth (ad 2)’s,
that is, (Bm, Γm) is obtained from (Bm−1, Γm−1) by a sequence of (ad 1)
and (ad 1∗) operations followed by an (ad 2).

We use the following notation throughout our analysis of case (a).

Let X = radPm and let suppHomΓ ′

m
(X,−) be

Yt ← · · · ← Y2 ← Y1 ← X = X0 → X1 → X2 → · · ·

where t ≥ 1 with X, Y1, . . . , Yt injectives.

Let X ′ = radPm−1 and let suppHomΓ ′

m−1
(X ′,−) be

Y ′
r ← · · · ← Y ′

2 ← Y ′
1 ← X ′ = X ′

0 → X ′
1 → X ′

2 → · · ·

where r ≥ 1 with X ′, Y ′
1 , . . . , Y

′
r injectives.

Since the defining sequence of (A, Γ ) is reduced, and each (ad 1) oper-
ation consists in inserting one or several rays, it follows that the rectangle
suppHomΓm−1

(Pm−1,−) determined by Pm−1 in Γm−1 is enlarged to the
rectangle suppHomΓ ′

m
(Pm−1,−), and X lies on the ray forming the upper

border of the latter. In other words, there is a sectional path from Pm−1 to
the mouth of Γ ′

m, which ends in an (ad 1)-pivot R and X belongs to the ray
starting at R.

We will assume moreover that Γ contains a weakly sincere indecompos-
able A-module.

Lemma. With the above setting , let (A, Γ ) = (Bm, Γm). Then:

(i) The projectives inserted by those (ad 1) operations that transform

(Bm−1, Γm−1) into (B′
m, Γ ′

m) are consecutive.

(ii) The pivot of the first of these operations is the indecomposable Bm−1-

module X ′
1 = (K, X ′

1, 1).
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Proof. Let W be a weakly sincere indecomposable in Γ . Then W belongs
to the rectangle suppHomΓ (Pm,−) and receives non-zero morphisms from
all the projectives inserted by the (ad 1)’s mentioned above. It follows from
the standardness of Γ and the description of the modified component after
applying an (ad 1) that these projectives must lie on the coray ending in R.
This proves (i) and (ii).

3.5. Lemma. With the above setting , let (A, Γ ) = (Bm, Γm) and let k be

the least positive integer such that for k ≤ i < m, there is no (ad 1) operation

between the ith and (i + 1)th (ad 2) operations. Then k = m− 1.

Proof. Let m > 2, for otherwise there is nothing to prove. Assume that
k < m − 1, and let W be a weakly sincere indecomposable in Γ . Then W
belongs to the rectangle suppHomΓ (Pm,−). If W = X ′

i = (K, X ′
i, 1) for

some i ≥ 0, then Xi is a weakly sincere indecomposable in Γ ′
m. But there

is no weakly sincere module in Γ ′
m since such a module should belong to⋂m−1

i=k suppHomΓ ′

m
(−, Pi) = suppHomΓ ′

m
(−, Pk) and to the coray through

X, Y1, . . . , Yt, and the intersection of these sets is empty. Indeed, otherwise,
it is cofinite. But on the coray through X there are an infinite number of
indecomposables which are modules over B′

k and do not send non-zero mor-
phisms to radPk. Therefore W = Zij = (K, Xi ⊕ Yj , ( 1

1 )) for some i ≥ 1
and 1 ≤ j ≤ t. Then Xi ⊕ Yj is a weakly sincere B′

m-module. By the pre-
vious lemma and the description of the modified component after applying
an (ad 2), Xi|B′

m−1
= X ′

l for some l > i, and X ′
l ⊕ Yj is a weakly sincere

B′
m−1-module. But Yj(x) 6= 0 only at the vertices x ∈ QB′

m−1
corresponding

to the injectives Yj, Yj+1, . . . , Yt. Hence X ′
l(y) 6= 0 at the remaining vertices

y ∈ QB′

m−1
, in particular, at the vertices corresponding to the injectives

X ′, Y ′
1 , . . . , Y

′
r . Since Γ ′

m−1 is standard, X ′
l must be on the coray containing

X ′, Y ′
1 , . . . , Y

′
r and in

⋂m−2
i=k suppHomΓ ′

m−1
(−, Pi) = suppHomΓ ′

m−1
(−, Pk),

and for k ≤ m− 2, the intersection of the two sets is empty. This contradic-
tion proves the lemma.

3.6. Lemma. With the above setting , let (A, Γ ) = (Bm, Γm). Then:

(i) There is no weakly sincere module in Γm−1.

(ii) The weakly sincere modules in Γ are of the form Zi1 = (K, Xi ⊕
Y1, ( 1

1 )), where Xi is the extension in modB′
m of an indecomposable B′

m−1-

module that lies on the intersection of the ray and the coray through X ′ =
radPm−1 in Γ ′

m−1, and sends non-zero morphisms to all the indecomposable

injective B′
m−1-modules not isomorphic to Y1, . . . , Yt.

Proof. (i) As in the proof of the foregoing lemma, Γm−1 does not con-
tain weakly sincere modules, for these should belong to both the corect-
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angle supp HomΓm−1
(−, Pm−1) determined by Pm−1 in Γm−1 and the coray

through Y1, , . . . , Yt, and their intersection is empty.

(ii) Let W be a weakly sincere indecomposable in Γ . By (i) and (2.6),
there is no weakly sincere module in Γ ′

m. Then, as in the proof of the preced-
ing lemma, W = Zij = (K, Xi⊕Yj , ( 1

1 )) for some i ≥ 1 and 1 ≤ j ≤ t, and Xi

is the extension in modB′
m of an indecomposable B′

m−1-module X ′
l that lies

on the intersection of the ray and the coray through X ′ in Γ ′
m−1 and sends

non-zero morphisms to all the indecomposable injective B′
m−1-modules not

isomorphic to Y1, . . . , Yt. Since X ′
l ⊕ Yj is a weakly sincere B′

m−1-module,
j = 1. Hence W = Zi1 is as in the above statement. The converse is clear.

3.7. We now assume that m > 2. By (3.4), X|B′

m−1
= X ′

k for some

k > 2. Due to (3.5) and the reducibility of the defining sequence of (A, Γ ),
there must be at least two (ad 1∗)’s with non-trivial parameter between the
(m−2)th and (m−1)th (ad 2)’s, namely, those giving rise to X ′

k, Y1, . . . , Yt,
and to X ′

1, Y
′
1 , . . . , Y

′
r . By [7, (3.1), (3.2)], we may assume that (Bm−1, Γm−1)

is obtained from (Bm−2, Γm−2) by a sequence of s ≥ 0 (ad 1)’s followed by
a sequence of n ≥ 2 (ad 1∗)’s and the corresponding (ad 2). We assume that
of the n (ad 1∗)’s, it is the n1th (1 ≤ n1 < n) that inserts X ′

k, Y1, . . . , Yt

and, due to reducibility, the last that inserts X ′
1, Y

′
1 , . . . , Y

′
r . We denote by

(A′, Γ ′) the term of the defining sequence of (A, Γ ) that is obtained from
(Bm−2, Γm−2) by the s (ad 1)’s, and by (A′′, Γ ′′) the term obtained from
(A′, Γ ′) by the first n1 (ad 1∗)’s. Then (B′

m−1, Γ
′
m−1) is the term obtained

from (A′′, Γ ′′) by the remaining n2 = n− n1 (ad 1∗)’s.

Lemma. With the above setting , let (A, Γ ) = (Bm, Γm). Then:

(i) The injectives inserted by the first n1 (ad 1∗) operations are line-

coline consecutive.

(ii) The injectives inserted by the remaining n2 (ad 1∗)’s are line-coline

consecutive.

(iii) The pivot of the (n1 + 1)th (ad 1∗) is the indecomposable A′′-module

E = (E, K, 1), where E = X ′
k+1 is the pivot of the n1th (ad 1∗).

(iv) If s 6= 0, the projectives inserted by the s (ad 1) operations are

consecutive, and the pivot of the first (ad 1∗) is the unique projective inserted

by the last (ad 1).

Proof. Let W be a weakly sincere indecomposable in Γ . By (3.6), there
is an indecomposable M = X ′

l (l > k) in Γ ′
m−1 that lies on the ray and the

coray through X ′ and sends non-zero morphisms to all the indecomposable
injective B′

m−1-modules not isomorphic to Y1, . . . , Yt. It follows from the
fact that X ′ is an (ad 2)-pivot and the standardness of Γ ′

m−1 that all the
injectives inserted by the n (ad 1∗)’s, except Y ′

1 , . . . , Y
′
r and Y1, . . . , Yt, must

lie on the ray [X ′,∞). This proves (i)–(iii).
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For (iv), let N = M |A′ . Then N is a weakly sincere indecomposable in
Γ ′ lying on the coray that ends at the pivot F of the first (ad 1∗), and on
the ray that starts at F . Again the standardness of Γ ′ and the fact that F
is an (ad 1∗)-pivot imply that the projectives inserted by the s (ad 1)’s lie
on the coray (∞, F ], where F is the unique projective inserted by the last
(ad 1).

3.8. We now turn to case (b).
Again let X = radPm and let supp HomΓ ′

m
(X,−) be

Yt ← · · · ← Y2 ← Y1 ← X = X0 → X1 → X2 → · · ·

where t ≥ 1 with X, Y1, . . . , Yt injectives. By [7, (3.1), (3.2)], we may assume
that (Bm, Γm) is obtained from (Bm−1, Γm−1) by a sequence of s ≥ 0 (ad 1)’s
followed by a sequence of r ≥ 1 (ad 1∗)’s and an (ad 2). By the reducibil-
ity of the defining sequence of (A, Γ ), the last (ad 1∗) inserts X, Y1, . . . , Yt.
We denote by (A′, Γ ′) the term of the defining sequence of (A, Γ ) that is
obtained from (Bm−1, Γm−1) by the s (ad 1)’s. Then (B′

m, Γ ′
m) is obtained

from (A′, Γ ′) by the r (ad 1∗)’s.

Lemma. With the above setting , let (A, Γ ) = (Bm, Γm). Then:

(i) There is a weakly sincere module Xi (i > 0) in Γ ′
m lying on the

intersection of the ray and the coray through X.

(ii) The weakly sincere modules in Γ are of the form Xi = (K, Xi, 1),
Zij = (K, Xi⊕Yj , ( 1

1 )) with 1 ≤ j ≤ t and Zi−j,k = (K, Xi−j⊕Yk, ( 1
1 )) with

1 ≤ j ≤ t and 1 ≤ k ≤ t+1− j, where Xi (i > 0) is a weakly sincere module

in Γ ′
m lying on the intersection of the ray and the coray through X.

Proof. (i) Let W be a weakly sincere indecomposable in Γ . Then W
belongs to the rectangle suppHomΓ (Pm,−) determined by Pm in Γ . If
W = Xi = (K, Xi, 1) for some i ≥ 0 and i = 0, then X0 = Pm is weakly
sincere. As m ≥ 2, we obtain an oriented cycle between projective-injectives
in Γ , contradicting [4, (4.5)]. Hence i > 0 and Xi is a weakly sincere inde-
composable in Γ ′

m lying on the ray through X. Since Γ ′
m is standard, Xi lies

also on the coray containing X, Y1, . . . , Yt. If W = Zlj = (K, Xl ⊕ Yj , ( 1
1 ))

for some l ≥ 1 and 1 ≤ j ≤ t, then Xl ⊕ Yj is a weakly sincere B′
m-module.

Since Yj(x) 6= 0 only at the vertices x ∈ QB′

m
corresponding to the injectives

Yj , Yj+1, . . . , Yt, Xl(y) 6= 0 at the remaining vertices y ∈ QB′

m
, in particular,

at the vertex corresponding to X. Therefore Xl belongs to the corectangle
suppHomΓ ′

m
(−, X) determined by X in Γ ′

m. Let Xi with i ≥ l be the in-
decomposable B′

m-module corresponding to the first point of intersection in
Γ ′

m of the ray [Xl,∞) and the coray containing X, Y1, . . . , Yt. It follows from
the description of the modified component after applying an (ad 1∗) that Xi

is a weakly sincere indecomposable in Γ ′
m lying on the ray and the coray

through X. Note that in both cases i > t + 1.
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(ii) Let Xi with i > t + 1 be a weakly sincere indecomposable in Γ ′
m

lying on the intersection of the ray and the coray through X. Along the
ray through X, the modules Xi−t, Xi−t+1, . . . , Xi are all in the corectangle
suppHomΓ ′

m
(−, X) determined by X in Γ ′

m. Since Xi is weakly sincere, it is

clear that the modules X i and Zij with 1 ≤ j ≤ t are all weakly sincere in Γ .
For Xi−j, with 1 ≤ j ≤ t, we have Xi−j(z) = Xi(z) for every vertex z ∈ QB′

m

not corresponding to the injectives Y1, . . . , Yt, HomB′

m
(Xi−j, Yk) 6= 0 for

1 ≤ k ≤ t− j and HomB′

m
(Xi−j, Yk) = 0 for t− j < k ≤ t. Therefore Zi−j,k

is weakly sincere only for 1 ≤ k ≤ t− (j − 1) = t + 1− j.
The converse follows from the proof of (i) and the discussion of the last

paragraph.

3.9. Lemma. With the above setting , let (A, Γ ) = (Bm, Γm). Then:

(i) The injectives inserted by the r (ad 1∗) operations that transform

(A′, Γ ′) into (B′
m, Γ ′

m) are line-coline consecutive.

(ii) If s > 0, then the projectives inserted by the s (ad 1) operations that

transform (Bm−1, Γm−1) into (A′, Γ ′) are consecutive and the pivot of the

first (ad 1∗) is the unique projective inserted by the last (ad 1).

Proof. (i) Let W be a weakly sincere indecomposable in Γ . By (3.8) there
is a weakly sincere indecomposable M = Xi (i > t + 1) in Γ ′

m lying on the
ray and the coray through X. The assertion follows from the weak sincerity
of M , the standardness of Γ ′

m and the fact that X is an (ad 2)-pivot.
(ii) Let N = M |A′ . Then N is a weakly sincere indecomposable in Γ ′

lying on the coray that ends at the pivot F of the first (ad 1∗) and on the
ray that starts at F . Again the assertion follows from the weak sincerity of
N , the standardness of Γ ′ and the fact that F is an (ad 1∗)-pivot.

3.10. Lemma. With the above setting , let (A, Γ ) = (Bm, Γm). Then, for

1 ≤ i ≤ m − 1, there is at least one (ad 1∗) operation between the ith and

(i + 1)th (ad 2)’s.

Proof. By induction on m. If m = 2, then there is nothing to prove.
Let m > 2 and W be a weakly sincere indecomposable in Γ . By (3.8),
there is a weakly sincere indecomposable M = Xi (i > t + 1) in Γ ′

m. Then
N = M |Bm−1

is a weakly sincere indecomposable in Γm−1. By (3.6), there is
at least one (ad 1∗) between the (m−2)th and (m−1)th (ad 2)’s. The proof
is completed by applying the induction hypothesis to (Bm−1, Γm−1).

3.11. In view of the results we have just proved, we shall see that we
may assume that in case (a), the sequence of admissible operations that
transforms (C, Γ0) into (A, Γ ) consists of:

(i) an ith block of (ad 1)’s, an ith block of (ad 1∗)’s, the ith (ad 2), where
1 ≤ i ≤ m− 2,
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(ii) an (m− 1)th block of (ad 1)’s, an (m− 1)th block of (ad 1∗)’s (which
gives rise to the restriction of the pivot of the mth (ad 2)), an mth block of
(ad 1∗)’s (which gives rise to the pivot of the (m−1)th (ad 2)), the (m−1)th
(ad 2),

(iii) an mth block of (ad 1)’s, the mth (ad 2),

(iv) a last block of (ad 1)’s and a last block of (ad 1∗)’s;

and, in case (b), it consists of:

(i) an ith block of (ad 1)’s, an ith block of (ad 1∗)’s, the ith (ad 2), where
1 ≤ i ≤ m,

(ii) a last block of (ad 1)’s and a last block of (ad 1∗)’s.

The following proposition provides a detailed description of such a se-
quence.

Proposition. Assume that (A, Γ ) is obtained from (C, Γ0) by a reduced

sequence of (ad 1), (ad 1∗) and (ad 2) operations having m ≥ 2 (ad 2)’s, and

that there is a weakly sincere A-module in Γ . Then the sequence is as one

of the two described above. Moreover ,

(i) If there is no (ad 1∗) between the (m− 1)th and mth (ad 2), then:

(1) The projectives inserted by each block of (ad 1)’s, except the last one,
are consecutive. The projectives inserted by the last block are in line.

(2) The injectives inserted by each block of (ad 1∗)’s, except the last one,
are line-coline consecutive. The injectives inserted by the last block are in

line.

(3) If for 1 ≤ i ≤ m− 1, the ith block of (ad 1)’s is non-empty , then the

pivot of the first (ad 1∗) in the ith block is the unique projective inserted by

the last (ad 1) in it. If it is empty , then for 2 ≤ i ≤ m− 1, the pivot of the

first (ad 1∗) in the ith block is one of the simples inserted by the last (ad 1∗)
in the preceding block.

(4) If for 2 ≤ i ≤ m − 1, the ith block of (ad 1)’s is non-empty , then

the pivot of the first operation in it is one of the simples inserted by the last

(ad 1∗) in the preceding block.

(5) The pivot of the first (ad 1∗) in the mth block is E = (E, K, 1), where

E is the pivot of the last (ad 1∗) in the preceding block.

(6) If the mth block of (ad 1)’s is non-empty , then the pivot of the first

operation in it is F = (K, F, 1), where F is the pivot of the last (ad 1∗) in

the preceding block.

(7) If the last block of (ad 1)’s is non-empty , then the pivot of the first

operation in it is the simple soc Y1, where X ′
k, Y1, . . . , Yt are the injectives

inserted by the last (ad 1∗) in the (m− 1)th block.
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(8) If the last block of (ad 1∗)’s is non-empty , then the pivot of the first

operation in it is the simple injective Y ′
r inserted by the last (ad 1∗) in the

mth block.

(ii) If there is an (ad 1∗) between the (m− 1)th and mth (ad 2)’s, then:

(1) The projectives inserted by each block of (ad 1)’s, except the last one,
are consecutive. The projectives inserted by the last block are in line.

(2) The injectives inserted by each block of (ad 1∗)’s, except the last one,
are line-coline consecutive. The injectives inserted by the last block are in

line.

(3) If for 1 ≤ i ≤ m, the ith block of (ad 1)’s is non-empty , then the

pivot of the ith block of (ad 1∗)’s is the unique projective inserted by the last

operation in it. If it is empty , then for 2 ≤ i ≤ m, the pivot of the ith block

of (ad 1∗)’s is one of the simples inserted by the last (ad 1∗) in the preceding

block.

(4) If for 2 ≤ i ≤ m, the ith block of (ad 1)’s is non-empty , then its pivot

is one of the simples inserted by the last (ad 1∗) in the preceding block.

(5) If the last block of (ad 1)’s is non-empty , then its pivot F is either

one of the simples inserted by the last (ad 1∗) in the preceding block or E =
(K, E, 1), where E is the pivot of this last (ad 1∗).

(6) If the last block of (ad 1)’s is empty , then the pivot F ′ of the last

block of (ad 1∗)’s is either one of the simples inserted by the last (ad 1∗)
in the preceding block or E = (E, K, 1), where E is the pivot of this last

operation. Otherwise, F ′ depends on the choice of F , namely : (α) if F = E,
then F ′ = Yt, (β) if F = socYj , 1 < j ≤ t, then F ′ is either soc Yj−1, or

soc Yi with i > j, or any (ad 1∗)-pivot on the coray through soc Yj , (γ) if

F = soc Y1, then F ′ is either E, or socYi with i > 1, or any (ad 1∗)-pivot
on the coray through soc Y1.

Proof. By induction on m. Let U be a weakly sincere A-module in Γ , and
assume that there are some (ad 1) and (ad 1∗) operations after the mth (ad 2)
in the above sequence. By [7, (3.1), (3.2)], we may assume that (A, Γ ) is
obtained from (Bm, Γm) by a block of (ad 1)’s followed by a block of (ad 1∗)’s.
Then (2.5) and its dual show that the projectives and injectives inserted re-
spectively by these two blocks are each in line, and that V = U |Bm is a weakly
sincere indecomposable in Γm. It follows from (3.5), (3.10) and [7, (3.1), (3.2)]
that the sequence has one of the two forms described before the proposition.

Assume now that we are in case (i). From (3.6) we know that U = Zi1 =
(K, Xi ⊕ Y1, ( 1

1 )) lies on the ray starting at socYi and on the coray ending
at Y ′

r . The only way to preserve weak sincerity after applying the (ad 1) and
(ad 1∗) operations is that the pivot of the first (ad 1) be socY1 and the pivot
of the first (ad 1∗) be Y ′

r , thus proving (7) and (8). If the mth block of (ad 1)’s
is non-empty, (3.4) shows that the projectives inserted by those operations
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are consecutive and the pivot of the first is F , where F = X ′
1 is the pivot of

the last (ad 1∗) in the mth block, thus proving (6). From (3.7) we know that
the injectives inserted by the (m−1)th and mth blocks of (ad 1∗)’s are line-
coline consecutive, and the pivot of the mth block is E, where E = X ′

k+1 is
the pivot of the last operation in the (m−1)th block, thus proving (5). From
(3.7) we also know that if the (m− 1)th block of (ad 1)’s is non-empty, then
the projectives inserted by those operations are consecutive, and the pivot
G of the (m − 1)th block of (ad 1∗)’s is the unique projective inserted by
the last of those operations. By (3.6), W = V |Bm−2

= Xi|Bm−2
is a weakly

sincere indecomposable in Γm−2, and by (3.5), Bm−2 is one of the algebras
considered in case (ii). If the (m− 1)th block of (ad 1)’s is non-empty, then
W lies on the ray starting at the pivot D of the first operation in it. From
(3.8) and the fact that G is an (ad 1∗)-pivot, we see that D is one of the
simples inserted by the last (ad 1∗) in the preceding block. If the (m− 1)th
block of (ad 1)’s is empty, then a similar argument shows that the pivot of
the (m− 1)th block of (ad 1∗)’s is one of the simples mentioned above. The
rest of the proof is obtained by applying the induction hypothesis to Bm−2.

Finally, assume that we are in case (ii), and let V = U |B′

m
as above.

By (2.5) and its dual, V is a weakly sincere indecomposable in Γm lying
on the ray that starts at the pivot F of the last block of (ad 1)’s if it is
non-empty, and on the coray that ends at the pivot F ′ of the last block
of (ad 1∗)’s otherwise. From (3.8) it follows that, in the former case, F is
one of the simples inserted by the last (ad 1∗) in the preceding block or
E, where E = X1 is the pivot of such an operation, and, in the latter
case, F ′ is one of those simples or E. If the last block of (ad 1)’s is non-
empty, let (A′, Γ ′) be obtained from (Bm, Γm) by those operations and let
U ′ = U |A′ . Then U ′ is a weakly sincere indecomposable in Γ ′ lying on the
coray that ends at F ′. In this case the choice of F ′ depends on that of F
due to the distribution of the weakly sincere indecomposable Bm-modules
in the squares suppHomΓm(−, Pm) ∩ suppHomΓm(Pm,−) given in (3.8).
Therefore, the rest of (6) follows from (3.8). By (3.9), the injectives inserted
by the mth block of (ad 1∗)’s are line-coline consecutive and, if the mth block
of (ad 1)’s is non-empty, then the projectives inserted by those operations
are consecutive and the pivot G of the mth block of (ad 1∗)’s is the unique
projective inserted by the last of those operations. By (3.8), there is a weakly
sincere indecomposable Xi in Γ ′

m such that W = V |Bm−1
= Xi|Bm−1

is
a weakly sincere indecomposable in Γm−1, and by (3.10), Bm−1 falls into
case (ii). As in case (i), if the mth block of (ad 1)’s is non-empty, then
its pivot is one of the simples inserted by the last (ad 1∗) in the preceding
block. If it is empty, then the pivot of the mth block of (ad 1∗)’s is one of the
above simples. The rest of the proof is obtained by applying the induction
hypothesis to Bm−1.
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Note that the case where there is only one (ad 2) in the reduced sequence
of (ad 1), (ad 1∗) and (ad 2) operations that transforms (C, Γ0) into (A, Γ )
can be regarded within case (b) above. In this case, and only then, the
indecomposable projective-injective P1 may be weakly sincere. In fact, if E
in Γ0 is the pivot of such a sequence, then P1 is weakly sincere if and only if
E is weakly sincere. As we shall see in the next section, this is also the only
case where the weakly sincere indecomposable is faithful.

4. Weakly sincere indecomposable modules in coils

4.1. In this section we show that the braid algebras defined in the previ-
ous section are weakly sincere coil enlargements of the algebra C. Moreover,
we describe completely all weakly sincere indecomposable representations of
algebras of types (1)–(25), and hence of all braid algebras. This will give the
proof of the implication (i)⇒(ii) of Theorem 3.3. As a direct consequence of
the considerations below we find that a braid algebra has in fact infinitely
many pairwise non-isomorphic weakly sincere indecomposable modules.

Let (A, Γ ) be obtained from (C, Γ0) by a reduced sequence of (ad 1),
(ad 1∗) and (ad 2) operations, and assume that Γ contains a weakly sincere
A-module. In this section we give the description of the bound quiver of A,
of the weakly sincere coil Γ , and of all the weakly sincere indecomposable
A-modules in Γ .

From the preceding proposition we immediately obtain the description
of the bound quiver of A and of the weakly sincere coil Γ . We start by
describing the bound quiver of A when A is one of the algebras considered
in case (b). Assume first that (A, Γ ) = (Bm, Γm). Let M be the simple
regular C-module that is the pivot of the reduced sequence that transforms
(C, Γ0) into (A, Γ ). Let a be the extension vertex of C[M ], and a′ be the
coextension vertex of [M ](C[M ]), where M = P (a). For 1 ≤ i ≤ m, let bi

and b′i be the extension and coextension vertices, respectively, of Bi. Then
Pi = P (bi) = I(b′i). From (3.11)(ii)(1)–(4), we obtain as the bound quiver
of A the following quiver:
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bound by the relations of [M ](C[M ]), the commutativity relations and the
zero relations indicated by the dashed lines.

Definition. A bound quiver as above, where C is an algebra and M is
an indecomposable C-module lying on the mouth of a standard stable tube
of ΓC , will be called a simple braid or a braid of type 1, and the algebra
given by such a bound quiver will be called a simple braid algebra or a braid

algebra of type 1.

The general case is obtained from the one above in the following way.
From (3.11)(ii)(5)–(6), we deduce that the bound quiver of A consists of a
simple braid (the bound quiver of Bm) together with two lines L1 and L2

formed, respectively, by the projectives and the injectives inserted by the
last two blocks in the sequence, and has one of the following forms (with
Bm−1 = C if m = 1):
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all bound by the relations of Bm, the zero relations indicated by the dashed
lines and, in the last case, possibly by zero relations from points on L1 to
points on L2.

Definition. A bound quiver as above, consisting of a simple braid along
with two lines, will be called a braid of type 2, and an algebra given by such
a bound quiver will be called a braid algebra of type 2.

We now describe the bound quiver of A when A is one of the algebras
considered in case (a). Again, assume first that (A, Γ ) = (Bm, Γm). From
(3.11)(i)(1)–(6), we deduce that the bound quiver of A is a braid with a
handle, namely, the quiver
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bound by the relations of [M ](C[M ]), the commutativity relations and the
zero relations indicated by the dashed lines. Note that the vertices corre-
sponding to the projectives inserted by the (m− 1)th block of (ad 1)’s, the
injectives inserted by the (m − 1)th and mth blocks of (ad 1∗)’s, and bm−1

form the last loop of the above braid and part of the handle. The rest of the
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handle is formed by the vertices corresponding to the projectives inserted
by the mth block of (ad 1)’s, and bm.

Definition. A bound quiver as above, consisting of a simple braid and
a handle, will be called a braid of type 3, and an algebra given by such a
bound quiver will be called a braid algebra of type 3.

The general case is obtained from the one above as follows. From
(3.11)(i)(7)–(8), we find that the bound quiver of A is a braid of type 3
together with two lines L1 and L2 formed, respectively, by the projectives
and injectives inserted by the last block of (ad 1) and (ad 1∗) operations,
namely, the quiver
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(with Bm−2 = C if m = 2) bound by the relations of Bm and the zero
relations indicated by the dashed lines.

Definition. A bound quiver as above, consisting of a braid of type 3
along with two lines, will be called a braid of type 4, and an algebra given
by such a bound quiver will be called a braid algebra of type 4.

We have thus proved that the algebras we are interested in are, in case
(a), braid algebras of type 3 or 4 and, in case (b), braid algebras of type 1
or 2.

4.2. Conversely, if A is a braid algebra of type 2 (respectively, 4) with
bound quiver as shown above, then the following two statements are clear:

(i) A is obtained from the algebra C by means of a sequence of (ad 1),
(ad 1∗) and (ad 2) operations as described in (3.11)(ii) (respectively, (i)).
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(ii) There exists a coil Γ in ΓA that is obtained from the tube Γ0 in ΓC

containing the indecomposable C-module M by means of the same sequence
of operations.

Now, from the fact that A is a coil enlargement of C, and that Γ contains
all the indecomposable projective-injective A-modules, it follows that in case
there are indecomposable weakly sincere A-modules, these must belong to Γ .
We shall prove that a braid algebra of any type has indeed indecomposable
weakly sincere modules by exhibiting all of them. We start with the following
result.

Lemma. Let A = Bm be a simple braid algebra with bound quiver
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and let Γ be the coil in ΓA containing the indecomposable projective-injective

A-modules. Then, for 1 ≤ j ≤ t, there is a weakly sincere indecomposable

A-module V in Γ isomorphic to
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where M is a weakly sincere indecomposable C-module lying on the inter-

section of the ray starting at E and the coray ending at E in Γ0. Moreover ,
V lies on the intersection of the ray starting at S(yj) and the coray ending

at S(yj).

Proof. By induction on m. Let m > 1, and assume that a similar in-
decomposable W has been constructed over Bm−1. Note that (A, Γ ) =
(Bm, Γm) is obtained from (Bm−1, Γm−1) by the following sequence of ad-
missible operations with pivot S(ui):
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(i) consecutive one-point extensions with extension vertices x1, . . . , xs,
(ii) consecutive one-point coextensions with coextension vertices z1, . . .

. . . , zr and pivot P (xs) over the corresponding algebra in the sequence,
(iii) a branch coextension with root vertex b′m and pivot I(zr) over the

corresponding algebra in the sequence,

(iv) a one-point extension with extension vertex bm and pivot I(b′m) over
B′

m (in the notation of (3.4)).

Since W lies on the intersection of the ray starting at S(ui) and the
coray ending at S(ui) in Γm−1, after applying (i), (ii) and (iii), we obtain
the following indecomposable weakly sincere B′

m-module U :
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which lies on the intersection of the ray and the coray through I(b′m) =
radP (bm) = X0 in Γ ′

m. From the description of the modified component
after applying an (ad 1∗) operation, it follows that the indecomposable B′

m-
module
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lies on the intersection of the ray through X0 and the coray ending at
S(yj). Therefore it is a module of the form Xi in suppHomΓ ′

m
(X0,−). Let

Yj = I(yj) over B′
m. Then V = Zij = (K, Xi ⊕ Yj, ( 1

1 )) is a weakly sincere
indecomposable module in Γ lying on the intersection of the ray starting at
S(yj) and the coray ending at S(yj). (Note that S(yj) is indeed in the socle
and the top of V .)

4.3. Let A be again a simple braid algebra with bound quiver as in
the previous lemma, and let Γ be the weakly sincere coil in ΓA. We now
describe all the weakly sincere indecomposable A-modules in Γ . Let E in Γ0

be the pivot of the sequence of admissible operations transforming (C, Γ0)
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into (A, Γ ), and let E be the set of all indecomposable C-modules in Γ0 lying
on the intersection of the ray starting at E and the coray ending at E. Then
we have the following result.

Theorem. Let A be a simple braid algebra with bound quiver as in the

preceding lemma, and let Γ be the weakly sincere coil in ΓA. Then an A-

module W is a weakly sincere indecomposable module in Γ if and only if there

exists M ∈ E such that W is isomorphic to one of the following modules:
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with 0 ≤ j ≤ t,
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with 1 ≤ i ≤ j ≤ t.

Proof. Let X = X0 = radP (bm). By (3.8) the weakly sincere inde-
composable A-modules in Γ are of the form either Xi = (K, Xi, 1), or
Zij = (K, Xi ⊕ Yj, ( 1

1 )) with 1 ≤ j ≤ t, or Zi−j,k = (K, Xi−j ⊕ Yk, ( 1
1 ))

with 1 ≤ j ≤ t and 1 ≤ k ≤ t + 1 − j, where Xi (i > t + 1) is a weakly
sincere indecomposable B′

m-module (with the notation of (3.4)) lying on the
intersection of the ray and the coray through X in Γ ′

m. From the description
of the sequence of admissible operations with pivot S(ui) that transforms
(Bm−1, Γm−1) into (A, Γ ) = (Bm, Γm), it follows that V = Xi|Bm−1

is a
weakly sincere indecomposable in Γm−1 lying on the intersection of the ray
starting at S(ui) and the coray ending at S(ui). Hence V is one of the mod-
ules described in (4.2), so that, in particular, M = V |C belongs to E . The
rest of the proof is clear.
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4.4. Let A be a braid algebra of type 2 with bound quiver one of the
following three:

(i)
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with 1 ≤ j ≤ t, which are all bound by the relations of Bm, the zero relations
indicated by the dashed lines and, in the last case, possibly by zero relations
from points on L1 to points on L2.

In the three cases, A is obtained from the simple braid algebra Bm by
applying a sequence of (ad 1) and (ad 1∗) operations in the weakly sincere
coil Γm of ΓBm , and the projectives (respectively, injectives) inserted by
those operations are in line. Let Γ be the coil in ΓA obtained in this way
from Γm. By (2.6) and its dual, Γ is weakly sincere. The following result is
then a consequence of (4.3).

Corollary. Let A be a braid algebra of type 2 with bound quiver as in

(i) (respectively , (ii), (iii)) above, and let Γ be the weakly sincere coil in ΓA.

Then an A-module U is a weakly sincere indecomposable in Γ if and only if

there exists M ∈ E such that U is isomorphic respectively to
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4.5. Lemma. Let A = Bm be a braid algebra of type 3 with bound quiver
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and let Γ be the coil in ΓA containing the indecomposable projective-injective

A-modules. Then there is a weakly sincere indecomposable A-module V in

Γ isomorphic to
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where M is an indecomposable C-module lying on the intersection of the

ray starting at E and the coray ending at E in Γ0. Moreover , V lies on the

intersection of the ray starting at S(y1) and the coray ending at S(y′r).

Proof. Since Bm−2 is a simple braid algebra, by (4.2), there is a weakly
sincere indecomposable Bm−2-module W isomorphic to
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where M is a weakly sincere indecomposable C-module lying on the inter-
section of the ray starting at E and the coray ending at E in Γ0. Moreover,
W lies on the intersection of the ray starting at S(ui) and the coray ending
at S(ui) in Γm−2.

Note that (A, Γ ) = (Bm, Γm) is obtained from (Bm−2, Γm−2) by the
following sequence of admissible operations with pivot S(ui):

(i) consecutive one-point extensions with extension vertices x1, . . . , xl,

(ii) consecutive one-point coextensions with coextension vertices v1, . . .
. . . , vk and pivot P (xl) over the corresponding algebra,

(iii) a branch coextension with root vertex b′m and pivot I(vk) = E over
the corresponding algebra,

(iv) consecutive one-point coextensions with coextension vertices w1, . . .
. . . , wn and pivot E = (E, K, 1),

(v) a branch coextension with root vertex b′m−1 and pivot I(wn) = F
over the corresponding algebra,

(vi) a one-point extension with extension vertex bm−1 and pivot I(b′m−1)
over B′

m−1 (in the notation of (3.4)),

(vii) consecutive one-point extensions with extension vertices z1, . . . , zs

and pivot F = (K, F, 1),

(viii) a one-point extension with extension vertex bm and pivot I(b′m)
over B′

m.

After applying (i) to (v) we obtain the following indecomposable B′
m−1-

module U :
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which lies on the intersection of the ray and the coray through radP (bm−1) =
I(b′m−1) in Γm−1. Then, after applying (vi) and (vii), we obtain the following
indecomposable B′

m-module:
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which lies on the intersection of the ray through X0 = radP (bm) = I(b′m)
and the coray ending at S(y′r). Hence it is a module of the form Xi in
suppHomΓ ′

m
(X0,−). Let Y1 = I(y1) over B′

m. Then V = Zi1 = (K, Xi ⊕
Y1, ( 1

1 )) is a weakly sincere indecomposable A-module in Γ lying on the
intersection of the ray starting at S(y1) and the coray ending at S(y′r).
(Note that S(y1) is indeed in the socle of V and S(y′r) is in its top.)

4.6. We now describe all weakly sincere indecomposable modules over
a braid algebra A of type 3 with bound quiver as in the previous lemma.
Let E, Γ0 and E be as in (4.3). From the preceding lemma and (3.6) we
immediately obtain the following result.

Theorem. Let A be a braid algebra of type 3 with bound quiver as in

the preceding lemma, and let Γ be the weakly sincere coil in ΓA. Then an

A-module U is a weakly sincere indecomposable in Γ if and only if there

exists M ∈ E such that U is isomorphic to
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Proof. Let X = X0 = radP (bm) and Y1 = I(y1) over B′
m. By (3.6) the

weakly sincere indecomposable A-modules in Γ are of the form

Zi1 = (K, Xi ⊕ Y1, ( 1
1 )),

where Xi is the extension in modB′
m of an indecomposable B′

m−1-module
lying on the intersection of the ray and the coray through X ′ = radP (bm−1)
in Γ ′

m−1, and sends non-zero morphisms to all the indecomposable injective
B′

m−1-modules not isomorphic to I(y1), . . . , I(yt). Let V = Xi|Bm−2
. Then

V is a weakly sincere indecomposable in Γm−2 lying on the intersection of
the ray starting at S(ui) and the coray ending at S(ui). Therefore V is one
of the modules described in (4.1). The rest of the proof is clear.

4.7. Finally, let A be a braid algebra of type 4 with bound quiver
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bound by the relations of Bm and the zero relations indicated by the dashed
lines. Then A is obtained from the braid algebra Bm of type 3 by applying
a sequence of (ad 1) and (ad 1∗) operations in the weakly sincere coil Γm of
ΓBm , and the projectives (respectively, injectives) inserted by those opera-
tions are in line. Let Γ be the coil in ΓA obtained in this way from Γm. Then
Γ is weakly sincere, and we have the following result.

Corollary. Let A be a braid algebra of type 4 with bound quiver as

above, and let Γ be the weakly sincere coil in ΓA. Then an A-module U is a

weakly sincere indecomposable in Γ if and only if there exists M ∈ E such

that U is isomorphic to
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Remark. A simple braid algebra A = Bm with bound quiver as in (4.2)
has a weakly sincere indecomposable projective-injective if and only if the
indecomposable C-module E which is the pivot of the sequence of admissible
operations that transforms (C, Γ0) into (A, Γ ) is weakly sincere and m = 1.
This is the only case where the weakly sincere indecomposable is faithful.

4.8. Let A be a simple braid algebra and Γ be the weakly sincere coil
in ΓA. Then Γ has the following shape:

Note that Γ is a proper quasi-tube (see [2, (1.3)] or [5, (2.1)]) that satisfies:
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(i) the projective-injective modules P1, . . . , Pm in Γ are ordered in such
a way that the rectangle determined by Pi in Γ is cofinite in the rectangle
determined by Pi−1, for 1 < i ≤ m,

(ii) the rays corresponding to projective non-injective modules do not
intersect the rectangle determined by Pm,

(iii) the corays corresponding to injective non-projective modules do not
intersect the corectangle determined by Pm.

4.9. Let A be a braid algebra of type 3 and Γ be the weakly sincere coil
in ΓA. Then Γ has the following shape:

Note that Γ is a proper quasi-tube that satisfies:

(i) the projective-injective modules P1, . . . , Pm in Γ are ordered in such
a way that the rectangle determined by Pi in Γ is cofinite in the rectangle
determined by Pi−1, for 1 < i ≤ m−1, and the rectangle determined by Pm

is contained in the rectangle determined by Pm−1,
(ii) the rays corresponding to projective non-injective modules do not

intersect the rectangle determined by Pm,
(iii) the corays corresponding to injective non-projective modules do not

intersect the corectangle determined by Pm.

5. Braid algebras of forms (1) and (2)

5.1. The next three sections are devoted to the proof of the implication
(ii)⇒(i) of the main theorem. We also show that the weakly sincere inde-
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composable representations of the braid algebras of forms (1) to (25) are
precisely those given in Section 3. We start with some definitions.

Let B be an algebra and C a (standard) coil of ΓB. Moreover, let (A, C′)
be one of the terms in a defining sequence for (B, C), and assume that (B, C)
is obtained from (A, C′) by a sequence of n admissible operations of type
(ad 1). Then we make the following definitions.

The projectives inserted in C′ by such a sequence appear in a single stairs

configuration if, for 1 < i ≤ n, the pivot of the ith operation is either the
unique projective inserted by the (i−1)th operation, in case it has parameter
zero, or the simple projective inserted by the (i− 1)th operation, in case it
has non-zero parameter.

The projectives inserted in C′ by such a sequence appear in a double

stairs configuration if there is an integer 1 < k < n such that:

(i) the projectives inserted by the first k operations appear in a single
stairs configuration,

(ii) the parameter of the kth operation is t > 1, and the pivot of the
(k + 1)th operation is one of the simple non-projective modules inserted by
the kth operation,

(iii) the projectives inserted by the remaining n−k−1 operations appear
in a single stairs configuration.

The projectives inserted in C′ by such a sequence appear in a (broken line,
single stairs) configuration if some of them are injective and for 1 < i ≤ n,
the pivot of the ith operation is either a ray module on the ray starting
at the unique projective inserted by the (i − 1)th operation, in case it has
parameter zero, or the simple projective inserted by the (i− 1)th operation,
in case it has non-zero parameter.

These names are suggested by the way the projectives appear in the
coil C. There are also the corresponding dual definitions.

5.2. Let C be an algebra and T be a standard stable tube of ΓC . In this
section we consider the case where the pair (B, C) is obtained from the pair
(C, T ) by a sequence of admissible operations of types (ad 1) and (ad 1∗).
To this end, and also for future use, we prove the following more general
results.

Lemma. Let A be an algebra and C be a standard coil in ΓA. Let (B, C′)
be obtained from (A, C) by a sequence of admissible operations of type (ad 1)
with pivot M . If C′ contains a weakly sincere indecomposable B-module,
then the projectives inserted in C by this sequence appear in a (broken line,
single stairs) configuration.

Proof. Let N be a weakly sincere indecomposable B-module in C′. Since
C′ is standard, N must lie on the ray containing all the projectives inserted
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by the last operation, and there must be a sectional path pointing to the
mouth of C′ from each of the projectives inserted by the previous operations
to the ray containing N . It follows from the description of the modified
component after applying (ad 1) that the projectives inserted in C by the
sequence must appear in a (broken line, single stairs) configuration.

5.3. Corollary. With the hypothesis of the above lemma, N is a weakly

sincere indecomposable B-module in C′ if and only if N |A is a weakly sincere

indecomposable in C lying on the ray that starts at M , and N(x) = K for

every vertex x ∈ QB \QA.

Proof. This follows from (5.2) and the description of the modified com-
ponent after applying (ad 1).

We now turn to the case where (B, C) is obtained from (C, T ) by a
sequence of admissible operations of types (ad 1) and (ad 1∗). By [7, Sec-
tion 3], we may replace this sequence by another one consisting of a block of
operations of type (ad 1) followed by a block of operations of type (ad 1∗).
Applying (5.2) and its dual, we find that B is a braid algebra of one of the
forms (1) or (2), and applying (5.3) and its dual, we see that the list of its
weakly sincere indecomposable representations is complete.

6. Braid algebras of forms (18) to (25)

6.1. In the next two sections we consider the case where (B, C) is ob-
tained from (C, T ) by a sequence of admissible operations containing op-
erations of types (ad 2), (ad 3) and their duals. By [7, Section 3], we may
assume that the sequence consists only of operations of types (ad 1), (ad 1∗),
(ad 2) and (ad 3), that it is reduced, and that those parts of the sequence
consisting only of operations of types (ad 1) and (ad 1∗) may be replaced by
a block of (ad 1)’s followed by a block of (ad 1∗)’s.

Recall that the projectives inserted by operations of types (ad 2) and
(ad 3) are called exceptional. We assume that there are m ≥ 2 exceptional
projectives P1, . . . , Pm in C and, for 1 ≤ i ≤ m, we denote by (A′

i, C
′
i) the

term in the defining sequence of (B, C) corresponding to the insertion of Pi,
and by (Ai, Ci) the term preceding the latter. Hence, (B, C) is obtained from
(A′

m, C′m) by a block of (ad 1)’s followed by a block of (ad 1∗)’s. By (5.2),
(5.3) and their duals, the projectives and injectives inserted respectively by
these two blocks appear in a (broken line, single stairs) configuration, and
C′m contains a weakly sincere indecomposable A′

m-module N . Two situations
are possible:

(a) (Am, Cm) is obtained from (A′
m−1, C

′
m−1) by a block of (ad 1)’s,

(b) (Am, Cm) is obtained from (A′
m−1, C

′
m−1) by a block of (ad 1)’s fol-

lowed by a block of (ad 1∗)’s.
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The aim of this section is the analysis of case (a). Throughout, we
use the following notation. Let X = radPm and let the support S(X) of
HomAm(X,−)|Cm be

Yt ← · · · ← Y2 ← Y1 ← X = X0 → X1 → X2 → · · ·

where t ≥ 1 and X, Y1, . . . , Yt are injectives if X is an (ad 2)-pivot, and

Y1 → Y2 → · · · → Yt

↑ ↑ ↑
X = X0 → X1 → · · · → Xt−1 → Xt → · · ·

where t ≥ 2 and Xt−1, Yt are injectives if X is an (ad 3)-pivot. Let U =
radPm−1 and let the support S(U) of HomAm−1

(U,−)|Cm−1
be

Vs ← · · · ← V2 ← V1 ← U = U0 → U1 → U2 → · · ·

where s ≥ 1 and U, V1, . . . , Vs are injectives if U is an (ad 2)-pivot, and

V1 → V2 → · · · → Vs

↑ ↑ ↑
U = U0 → U1 → · · · → Us−1 → Us → · · ·

where s ≥ 2 and Us−1, Vs are injectives if U is an (ad 3)-pivot.

6.2. Lemma. (Am, Cm) is obtained from (A′
m−1, C

′
m−1) by a sequence

of consecutive one-point extensions having as pivot any ray module on the

ray starting at U ′
1 = (K, U1, 1) (respectively , U ′

s = (K, Us, 1)) if U is an

(ad 2)-pivot (respectively , (ad 3)-pivot).

Proof. Since the defining sequence of (B, C) is reduced, and the oper-
ations of types (ad 1), (ad 2) and (ad 3) consist of inserting one or sev-
eral rays, the rectangle determined by Pm−1 in C′m−1 (i.e., the support
of HomA′

m−1
(Pm−1,−)|C′

m−1
) must be enlarged, by applying the block of

(ad 1) operations with pivot a ray module on the ray forming its upper
border, to the rectangle determined by Pm−1 in Cm (i.e., the support of
HomAm(Pm−1,−)|Cm), and X must lie on the ray forming the upper border
of the latter. In other words, if U is an (ad 2)-pivot (respectively, (ad 3)-
pivot), then the pivot of the block of (ad 1)’s is any ray module on the ray
starting at U ′

1 (respectively, U ′
s), there is a sectional path from U ′

1 (respec-
tively, U ′

s) to a module R on the mouth of Cm, and X lies on the ray starting
at R. On the other hand, the weakly sincere indecomposable N in C′m re-
ceives non-zero morphisms from Pm and from all the projectives inserted in
C′m−1 by the block of (ad 1)’s. It follows from the standardness of C′m and the
description of the modified component after applying (ad 1) that N belongs
to the rectangle determined by Pm in C′m, and so the projectives inserted
by the block of (ad 1)’s lie on the coray ending in R, where R is the last of
them.
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6.3. Note that each exceptional projective Pi determines a unique ex-
ceptional injective Qi lying on the rectangle determined by Pi in C′i. The
reducibility of the defining sequence of (B, C) implies that the number of
corays in the corectangle determined by Qi in C′i is the same as the number
of rays in the rectangle determined by Pi in C′i.

Lemma. Let r be the least positive integer such that for r < i ≤ m,
(Ai, Ci) is obtained from (A′

i−1, C
′
i−1) by a block of operations of type (ad 1).

Then r = m.

Proof. Let m > 2, for otherwise there is nothing to prove. Assume that
r < m, and consider the weakly sincere indecomposable N in C′m which be-
longs to the rectangle determined by Pm in C′m. As above, the reducibility
of the defining sequence of (B, C) and the standardness of C′m imply that
the projectives inserted by the block of operations of type (ad 1) that trans-
forms (A′

m−2, C
′
m−2) into (Am−1, Cm−1) lie on the coray ending at the mouth

module at which the ray that contains U starts, and the pivot of such block
is any ray module on the ray forming the upper border of the rectangle
determined by Pm−2 in C′m−2. If N = X ′

i = (K, Xi, 1) for some i ≥ 0, then
Xi is a weakly sincere indecomposable in Cm, and as such it belongs to the
corectangle determined by Qm−1 in Cm. But no module in this corectangle
sends non-zero morphisms to the indecomposable injective Am-module Yt.
Therefore N = Zij = (K, Xi ⊕ Yj , ( 1

1 )) for some i ≥ 1 and some 1 ≤ j ≤ t.
Then Xi ⊕ Yj is a weakly sincere Am-module. By (6.2) and the description
of the modified component after applying (ad 2), Xi|Am−1

= Uk for some
k > i. Thus Uk ⊕ Yj is a weakly sincere Am−1-module, and as such sends
non-zero morphisms to the indecomposable injective Am−1-modules Qm−2

and Vs. Since Yj does not do that, Uk should. But again, if Uk belongs to
the corectangle determined by Qm−2 in Cm−1, then HomAm−1

(Uk, Vs) = 0.
This contradiction proves the lemma.

6.4. The modules Y1, . . . , Yt in S(X) arise from applying one or several
operations of type (ad 1∗) which form a branch in the sense of [24, (4.4)]. We
denote by H the branch obtained from the latter by deleting its branching
point. Then Y1, . . . , Yt are indecomposable H-modules. Similarly, the mod-
ules V1, . . . , Vs in S(U) are indecomposable modules over a certain branch
H ′. Note that the reducibility of the defining sequence of (B, C) implies that
the branches H and H ′ have respectively t and s vertices.

Lemma. (i) There are unique integers 1 ≤ j ≤ t and 1 ≤ l ≤ s such that

Yj is a weakly sincere H-module and Vl is a weakly sincere H ′-module.

(ii) The weakly sincere modules in C′m are of the form Zij = (K, Xi ⊕
Yj , ( 1

1 )), where Xi is an indecomposable in Cm that lies on the same coray
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as Vl and sends non-zero morphisms to all the indecomposable injective Am-

modules but those that are H-modules.

Proof. We prove (i) and (ii) jointly. Let M be a weakly sincere in-
decomposable in C′m. Since there are no weakly sincere modules in Cm,
M = Zij = (K, Xi⊕Yj , ( 1

1 )) for some i ≥ 1 and 1 ≤ j ≤ t, and so Xi⊕Yj is
a weakly sincere Am-module. Therefore, Xi sends non-zero morphisms to all
the indecomposable injective Am modules which are not H-modules, in par-
ticular, to Qm−1. Thus, Xi belongs to the corectangle determined by Qm−1

in Cm, and HomAm(X, I) = 0 for every indecomposable injective H-module
I. Hence Yj is a weakly sincere H-module, the indecomposable injective H-
modules appear in a single stairs configuration, and j is the unique index
with this property. Let Uk = Xi|Am−1

. Then Uk sends non-zero morphisms
to all the indecomposable injective H ′-modules. Consequently, these appear
in a single stairs configuration, and there is a unique index l such that Vl is
a weakly sincere H ′-module. Clearly, Xi, Uk and Vl all lie on the same coray,
thus proving that M is as stated above. The converse is clear. Note that
j = 1 (respectively, l = 1) if X (respectively, U) is an (ad 2)-pivot.

6.5. Corollary. (B, C) is obtained from (A′
m, C′m) by a block of opera-

tions of type (ad 1) with pivot socY1 (respectively , Yt) if X is an (ad 2)-pivot
(respectively , (ad 3)-pivot), followed by a block of operations of type (ad 1∗)
with pivot Vs (respectively , V1) if U is an (ad 2)-pivot (respectively , (ad 3)-
pivot). Moreover , the projectives and injectives inserted respectively by those

two blocks appear in a single stairs configuration.

Proof. This follows from (6.4) and the description of the modified com-
ponent after applying (ad 2) or (ad 3).

6.6. Let m > 2. By (6.3), (Am−1, Cm−1) is obtained from (A′
m−2, C

′
m−2)

by a block of operations of type (ad 1) followed by a block of operations of
type (ad 1∗). The next lemma describes precisely this sequence.

Lemma. (Am−1, Cm−1) is obtained from (A′
m−2, C

′
m−2) by a sequence

consisting of :

(i) a block of consecutive one-point extensions,

(ii) a block of consecutive one-point coextensions with pivot the last pro-

jective inserted by the preceding block ,

(iii) the block of (ad 1∗)’s that insert Y1, . . . , Yt, with pivot the last injec-

tive inserted by the preceding block ,

(iv) a block of consecutive one-point coextensions with pivot τ(socY1),
and

(v) the block of (ad 1∗)’s that insert V1, . . . , Vs, with pivot the last injec-

tive inserted by the preceding block.
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Moreover , if X (respectively , U) is an (ad 3)-pivot , the injectives inserted

by the block of (ad 1∗)’s that insert Y1, . . . , Yt (respectively , V1, . . . , Vs) appear

in a single stairs configuration.

Proof. Let N be a weakly sincere indecomposable in C′m. Then N =
Zij = (K, Xi ⊕ Yj , ( 1

1 )) is as stated in (6.4). Let Uk = Xi|Am−1
. Then Uk

sends non-zero morphisms to all the indecomposable injective Am−1-modules
except those which are H-modules. By (6.4), Uk lies on the intersection of the
coray through Vl and the ray through U , which starts at τ(soc V1) due to the
reducibility of the defining sequence of (B, C). Hence, the injectives inserted
in C′m−2 by the sequence, except those which are H- or H ′-modules, lie on
the ray through U , and the projectives inserted in C′m−2 by the sequence lie
on the coray ending at τ(socV1), this module being the last of them. This
proves (i)–(v). The last assertion follows from the proof of (6.4).

6.7. Corollary. If m > 2, then Pm−2 is projective-injective, the pivot

of the sequence that transforms (A′
m−2, C

′
m−2) into (Am−1, Cm−1) is a simple

module on one of the rays that cross the rectangle determined by Pm−2 in

C′m−2, and (A′
m−2, C

′
m−2) falls into case (b).

Proof. Let N = Zij = (K, Xi ⊕ Yj , ( 1
1 )) and Uk = Xi|Am−1

be as in
the proof of (6.6). Let M = Uk|A′

m−2
and L be the pivot of the sequence

transforming (A′
m−2, C

′
m−2) into (Am−1, Cm−1). Then M is a weakly sincere

indecomposable in C′m−2 lying on the ray that starts at L and the coray that
ends at L, and belonging to the rectangle determined by Pm−2 in C′m−2. From
(6.6), the reducibility of the defining sequence of (B, C) and the description of
the modified component after applying (ad 2) or (ad 3), it follows that Pm−2

is projective-injective, and L is a simple module on one of the rays that cross
the rectangle determined by Pm−2 in C′m−2. In fact, if R = radPm−2 and
the support S(R) of HomAm−2

(R,−)|Cm−2
is

Tr ← · · · ← T2 ← T1 ← R = R0 → R1 → R2 → · · ·

where r ≥ 1, and R, T1, . . . , Tr are injectives, then L is one of the mod-
ules soc T1, . . . , soc Tr−1, Tr which all lie in the same τ -orbit. By (6.5)(2),
(A′

m−2, C
′
m−2) falls into case (b).

7. Braid algebras of forms (3) to (17)

7.1. The aim of this section is the analysis of case (b). We first assume
that Pm is projective-injective. Let X = radPm and let the support S(X)
of HomAm(X,−)|Cm be

Yt ← · · · ← Y2 ← Y1 ← X = X0 → X1 → X2 → · · ·

where t ≥ 1 and X, Y1, . . . , Yt are injectives. By the reducibility of (B, C),
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the number of corays and the number of rays of the corectangle and the
rectangle determined by Pm in C′m are the same.

Lemma. If Pm is projective-injective, then the weakly sincere modules in

C′m are of the form X ′
i = (K, Xi, 1), Zij = (K, Xi ⊕ Yj, ( 1

1 )) with 1 ≤ j ≤ t,
and Zi−j,l = (K, Xi−j ⊕ Yl, ( 1

1 )) with 1 ≤ j ≤ t and 1 ≤ l ≤ t− j + 1, where

Xi with i > 0 is a weakly sincere indecomposable in Cm lying on the coray

containing Y1, . . . , Yt.

Proof. Let M be a weakly sincere indecomposable in C′m. Then M be-
longs to the rectangle determined by Pm in C′m. If M = (K, Xi, 1) for some
i ≥ 0, then i 6= 0. Indeed, otherwise Pm = X ′

0 is weakly sincere, and as
m ≥ 2, there is an oriented cycle between projective-injectives in C′m, con-
tradicting [4, (4.5)]. Hence Xi with i > 0 is a weakly sincere indecomposable
in Cm, and consequently, it lies on the coray ending in Yt. Therefore, M is
one of the modules described above. If M = Zkl = (K, Xk ⊕ Yl, ( 1

1 )) for
some k ≥ 1 and 1 ≤ l ≤ t, then Xk ⊕ Yl is a weakly sincere Am-module.
Since HomAm(Yl, X) = 0, Xk belongs to the corectangle determined by X
in Cm. Let i ≥ k with i− k ≤ t be such that Xi lies on the coray ending in
Yt. It follows from the description of the modified component after applying
(ad 1∗) and the standardness of Cm that Xi is a weakly sincere indecom-
posable in Cm. If k = i, then M is one of the modules described above. If
k 6= i, then k = i − j for some 1 ≤ j ≤ t. Since HomAm(Xi−j, Yr) = 0 for
t − j + 1 ≤ r ≤ t, we have 1 ≤ l ≤ t − j + 1, and thus M is one of the
modules described above. The converse is clear.

7.2. Corollary. If Pm is projective-injective, then (B, C) is obtained

from (A′
m, C′m) by a block of operations of type (ad 1) with pivot V followed

by a block of operations of type (ad 1∗) with pivot L, where V is any of the

modules soc Y1, . . . , socYt−1, Yt, X ′
1 = (K, X1, 1), and L depends on V as

follows:

(i) If V = soc Y1, then L is either ′X1 = (X1, K, 1), or soc Yi with i > 1,
or any coray module on the coray through soc Y1.

(ii) If V = soc Yj with 1 < j ≤ t, then L is either soc Yj−1, or soc Yi

with i > j, or any coray module on the coray through soc Yj.

(iii) If V = (K, X1, 1), then L = Yt.

Moreover , the projectives and injectives inserted respectively by these two

blocks appear in a (broken line, single stairs) configuration.

7.3. Lemma. If Pm is projective-injective, then (Am, Cm) is obtained

from (A′
m−1, C

′
m−1) by a sequence consisting of :

(i) a block of consecutive one-point extensions,
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(ii) a block of consecutive one-point coextensions with pivot the last pro-

jective inserted by the preceding block , and

(iii) the operation of type (ad 1∗) that inserts X, Y1, . . . , Yt, with pivot the

last injective inserted by the preceding block.

Moreover , Pm−1 is also projective-injective, the pivot of such a sequence

is a simple module on any of the rays that cross the rectangle determined by

Pm−1 in C′m−1, and (A′
m−1, C

′
m−1) falls into case (b).

Proof. Let N be a weakly sincere indecomposable in C′m. Since Pm is
projective-injective, N belongs both to the rectangle and the corectangle
determined by Pm in C′m. Hence, the projectives inserted in C′m−1 by the
sequence lie on the coray ending at ′X1 = (X1, K, 1), this module being the
last of them, and the injectives inserted in C′m−1 by the sequence lie on the
ray starting at X ′

1 = (K, X1, 1), this module being the last of them. This
proves (i)–(iii). The rest of the proof is similar to that of (6.7).

7.4. We now assume that Pm is not injective. Let X = radPm and let
the support S(X) of HomAm(X,−)|Cm be

Y1 → Y2 → · · · → Yt

↑ ↑ ↑
X = X0 → X1 → · · · → Xt−1 → Xt → · · ·

where t ≥ 2 and Xt−1, Yt are injectives. Again the reducibility of the defin-
ing sequence of (B, C) implies that the number of rays in the rectangle
determined by Pm in C′m equals the number of corays in the corectangle
determined by Qm in C′m.

Lemma. If Pm is not injective, then (Am, Cm) is obtained from

(A′
m−1, C

′
m−1) by a sequence consisting of :

(i) a block of consecutive one-point extensions,
(ii) a block of consecutive one-point coextensions with pivot the last pro-

jective inserted by the preceding block , and

(iii) the block of operations of type (ad 1∗) that insert Y1, . . . , Yt, with

pivot the last injective inserted by the preceding block.

Moreover , the injectives inserted by the last block of operations of type

(ad 1∗) appear either in a single stairs configuration or in a double stairs

configuration, Pm−1 is projective-injective, and the pivot of such a sequence

is any of the simple modules on the rays that cross the rectangle determined

by Pm−1 in C′m−1.

Proof. We only prove that the injectives inserted by the block of (ad 1∗)’s
that give rise to Y1, . . . , Yt appear either in a single stairs or in a double stairs
configuration, since the proof of the remaining statements is similar to the
proof of (6.7).
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The weakly sincere indecomposable N in C′m belongs to the rectangle
determined by Pm in C′m. If N = X ′

i = (K, Xi, 1) for some i ≥ 0, then Xi is
a weakly sincere indecomposable in Cm. By the dual of (5.2), the injectives
inserted by the block above appear in a single stairs configuration. Assume
then that N = Zij = (K, Xi⊕Yj , ( 1

1 )) for some i ≥ 1 and 1 ≤ j ≤ t, and that
the injectives inserted by the block above do not appear in a single stairs con-
figuration. Since Xi⊕Yj is a weakly sincere Am-module, we may assume that
Xi lies on the coray containing all the injectives inserted by the last operation
in the block. Let r > 1 be the greatest positive integer such that the pivot of
the (r+1)th operation in the block is neither the unique injective inserted by
the rth operation, in case it has parameter zero, nor the simple injective in-
serted by the rth operation, in case it has non-zero parameter. Then Xi can-
not send non-zero morphisms to all the injectives inserted by the rth opera-
tion in the block, and so Yj must lie on the coray containing them. It follows
from the weak sincerity of Xi ⊕ Yj and the standardness of Cm that the in-
jectives inserted by the block must appear in a double stairs configuration.

7.5. The block of operations of type (ad 1∗) that insert Y1, . . . , Yt form
a branch. If we denote by H the branch obtained from the latter by deleting
its branching point, then Y1, . . . , Yt are indecomposable H-modules.

Lemma. If Pm is not injective and the injectives inserted by the block

of operations of type (ad 1∗) that give rise to Y1, . . . , Yt appear in a single

stairs configuration, then:

(i) There is a unique integer 1 ≤ l ≤ t such that Yl is a weakly sincere

H-module.

(ii) The weakly sincere modules in C′m are of the form X ′
i = (K, Xi, 1),

Zij = (K, Xi ⊕ Yj, ( 1
1 )) with 1 ≤ j ≤ t, Zi−k,l = (K, Xi−k ⊕ Yl, ( 1

1 )) with

1 ≤ k ≤ l − 1, and Zi+k,l = (K, Xi+k ⊕ Yl, ( 1
1 )) with 1 ≤ k ≤ t − l, where

Xi with i > 0 is a weakly sincere indecomposable in C′m lying on the same

coray as Yl.

Proof. (i) Let 1 ≤ l ≤ t be such that Yl lies on the coray containing all
the injectives inserted by the last operation in the block above.

(ii) Let M be a weakly sincere indecomposable in C′m. Then M belongs
to the rectangle determined by Pm in C′m. If M = X ′

i = (K, Xi, 1) for some
i ≥ 0, then as in the proof of (7.1), M is one of the modules described above.

If M = Zr,j = (K, Xr ⊕ Yj , ( 1
1 )) for some r ≥ 1 and 1 ≤ j ≤ t, then

Xr ⊕ Yj is a weakly sincere Am-module. Since HomAm(Yj, Xt−1) = 0, Xr

belongs to the corectangle determined by Xt−1 in Cm. Let i ≥ 1 be such that
|i− r| ≤ t and Xi lies on the coray through Yl. Then Xi is a weakly sincere
indecomposable in Cm. If r = i, then M is one of the modules described
above. If r 6= i, then j = l since only the modules on the coray through
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Yl send non-zero morphisms to all the indecomposable injective H-modules.
Hence either r = i− k with 1 ≤ k ≤ l − 1, or r = i + k with 1 ≤ k ≤ t− l,
and thus M is one of the modules described above. The converse is clear.

7.6. Corollary. Under the hypothesis of the above lemma, we have:

(i) If l 6= 1, t, then (B, C) is obtained from (A′
m, C′m) either by a sequence

of operations of type (ad 1) with pivot Yt or X ′
t = (K, Xt, 1), or by a sequence

of operations of type (ad 1∗) with pivot ′Xt = (Xt, K, 1) or Y1.

(ii) If l = 1, then (B, C) is obtained from (A′
m, C′m) either by a sequence

of (ad 1)’s with pivot Yt or X ′
t = (K, Xt, 1) followed by a sequence of (ad 1∗)’s

with pivot Y1, or just by a sequence of (ad 1∗)’s with pivot ′Xt = (Xt, K, 1).
(iii) If l = t, then (B, C) is obtained from (A′

m, C′m) either by a sequence

of (ad 1)’s with pivot Yt followed by a sequence of (ad 1∗)’s with pivot ′Xt =
(Xt, K, 1) or Y1, or just by a sequence of (ad 1)’s with pivot X ′

t = (K, Xt, 1).

In any case, the projectives (respectively , injectives) inserted by such

sequences appear in a single stairs configuration.

7.7. Lemma. If Pm is not injective and the injectives inserted by the

block of (ad 1∗)’s that give rise to Y1, . . . , Yt appear in a double stairs con-

figuration, then:

(i) There are unique integers 1 ≤ j < l ≤ t such that Yj ⊕Yl is a weakly

sincere H-module.

(ii) The weakly sincere modules in C′m are of the form Zij = (K, Xi ⊕
Yj , ( 1

1 )) and Zk,l = (K, Xk ⊕ Yl, ( 1
1 )) where Xi and Xk are indecomposables

in Cm that lie respectively on the same corays as Yl and Yj and that send

non-zero morphisms to all the indecomposable injective Am-modules which

are not H-modules.

Proof. (i) Let r > 1 be such that the pivot of the (r + 1)th operation in
the block above is neither the unique injective inserted by the rth operation
in case it has parameter zero, nor the simple injective inserted by the rth
operation in case it has non-zero parameter. Let 1 ≤ j < l ≤ t be such that
Yj and Yl lie respectively on the coray containing the injectives inserted by
the last and the rth operations in the block.

(ii) Let M be a weakly sincere indecomposable in C′m. Then M belongs to
the rectangle determined by Pm in C′m. Then M = Zrs = (K, Xr ⊕ Ys, ( 1

1 ))
for some r ≥ 1 and 1 ≤ s ≤ t, for otherwise the injectives inserted by
the block above appear in a single stairs configuration. Hence Xr ⊕ Ys is a
weakly sincere Am-module, and the only way in which it can send non-zero
morphisms to all the indecomposable injective H-modules is that either
s = j and Xr lies on the coray through Yl, or s = l and Xr lies on the
coray through Yj. Therefore M is one of the modules described above. The
converse is clear.
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7.8. Corollary. Under the hypothesis of the lemma, (B, C) is obtained

from (A′
m, C′m) by :

(i) a sequence of (ad 1∗)’s with pivot Y1 if j = 1 and l 6= t,
(ii) a sequence of (ad 1)’s with pivot Yt if j 6= 1 and l = t,
(iii) a sequence of (ad 1)’s with pivot Yt followed by a sequence of (ad 1∗)’s

with pivot Y1 if j = 1 and l = t.

In each case, the projectives (respectively , injectives) inserted by such

sequences appear in a single stairs configuration.

It follows inductively from what we have shown in Sections 6 and 7 that
the list of bound quiver algebras given in Section 3 is complete, and so is
the list of their weakly sincere indecomposable representations given in Sec-
tion 4. Those coil enlargements of C belonging to case (a) give braid algebras
of forms (18) to (25), and those belonging to case (b) give braid algebras of
forms (3) to (17). In particular, the braid algebras of forms (3) to (5) cor-
respond to the case where Pm is projective-injective, and the braid algebras
of forms (6) to (17) correspond to the case where Pm is not injective, that
is, X = radPm is an (ad 3)-pivot, those of forms (6) to (13) correspond to
the case where the injectives inserted by the block of (ad 1∗)’s that give rise
to X appear in a single stairs configuration, and those of forms (14) to (17)
correspond to the case where they appear in a double stairs configuration.

8. Representations of polynomial growth strongly simply con-
nected algebras

8.1. Let A be an algebra and K[x] the polynomial algebra in one vari-
able. Following [13], A is said to be tame if, for any dimension d, there exist
a finite number of K[x]-A-bimodules Mi, 1 ≤ i ≤ nd, which are finitely
generated and free as left K[x]-modules, and all but a finite number of iso-
morphism classes of indecomposable A-modules of dimension d are of the
form K[x]/(x − λ) ⊗K[x] Mi for some λ ∈ K and some i. Let µA(d) be
the least number of K[x]-A-bimodules satisfying the above conditions for
d. Then A is said to be of polynomial growth [27] if there exists a positive
integer m such that µA(d) ≤ dm for any d ≥ 1. From the validity of the
second Brauer–Thrall conjecture we know that A is representation-finite if
and only if µA(d) = 0 for any d ≥ 1.

8.2. Following [28] an algebra A is called strongly simply connected if
its Gabriel quiver has no oriented cycles and the first Hochschild cohomol-
ogy H1(C, C) of any full convex subcategory C of A (considered as a finite
K-category) vanishes. It is known that a representation-finite algebra A is
strongly simply connected if and only if it is simply connected in the sense
of [8] (the geometric realization of the quiver ΓA is simply connected).
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8.3. Following [9], by a critical algebra we mean an algebra of the form
EndH(T ), where H is the path algebra K∆ of a quiver ∆ of Euclidean type

D̃n (n ≥ 4), Ẽ6, Ẽ7 or Ẽ8 and T is a postprojective tilting H-module, that
is, Ext1H(T, T ) = 0 and T is a direct sum of |∆0| (number of vertices of ∆)
pairwise non-isomorphic indecomposable H-modules lying in τH -orbits of
indecomposable projective H-modules. We refer to [9] and [15] for a com-
plete classification of critical algebras by quivers and relations. Recall also
[9] that a strongly simply connected algebra A is representation-finite if and
only if A does not contain a full convex critical subcategory. Moreover, all in-
decomposable modules over representation-finite strongly simply connected
algebras are directing, and their structure is known (see [8], [11], [12], [25]).

8.4. The representation theory of strongly simply connected algebras of
polynomial growth has been established in [34]. In contrast to the repre-
sentation-finite case, besides the indecomposable directing modules, whose
supports are tame tilted algebras [24] described in [20], [21], there are
many non-directing indecomposable modules. It has been shown in [34,
Corollary 4.7] that the one-parameter families of indecomposable modules
over polynomial growth strongly simply connected algebras are the one-
parameter families of indecomposable modules given by their full convex
critical and tubular (in the sense of [24]) subcategories. The remaining
non-directing (discrete) indecomposable modules over polynomial growth
strongly simply connected algebras are those belonging to coils of convex
subcategories which are coil enlargements of critical algebras [34, Corol-
lary 4.8]. Therefore, applying Theorem 3.3 and the results of Section 4, we
obtain the following complete classification of all non-directing indecompos-
able modules over strongly simply connected algebras of polynomial growth.

Theorem. Let A be a strongly simply connected algebra of polynomial

growth and M a non-directing indecomposable A-module. Then there exists

a convex subcategory B of A which is tubular or a braid algebra on a critical

algebra such that M is a weakly sincere indecomposable B-module lying in

a coil of ΓB.

9. Examples

9.1. Let A be given by the bound quiver
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Then A is a tame simple braid algebra with coil type cA = ((5, 3, 2), (5, 3, 2)),
in the sense of [7], and ΓA contains a (weakly) sincere quasi-tube

00
0000
110
0

01
0100
000
0

10
0000
000
0

00
1100
000
0

00
0011
011
1

00
0000
110
0

| ց ր ց ր ց ր ց ր ց ր |
01
0100
110
0

11
0100
000
0 →

11
1100
000
0 →

10
1100
000
0

00
1111
011
1

00
0011
121
1

| ր ց ր ց ր ց ր ց ր ց |
01
0111
121
1

11
0100
110
0

00
0100
000
0

10
1111
011
1

00
1111
121
1

01
0111
121
1

| ց ր ց ր ց ր ց ր ց ր |
11
0111
121
1

00
0100
110
0

00
0111
011
1

10
1111
121
1

01
1211
121
1

| ր ց ր ց ր ց ր ց ր ց |
11
1211
121
1

00
0111
121
1

00
0111
121
1

00
0111
121
1

11
1211
121
1

11
1211
121
1

| ց ր ց ր ց ր ց ր ց ր |
00
1211
121
1

00
0122
132
2

00
0111
231
1

01
0211
121
1

21
1211
121
1

| ր ց ր ց ր ց ր ց ր ց |
10
1211
121
1

00
1222
132
2

00
0122
242
2

01
0211
231
1

11
0211
121
1

10
1211
121
1

| ց ր ց ր ց ր ց ր ց ր |. . .. .
. . . .. .

. . . .. .
. . . .. .

. . . .. .
.

where the indecomposable modules are replaced by their dimension-vectors
and the dashed lines have to be identified in order to obtain a (weakly)
sincere quasi-tube. We can see three (weakly) sincere indecomposables with

dimension-vectors
11
1211
121
1

,
21
1211
121
1

,
11
1211
121
1

lying on the intersection of the rectangle

and the corectangle determined by the unique projective-injective module.
If we denote by X = X0 the radical of the unique projective-injective and
by Y1 the simple S(9), then these modules are, respectively, Z41 = (K, X4⊕
Y1, ( 1

1 )), Z51 = (K, X5 ⊕ Y1, ( 1
1 )) and X5 = (K, X5, 1) (in the notation of

(3.8)). The remaining (weakly) sincere indecomposables are located similarly
on the intersections of the rectangle and the corectangle determined by the
unique projective-injective.

9.2. Let A be given by the bound quiver
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Then A is a tame braid algebra of type (2) having coil type cA = ((6, 3, 2),
(6, 3, 2)), and ΓA contains the (weakly) sincere quasi-tube

0
000
0000
110
0

0
001
0100
000
0

0
110
0000
000
0 •

1
010
0000
000
0

0
000
1100
000
0

0
000
0011
011
1

0
000
0000
110
0

| ց ր ց ր ց ր ց ր ց ր ց ր |
0
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110
0

0
111
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0

0
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0000
000
0

1
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0

0
000
1111
011
1

0
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0011
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1

| ր ց ր ց ր ց ր ց ր ց ր ց |
0

001
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1

0
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0

0
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0 →

0
011
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0 →

0
010
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000
0

1
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1111
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1

0
000
1111
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1

0
001
0111
121
1

| ց ր ց ր ց ր ց ր ց ր ց ր |
0

111
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121
1

0
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110
0

0
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0

0
010
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1

1
010
1111
121
1

0
001
1211
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1

| ր ց ր ց ր ց ր ց ր ց ր ց |
0

111
1211
121
1

0
011
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1

0
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110
0

0
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0111
011
1

0
010
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1

1
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1

0
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1

| ց ր ց ր ց ր ց ր ց ր ց ր |
0

011
1211
121
1

0
000
0111
121
1

0
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1

0
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1

0
011
1211
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1

1
121
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121
1

| ր ց ր ց ր ց ր ց ր ց ր ց |
1

021
1211
121
1

0
000
1211
121
1

0
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2

0
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1

0
001
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1

0
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1211
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1

1
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1
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. . . .. .
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. . . .. .

. . . .. .
. . . .. .

.

where X • Y
ց ր denotes that X is injective and Y is projective, the inde-

composable modules are replaced by their dimension-vectors and the dashed
lines have to be identified in order to obtain a (weakly) sincere quasi-tube.

We can see a (weakly) sincere indecomposable with dimension-vector
1

121
1211
121
1

lying on the intersection of the ray starting at P (11) and the coray ending at
I(12). The remaining (weakly) sincere indecomposables correspond to the
other points of intersection of the ray and the coray mentioned above.

9.3. Let A be given by the bound quiver
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Then A is a tame braid algebra of type (3) with coil type cA = ((6, 2, 2),
(6, 2, 2)), and ΓA contains the (weakly) sincere quasi-tube
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1 1
1

0 0
0 0
0 0

0 0

0 0
1

1 1
0 1
0 1

0 0

0 0
0

0 0
0 0
1 0

0 0

0 0
1

1 1
1 1
0 0

0 0

0 0
0

0 0
0 0
0 0

0 1

0 0
1

1 1
1 0
0 0

1 0

1 1
1

0 0
0 0
0 0

0 0
| ց ր ց ր ց ր ց ր ց ր ց ր |

1 1
2

1 1
0 1
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0 0

0 0
1

1 0
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0 0→
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1
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1
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1
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1
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2
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2
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0 1
0 0
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3
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3
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2
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3
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2
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1 1
3
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0 0
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3
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0 0
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3

2 2
1 1
0 0
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1 1
3
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1 1
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3
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1 0
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1 0
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3
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3
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where the indecomposable modules are replaced by their dimension-vectors
and the dashed lines have to be identified in order to obtain a (weakly)
sincere quasi-tube. We can see a (weakly) sincere indecomposable with
dimension-vector

1 1
3

2 2
1 1
1 1

1 1

lying on the intersection of the ray starting at S(7) and the coray ending
at S(9). The remaining (weakly) sincere indecomposables correspond to the
other points of intersection of the ray and the coray mentioned above.

9.4. Let A be given by the bound quiver
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Then A is a tame braid algebra of type (4) having coil type cA = ((7, 2, 2),
(7, 2, 2)), and ΓA contains the (weakly) sincere quasi-tube on p. 128, where
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the indecomposable modules are replaced by their dimension-vectors and
the dashed lines have to be identified in order to obtain a (weakly) sincere
quasi-tube. We can see a (weakly) sincere indecomposable with dimension-
vector

1 1
3

2 2
1 1
1 1

11 11

lying on the intersection of the ray starting at P (12) and the coray ending at
I(13). The remaining (weakly) sincere indecomposables correspond to the
other points of intersection of the ray and the coray mentioned above.
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México 04510 D.F., Mexico

E-mail: bta@hp.fciencias.unam.mx

Received 24 May 2001;

revised 18 October 2001 (4071)


