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WHEN EVERY POINT IS EITHER TRANSITIVE OR PERIODIC

BY

TOMASZ DOWNAROWICZ (Wrocław) and XIANGDONG YE (Hefei)

Abstract. We study transitive non-minimal N-actions and Z-actions. We show that
there are such actions whose non-transitive points are periodic and whose topological
entropy is positive. It turns out that such actions can be obtained by perturbing minimal
systems under some reasonable assumptions.

1. Introduction. It is known [K] that the set of non-transitive points in
a transitive non-minimal system (N-action) is dense. In [K-W] a transitive
recurrent non-minimal system is constructed (hence with all non-transitive
points recurrent). In [D] we find a similar example with additional regularity
properties (weakly almost periodic).

Transitive systems with dense minimal (or periodic) points have gained
some attention in more recent papers: in [G-W] it is proved that a transi-
tive system with a dense set of minimal points must be sensitive; we also
mention [A-K-L-S] where some relations between density of periodic orbits
and topological entropy in low dimensional dynamics are studied.

When one reads these papers, a natural question comes to mind: do there
exist transitive non-minimal systems all of whose non-transitive points are
minimal or even periodic? How restrictive is such a combination of con-
straints (it seems to be the strongest of the discussed type)? In this note we
will provide answers to these questions.

Let S denote either the semigroup N of all positive integers or the group
Z of all integers. Let X be a compact metric space without isolated points
(hence uncountable). We will consider the action of S on X, i.e., a dynamical
system (X,T ) = (X,Tn : n ∈ S), where T is a continuous map from X to
X (in case S = Z, T must be a homeomorphism).
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A point x ∈ X is called recurrent if it is contained in the closure of the
set {Tnx : n ∈ S, n 6= 0}. A system (X,T ) is called recurrent if every x ∈ X
is recurrent. A point x ∈ X is called transitive if its orbit {Tnx : n ∈ S}
is dense in X. The system (X,T ) is called transitive if it has at least one
transitive point. In transitive systems all the transitive points form a dense
Gδ set. Since the space has no isolated points, every transitive point is
recurrent. A non-empty subset F ⊂ X is called invariant if TnF ⊂ F for
each n ∈ S; F is minimal if it is closed, invariant, and contains no proper
closed invariant subsets. A point x is called minimal if it is contained in
a minimal subset of X or, equivalently, if its orbit closure is minimal. In
particular, each periodic point is minimal. It is well known that the whole
space X is minimal if and only if each point is transitive. We then say that
(X,T ) is a minimal system. It is clear that a minimal system is recurrent.
We are now in a position to introduce the notions which are the main

subject of investigation in this note:

Definition. A dynamical system (X,T ) will be called a ToM-system if
it is transitive, not minimal, and every point x ∈ X is either transitive or
minimal. A special case is a ToP-system, where each point is either transitive
or periodic.

Clearly, in both cases of S, ToM implies that the system is recurrent.
In particular, this forces that in the case of an N-action, T is surjective.
A nice and obvious fact about the ToM property is that it is inherited by
any non-minimal factor of (X,T ). Moreover, the ToP property is invariant
under orbit equivalence (by surjectivity finite orbits are periodic).
We emphasize that some properties of ToM N-actions and Z-actions are

quite different (see Theorem A below and the following remark).

Fact 1 (see e.g. [K-W]). If (X,T ) is a transitive, recurrent , non-mini-
mal N-action then the space is not totally disconnected ; every transitive
point is contained in a connected set intersecting all minimal subsets.

Proof. Suppose the assertion is not true. Then there exists a transitive
point x, a minimal subset F , and an open and closed set U so that F ⊂ U
and x 6∈ U . Then Tnx ∈ U along arbitrarily long intervals of time, and, on
the other hand, Tnx 6∈ U for arbitrarily large values of n. Thus for each
k ∈ N we can find an integer nk ∈ N such that Tnkx 6∈ U and Tnk+ix ∈ U
for every i = 1, . . . , k. Then any accumulation point of the sequence (Tnkx)
is not recurrent, a contradiction.

Fact 2 (see [K] for the original proof). Let (X,T ) be a transitive non-
minimal N-action. Then the set of non-transitive points is dense in X.

Proof (based on the proof of Lemma K in [K-W]). Let A denote the
(non-empty) set of all non-transitive points. Clearly, the image of a non-
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transitive point is non-transitive. Thus T (A) ⊂ A. Since proper closed in-
variant sets contain no transitive points, it follows that either A = X (which
we claim) or A contains no transitive points, i.e., A is closed. Since the
preimage of a transitive point consists of transitive points, we can find an
open neighborhood U of A with U disjoint from one such preimage. Then
T (U) 6= X. Thus

⋂∞
n=1 T

n(U) is a proper, closed and (forward) invariant
subset, hence contains no transitive points, hence is contained in A. This
implies that for some n0,

⋂n0
n=1 T

n(U) ⊂ U . Setting K :=
⋂n0−1
n=0 T

n(U)

we have T (K) ⊂
⋂n0
n=1 T

n(U) ⊂ U , hence T (K) ⊂ U ∩ T (K) ⊂ K.
Thus, by the same argument a third time, K contains no transitive points.
But K contains the open set

⋂n0−1
n=0 T

n(U), which is non-empty (contains⋂n0−1
n=0 T

n(A) = Tn(A)). Thus K does contain transitive points, a contra-
diction.

Applying the above two facts to ToM N-actions we obtain the following

Theorem A. Let (X,T ) be a ToM N-action. Then the space X is not

totally disconnected (there exists a connected set intersecting all minimal
sets), and the union of all minimal sets is dense.

As we shall see in the next construction, both statements fail for
Z-actions: there exist totally disconnected (even symbolic) ToP Z-actions
where the union of minimal subsets reduces to a single fixpoint.

It should be noted that, by Theorem A and the above-mentioned result
of [G-W], every ToP N-action is chaotic in the sense of Devaney. According
to a recent result in [H-Y], it is then chaotic in the sense of Li–Yorke. Thus,
our construction of Section 3 automatically adds to the variety of examples
of Li–Yorke chaotic systems.

In the following sections we shall prove two theorems (for S = Z and
S = N), which show that even the seemingly strong ToP property does
not impose much restriction on the dynamics. For S = Z, the system may
behave (up to ε) just like any minimal system (X,T ). For S = N we prove a
slightly weaker measure-theoretic statement. If S = Z then among transitive
points, those which are transitive only backwards are admitted (i.e., {T−n :
n ∈ N} is dense in X while {Tn : n ∈ N} is not), which makes the case
considerably easier. For simplicity, we will state the theorem only for X
totally disconnected. It follows from the results of E. Lindenstrauss and
B. Weiss (Theorem 4.2 and the preceding statement in [L-W] and Theorem
6.2 in [L]) that every minimal system (X,T ) with finite entropy has a base of
topology consisting of sets whose boundaries are null sets with respect to all
invariant measures. This easily implies the existence of a totally disconnected
extension of (X,T ) with “the same” dynamics, i.e., of an almost one-to-one
extension with an isomorphic simplex of invariant measures and which, for
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every invariant measure, is measure-theoretically isomorphic to (X,T ). This
explains that the totally disconnected case is in a sense the most important
one.

2. Z-actions. This section is devoted to proving the existence theorem
for ToP Z-actions and finding out how general such systems can be.

Theorem 1. Let (X,T ) be an arbitrary non-periodic totally disconnected
minimal Z-action and let ε > 0 be given. Then there exists a totally discon-
nected ToP Z-action (Y, S) with one fixpoint as a unique minimal subset ,
and a closed set F ⊂ Y with ν(F ) > 1− ε for every ergodic measure ν on Y
not supported by the fixpoint , such that (F, SF ) is topologically conjugate to
(X,T ), where SF is the first return map induced on F (which includes that
SF is continuous).

Proof. Replacing each x ∈ X by its trajectory x̃ := (x̃n)n∈Z ∈ X
Z, where

x̃n := T
nx, we isomorphically represent (X,T ) as a subsystem X̃ of XZ with

the shift transformation S defined by Sx̃ := (x̃n+1). By a block x̃[m,n) we
shall mean the finite sequence x̃m, x̃m+1, x̃m+2, . . . , x̃n−1. Let (mk)k≥1 be a
sequence of positive integers such that

∞∑

k=1

k

mk
< ε.

Let (Uk)k∈N be a sequence of open and closed balls in X with one-point in-
tersection {x′} and so small that for each k the sets Uk, T

−1Uk, . . . , T
−mkUk

are pairwise disjoint (this is possible within any minimal non-periodic sys-
tem). In particular, this implies that µ(Uk) < 1/mk for every invariant
measure µ on X. Let c be a symbol not contained in X. The ToP-system
(Y, S) will be built as a subshift Y ⊂ (X ∪ {c})Z (c being an isolated point
of X ∪ {c}). A transitive point y′ is constructed as follows: Let (ni)i∈Z be
the sequence of times corresponding to the visits of the trajectory x̃′ of x′

in U1 (so that n0 = 0), and for each integer i let ki be the maximal k with
Tnix′ ∈ Uk. Since T

nix′ = x′ only for i = 0, each ki is finite except for
i = 0. We let

y′ := . . . c, c, c, c, c, x̃′[n0, n1) c
k1 x̃′[n1, n2) c

k2 x̃′[n2, n3) c
k3 . . . ,

where ck denotes the block c, c, c, . . . , c (k times). The zero coordinate is
underlined. Roughly speaking, y′ is obtained from x̃′ by inserting before
each ni a block of ki c’s. By definition, Y is the orbit closure of y

′. Since
the sets Uk are both open and closed, it follows by an easy approximation
argument that if y ∈ Y and a symbol x ∈ X appears in y then y has the
form

y = . . . ck−1 x̃[n−1, n0) c
k0 x̃[n0, n1) c

k1 x̃[n1, n2) c
k2 x̃[n2, n3) c

k3 . . . ,
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where the numbers ni and ki are defined for x just as they were for x
′

(via the visits in Uk; now, of course, n0 need not be 0). In fact, in Y there
appear four types of elements: y as described above with all ki finite, the
points Sn(y′) (with infinitely many c’s on the left), the points Sn(y′′), where

y′′ = . . . , ck−3 x̃′[n−3, n−2) c
k−2 x̃′[n−2, n−1) c

k−1 x̃′[n−1, n0 − 1] , c, c, c, . . . ,

(these have infinitely many c’s on the right), and the fixpoint

c := . . . , c, c, c, c, c, c, c, . . .

We claim that, except for the fixpoint, every point is transitive (either
forward or backward or in both directions). This follows immediately from
the fact that every x ∈ X is both forward and backward transitive in (X,T ),
and that two sufficiently close points in X generate the same numbers ki for
all i between any preset bounds. We have proved that (Y, S) is a ToP-system
with the fixpoint c as a unique minimal subset.

Now, Y splits into two closed and open sets: F := {y ∈ Y : y0 ∈ X}
and C := Y \ F = {y ∈ Y : y0 = c}. Every ergodic measure ν on Y distinct
from the point mass at c is supported by the set of points y with all blocks
cki finite. Thus, up to a measure zero set, C splits as the countable union
C =
⋃
Ck, where

Ck := {y ∈ Y : the length of the maximal block of c’s containing y0 is k}.

Clearly, the trajectory of any y ∈ Y visits Ck at most k in everymk+k times.
Thus ν(Ck) ≤ k/mk, and hence ν(F ) = 1− ν(C) > 1 − ε, as claimed. The
conjugacy between the action induced on F and that on X is established
by the map φ(y) := y0, verification of which is immediate (we need to
additionally define the induced map at one point: SF (y

′′) := y′).

It is easy to see that if (X,T ) is expansive then the above leads to an
expansive (i.e., isomorphic to symbolic) system (Y, S).

Remark. Clearly, the lengths of the inserted blocks ck can be slightly
changed. By playing with these lengths it seems possible to obtain (Y, S)
totally transitive (= weakly mixing here) or even topologically mixing.

3. N-actions. We now present a much more complicated construction
for N-actions.

Theorem 2. Let (X,µ, T ) be an arbitrary non-periodic ergodic measure-
preserving system and let ε > 0 be given. Then there exists a ToP-system
(Y, S), a Borel set F ⊂ Y , and an invariant measure ν on Y such that
ν(F ) > 1− ε and (F, νF , SF ) is a measure-theoretic extension of (X,µ, T ),
where SF is the first return map induced on F and νF is the conditional
probability on F induced by ν.
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Corollary. There exists a ToP N-action with positive entropy.

Proof of Theorem 2. The proof will be divided into several stages. In
Stage 1 we embed X in a convex (hence also connected) set (so that grad-
ual passages from one element to another become possible), and then we
represent our system as a shift system over this convex set of symbols. In
Stage 2 we inductively construct a family of blocks At(α) and an auxiliary
family Bt+1(α) (both indexed by t ∈ N), depending continuously on the real
parameter α ranging between 0 and 2t. The block At(0) is almost identical
to the initial block of the future transitive point y′ of (Y, S), and as α rises
to 2t it changes gradually toward a constant block passing through periodic
concatenations of As(0) for all indices s < t. The essential properties of the
blocks At(α) and Bt+1(α) are listed and proved in Stage 3. These properties
will ensure (which we verify in Stage 4) that every element y = limj S

njy′ of
Y is either periodic (if the coordinates nj fall in y

′ into blocks At(α) (with
larger and larger t) “similar” to periodic repetitions of As(β) for some fixed
s and β) or transitive (in the opposite case). Stage 5 contains the definition
of the set F and the discussion of the induced transformation.

Stage 1: Preliminary reshaping. By the Jewett–Krieger theorem, we
can think of (X,µ, T ) as of a uniquely ergodic minimal topological system.
Next, we add to X an isolated point c and we realize X ∪ {c} as the set of
extreme points in a compact simplex K. For instance, K can be identified
with the set of all probability measures on X∪{c} (endowed with the weak*
topology), where each point x of X (or c) corresponds to the point mass
at x (or at c). The points x ∈ X will be called pure elements of K. To
spoil a pure element x by ε means to replace it by the convex combination
(1 − ε)x + εc. As before, we let (X̃, S) be the subshift conjugate to (X,T )
obtained as the set of trajectories x̃ := x̃1, x̃2, . . . , where x̃n := T

n−1x. This
time, however, X̃ ⊂ XN ⊂ KN.

Stage 2: Construction. If y ∈ KN and B ∈ Kn (n ∈ N) then by in-
serting the block B in y after positions n1, n2, . . . we mean producing the
sequence

y′ = y[1, n1] B y(n1, n2] B y(n2, n3] . . .

We fix some x′ ∈ X. We will define an element y′ ∈ KN by applying
inductively a countable series of insertions in x̃′. Later we will define Y as
the shift orbit closure of y′.
We will be using the following notation: For two blocks B and C of the

same length with symbols belonging to a convex set and an α ∈ [0, 1] we
define

〈〈α,B,C〉〉 = (1− α)B + αC

(the block obtained as a coordinatewise convex combination). Suppose we
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have defined a family of blocks of the same length p, {A(α) : α ∈ [0, k]}
(k ∈ N). Then, for a positive integer q = (2m + 1)p (m ∈ N) and a real
parameter β ∈ [0, k], we denote by Aq[0→ β → 0] the concatenation

A(0)A

(
β

m

)
A

(
2β

m

)
. . . A

(
(m− 1)β

m

)
A(β)A

(
(m− 1)β

m

)
. . .

. . . A

(
2β

m

)
A

(
β

m

)
A(0).

Note that, regardless of β, the length of Aq[0 → β → 0] is q. The block
Aq[0 → 0 → 0] consists of 2m + 1 repetitions of A(0). Such an object will
also be denoted briefly by Aq(0) (here the index q does not denote the
number of repetitions, but the total length).
Each inductive step below contains three parts: (a) the definition of

At(α), (b) the definition of Bt+1(α) and (c) the description of the insertion
of Bt+1(0) in y.

Step 0. Recall that the first entry of x̃′ is x′. Let x∗ = 0.9x′ +0.1c (we
spoil x′ by 0.1). For α ∈ [0, 1] set

(a) A0(α) := 〈〈α, x
∗, c〉〉

(in particular, A0(0) = x
∗, A0(1) = c). Choose some odd q1 ∈ N and, for

each α in the same interval as above, let

(b) B1(α) := A
q1
0 [0→ 1−α→ 0].

Note that B1(1) = A
q1
0 (0). Clearly, the assignments α 7→ A0(α) and α 7→

B1(α) are continuous for coordinatewise convergence. Observe that for any
α ∈ [0, 1], neither A0(α) nor any entries of B1(α) are pure.

(c) Now, we fix a positive integer p1 (larger than q1) and we produce a
new sequence y by inserting in x̃′ the block B1(0) after positions (2k− 1)p1
(k ∈ N). The first of the inserted blocks starts at position p1 + 1, then they
appear periodically with period r1 := 2p1 + q1, or, in other words, with gap
2p1 (see figure below).

· · · B1(0) · · · · · · B1(0) · · · · · · B1(0) · · · · · · B1(0) · · ·

(The dots represent the consecutive (pure) entries of x̃′, p1 = 3; q1 is not
specified.)

Step 1. After step 0, y begins with

y[1, r1] = y[1, p1]B1(0) y(r1 − p1, r1],

where y[1, p1] = x̃
′[1, p1] and y(r1 − p1, r1] = x̃

′(p1, 2p1]. We spoil the pure
entries of y[1, r1] by 0.01, and so we obtain a block of the form

y∗[1, p1]B1(0) y
∗(r1 − p1, r1].
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This will be our A1(0). Generally, for α ∈ [0, 1] we set

(a) A1(α) := 〈〈α, y
∗[1, p1], A

p1
0 (0)〉〉B1(α) 〈〈α, y

∗(r1 − p1, r1], A
p1
0 (0)〉〉.

In particular, A1(1) =A
r1
0 (0). In other words, with α varying from 0 to 1,

A1(α) changes continuously from a block similar to y[1, r1] to periodic rep-
etitions of A0(0); the end-sections of length p1 change linearly while the
center uses the path of the blocks B1(α).

Additionally, we can extend continuously the definition for α ∈ [1, 2] by
letting

A1(α) := A
r1
0 (α− 1).

In this manner A1(α) is defined for every α ∈ [0, 2].

Next, we choose q2 to be a (large) odd multiple of r1, and for α in the
same interval as above we set

(b) B2(α) := A
q2
1 [0→ 2−α→ 0].

Again, note that B2(2) = A
q2
1 (0) and the assignment α 7→ B2(α) is continu-

ous. As before, the blocks constructed in this step do not contain any pure
entries.

(c) We pick a positive integer p2 which is a multiple of r1 (much larger
than q2) and we produce a new sequence y

′ by inserting in y the block
B2(0) after positions (2k − 1)p2 (k ∈ N). As before, note that the first of
the inserted blocks starts at position p2 + 1, then they appear periodically
with period r2 := 2p2 + q2, or, in other words, with gap 2p2. To reduce the
number of subscripts, the sequence y′ produced in this step will again be
denoted by y.

The structure of y[1, r2] is sketched below:

· · · B1(0) · · · · · · B1(0) · · · B2(0) · · · B1(0) · · · · · · B1(0) · · ·

(p1 = 3, p2 = 2r1; q1 and q2 are not specified; for compactness of the picture
we violated the assumption that p1 and p2 are much larger than q1 and q2,
respectively).

Step t. Suppose we have defined a continuous assignment α 7→ Bt(α)
for α ∈ [0, 2t−1] into blocks of length qt so that Bt(2

t−1) = Aqtt−1(0) (qt is
a large odd multiple of the length rt−1 of At−1(0)). We assume that these
blocks contain no pure entries.

After the insertion of Bt(0), the sequence y begins with

y[1, rt] = y[1, pt]Bt(0) y(rt − pt, rt]

(rt = 2pt + qt, pt is a multiple of rt−1 much larger than qt). Spoiling (only)
the pure entries of y[1, rt] by 10

−t−1 we obtain a block of the form

y∗[1, pt]Bt(0) y
∗(rt − pt, rt]
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(note that we do not spoil the previously inserted blocks). This will be our
At(0). Generally, for α ∈ [0, 2

t−1], we let

(a)At(α) :=〈〈
α
2t−1 , y

∗[1, pt], A
pt
t−1(0)〉〉Bt(α) 〈〈

α
2t−1 , y

∗(rt−pt, rt], A
pt
t−1(0)〉〉.

In other words, with α varying from 0 to 2t−1, At(α) changes continuously
from a block very similar to y[1, rt] to periodic repetitions of At−1(0); the
end-sections of length pt change linearly while the center uses the path of
the blocks Bt(α). Notice that the previously inserted blocks Bs(0) (s ≤ t)
appear in both end-sections of y[1, rt] at the same places as in A

pt
t−1(0),

hence they remain fixed and do not vary with α (see figure below).

A2(0) = · · ·
B1(0) · · · · · · B1(0) · · · B2(0) · · · B1(0) · · · · · · B1(0) · · ·

| | | | ↓ | | | |

| | | | B2(1) | | | |

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

A2(2) = · · ·
B1(0) · · ·

︸ ︷︷ ︸

A1(0)

· · · B1(0) · · ·
︸ ︷︷ ︸

A1(0)

B2(2)
︸ ︷︷ ︸

A
q2
1
(0)

· · · B1(0) · · ·
︸ ︷︷ ︸

A1(0)

· · · B1(0) · · ·
︸ ︷︷ ︸

A1(0)

Since At(2
t−1) = Artt−1(0), we can extend continuously the definition for

α ∈ [2t−1, 2t] by letting
At(α) := A

rt
t−1(α− 2

t−1).

In this manner At(α) is defined for every α ∈ [0, 2
t]. Note that if α =

2t−1+2t−2+ . . .+2s for some s < t then At(α) becomes periodic repetitions
of As(0).
Then we choose a (very large) odd multiple qt+1 of rt, and for α in the

same interval as above we let

(b) Bt+1(α) := A
qt+1
t [0→ 2

t−α→ 0].

As before, we note that Bt+1(2
t) = A

qt+1
t (0), and that the assignment α 7→

Bt+1(α) is continuous. By induction, there are no pure entries in any blocks
constructed in this step.
(c) We now pick a positive integer pt+1 which is a multiple of rt (much

larger than qt+1) and we modify the sequence y by inserting the block
Bt+1(0) after positions (2k − 1)pt+1 (k ∈ N). The first of the inserted
blocks starts at position pt+1+1, then they appear periodically with period
rt+1 := 2pt+1 + qt+1, or, in other words, with gap 2pt+1.
This concludes the induction. From now on y′ denotes the sequence ob-

tained after applying all steps. By choosing qt+1 large enough in comparison
with rt, we can assume that the fractions

δt+1 = 2
2trt
qt+1 − 1

decrease to zero as t→∞.
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Stage 3: Additional observations. We point out several properties of the
blocks At(α), Bt(α) and of the sequence y

′.

(∗) For every t the positions occupied in y′ by the blocks Bt′(0) with all
t′ ≥ t form a syndetic set with maximal gap 2pt. Hence, if a position m does
not fall in such a block, then at most 2pt positions to the right of m we find
the beginning of a block of the form Bt′(0).
(∗∗) For α ∈ [0, 2t−1] the blocks Bs(0) (s < t) occur in the block At(α)

at the same places as the inductively inserted blocks in the initial part of y′.
Moreover, in the center of At(α) we have Bt(α), while at the corresponding
place in y′ we have Bt(0).

We call the above occurrences of the blocks Bs(0) and Bt(α) in At(α) in-
serted blocks in contrast to possible “accidental” occurrences of these blocks
not resulting from the induction. (It can be proved that there are no such
“accidental” occurrences, but it is not necessary to do it.) In particular,

(∗∗∗) any inserted block Bs(0) (s < t) or Bt(α) (s = t) starts in At(α)
not sooner than at a position farther than ps. By construction, the structure
of inserted blocks is symmetric, hence At(α) extends at least ps positions to
the right of the right end of that block.

Consider a block Bt+1(α) (α ∈ [0, 2
t]). It is a concatenation of blocks

of the form At(β) with β ∈ [0, 2
t − α]. The parameter β first grows then

decreases by a constant increment which is largest in the case of α = 0
and then equal to δt+1 (see above). If β ≥ 2

t−1 then the block At(β) equals
Artt−1(β−2

t−1). Further, if β ≥ 2t−1+2t−2, then Artt−1(β−2
t−1) can be writ-

ten as Artt−2(β− 2
t−1− 2t−2). And so on. Eventually Bt+1(α) can be viewed

as a concatenation of groups of blocks of the form Arts (β) with s varying first
non-increasingly from t to some minimal value and then returning symmet-
rically to t, and β ∈ [0, 2s−1) (exception: for s = 0 we admit β ∈ [0, 1]). Such
blocks do not further decompose. We call this representation of Bt+1(α) the
explicit representation.

(∗∗∗∗) If Arts (β) and A
rt
s′ (β

′) are two neighboring components in the
explicit representation of Bt+1(α), then either s = s

′ and |β−β′| ≤ δt+1, or
the indices s and s′ differ by 1, e.g. s′ = s+1. In the latter case we can view
the block Arts (β) as A

rt
s′ (β

′′) with β′′ > 2s
′−1 and then again |β′−β′′| ≤ δt+1.

Fix a positive integer m regarded as a coordinate in y′. The correspond-
ing entry y′m may fall in one of the inserted blocks Bt(0) (t ≥ 1) or not. If it
does, then in the explicit representation of Bt(0) it falls in some block of the
form Arts (β) (β ∈ [0, 2

s−1]). In that case we record the pair of indices t1 := t
(for B) and s1 := s (for A). Further, by (∗∗), within As1(β), m may fall
in some inserted block Bt(0) (t < s1) or Bt(β) (t = s1), or not. If it does,
then a new pair of parameters t2 := t and a corresponding s2 arise. In this
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manner, to each m we associate a finite (or empty) sequence of pairs 〈ti, si〉
(of some length k ≥ 0) satisfying t1 > s1 ≥ t2 > s2 ≥ . . . ≥ tk > sk ≥ 0.
This sequence will play a crucial role in the next argument. We denote it by
T S(m).

Stage 4: The ToP property. We now prove that the orbit closure Y of
y′ is ToP. Let y be any element of Y , y = limj S

mjy′, and suppose that y
is not transitive (in particular, y cannot belong to the orbit of y′ and we
can assume that mj grows to infinity). Then there exists an s0 such that for
every s ≥ s0, As(0) does not occur in y (recall that for large s, As(0) is very
similar to a long initial block of y′). For each j, let nj denote the distance
from mj to the beginning of the nearest (to the right of mj) occurrence of
a block As(0) with s ≥ s0 in y

′. Our considerations imply that nj →∞. By
choosing a subsequence, we may assume that nj ≥ 2rs0+j .

Claim. For each j ≥ 2, T S(mj) contains a pair 〈tj , sj〉 with tj ≥ s0+ j
and sj ≤ s0 + 2.

We will consider (and eliminate) several cases in the negation of our
claim. Firstly, if mj falls outside all blocks of the form Bt(0) with t ≥ s0+j,
then, by (∗), at most 2ps0+j to the right of mj we find a block Bt(0) with
t ≥ s0 + j (which begins with At−1(0) and t− 1 ≥ s0). Thus nj ≤ 2ps0+j <
2rs0+j , a contradiction. This implies that the sequence T S(mj) is non-empty
and contains at least one pair with t ≥ s0+j. Let 〈tj , sj〉 denote the smallest
such pair. Then mj falls into an inserted block Btj (αj) (perhaps inside
a larger inserted block) and, therein, into Asj (βj) which is a part of the

componentA
rtj
sj (βj) of the explicit representation ofBtj (αj). Further, within

Asj (βj), mj falls outside any inserted block with an index t
′ ≥ s0 + j (tj is

minimal). Two cases are possible: the block Asj (βj) extends at least rs0+j
positions to the right of mj or not. If it does, then, by (∗∗) and (∗), at most
2ps0+j positions to the right ofmj we will find the block Bs0+j(0) (contained
completely inside Asj (βj); recall that rs0+j = 2ps0+j + qs0+j), which begins
with As0+j−1(0). Thus nj ≤ rs0+j , again a contradiction. In the second case
we assume (contrary to our claim) that sj ≥ s0 +3. Consider two subcases:

(a) our Asj (βj) is the terminal part of the terminal component A
rtj
sj (βj)

in the explicit representation of the block Btj (αj) (which is only possible if
sj = tj − 1 and βj = 0);
(b) ourAsj (βj) is followed (insideBtj (αj)) by someAs′(β

′) (then sj−1 ≤
s′ ≤ sj + 1).

In case (b) we have s′ ≥ s0+2, hence by (∗∗), at position ps0+1 (relative
to A′s(β

′)) we find an occurrence of Bs0+1(0) (which begins with As0(0)).
Thus nj ≤ rs0+j + ps0+1 < 2rs0+j , a contradiction. Case (a) splits again:
either αj = 0 and our block Btj (0) is inserted directly in y

′ (i.e., tj is
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maximal in T S(mj)), or our block Btj (αj) is inserted in a larger Au(γ).
In the first case, the position following Btj (0) is outside of any inserted
blocks, thus, by (∗) at most 2ps0+1 positions farther we will find a block
Bs0+1 (beginning with As0(0)), hence nj ≤ rs0+j+2ps0+1 < 2rs0+j , another
contradiction. In the remaining (and last) case, by (∗∗∗), Au(γ) extends at
least ptj positions to the right of the right end of Btj (αj). For j ≥ 2 we have
ptj ≥ ps0+j > rs0+1, hence, by (∗), we can argue as in the preceding case
(relative to Au(γ)). This concludes the proof of the Claim.

We now prove that y is a periodic sequence. By choosing a subsequence
ofmj , we can assume that sj assumes a constant value s, tj grows to infinity,
and βj converges to some β (note that βj ∈ [0, 2

s−1]). We can also assume
that the relative position of mj within the corresponding block As(βj) is

fixed. Since eventually s < tj − 1, the component A
rtj
s (βj) is not the ter-

minal one in the explicit representation of Btj (αj). Thus, by (∗∗∗∗), this

component and the following one can be written as A
rtj
s′ (β

′) and A
rtj
s′ (β

′′)
where either s′ = s and |β′−β′′| ≤ δtj and one of β

′, β′′ is βj , or s
′ = s+1,

and both β′ and β′′ differ from 2s by at most δtj . Choosing a subsequence
and passing to the limit, we conclude that y belongs to the shift orbit of the
sequence obtained by periodic repetitions of As(β) (or of As+1(2

s) = As(0)).
The proof of the ToP property is now complete.

Stage 5: Induced transformation on F . We now consider the remaining
part of the assertion of the theorem. We define F ⊂ Y to be the set of the
elements y for which y1 is pure, i.e.,

y = x̃[1, k1)Bt1(0) x̃[k1, k2)Bt2(0) x̃[k2, k3)Bt3(0) . . .

for some pair of sequences (ki) (strictly increasing, k1 ≥ 2) and (ti) of
positive integers, and a trajectory x̃ of some point x ∈ X. Clearly, y′ ∈ F .
Consider a pair of finite sequences K := k1, . . . , kn and T := t1, . . . , tn−1 of
positive integers (n ≥ 1; T can be empty, K is increasing). Let

FK,T := {y ∈ Y : (∃x ∈ X)

y = x̃[1, k1)Bt1(0) x̃[k1, k2)Bt2(0) . . . Btn−1(0) x̃[kn−1, kn) . . .}.

Since for any t the block Bt(0) contains no pure entries while every element
of the trajectory x̃ is pure, it is seen that the sets FK,T and FK′,T′ are either
disjoint or one is contained in the other (the latter can happen only when
K
′ and T

′ are extensions of K and T, respectively, or vice versa). Let Fk
denote the (disjoint) union of the sets FK,T over all pairs K,T of sequences
such that the last entry of K (say kn) is equal to k. We have

F =

∞⋂

k=2

Fk.
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Let Fk,t be the union of the sets FK,T over all pairs K,T with kn = k and T

bounded by t. Obviously, each Fk,t is closed, and Fk =
⋃
t Fk,t. This proves

that F is a Borel subset of Y .
Fix some t0 and let k be the number of pure entries in y

′[1, rt0 ]. Observe
that Sm−1y′ ∈ Fk,t0 whenever m falls outside all inserted blocks (then y

′
m is

in the orbit of x′) and it does not fall in the interval of length rt0 preceding
an inserted block Bt(0) with t > t0. For given s > t0, the frequency of such
integers m in the interval [1, rs] is at least

1−
s∑

t=1

qt
rt
−

s∑

t=t0+1

rt0
rt
≥ 1− 2

s∑

t=1

qt
rt
.

Choosing pt sufficiently large compared to qt we can make the series of the
fractions qt/rt summable to less than ε/2 (ε was chosen in the assertion of
the theorem).
Consider the following sequence of measures on Y :

Ms :=
1

rs

rs−1∑

i=0

Si(δy′),

where δy′ is the point mass at y
′. Let ν be a weak* accumulation point

of this sequence. Clearly, ν is an invariant measure on Y . In the above
discussion of frequencies we have shown that Ms(Fk,t0) > 1 − ε. Since the
characteristic function of a closed set is upper semicontinuous, the limit
measure ν assigns to Fk,t0 a non-smaller value. Obviously, Fk is a larger
set, hence ν(Fk) ≥ 1− ε. Finally, note that the k in the above argument is
arbitrarily large, hence F , being the decreasing intersection of the sets Fk,
is also of ν-measure at least 1− ε.
It is rather immediate to see how the induced map SF acts on F : if y

starts with xTx . . . then SF y = Sy, if y starts with xBt(0)Tx . . . then
SF y = S

qt+1y. In any case SF shifts the element y (starting with some x)
so that SF y starts with Tx (skipping over the inserted blocks). Thus, the
projection π1 onto the first coordinate serves as a factor map from the
system (F, SF ) into (X,T ). Clearly, the conditional measure νF projects to
some invariant measure on X supported by the image π(F ). But (X,T ) is
assumed to be uniquely ergodic, hence π(F ) is a full measure subset of X.
We have proved that (X,µ, T ) is a measure-theoretic factor of (F, νF , SF ).
The proof of the theorem is now complete.

Question 1. In the above construction it is essential that the periods
rt form a base of an odometer (i.e., rt | rt+1). This is why the system (Y, S)
is not totally transitive. It is natural to ask whether a totally transitive
(hence topologically weakly mixing, see [B]) or mixing ToP N-action exists.
(The condition rt | rt+1 is necessary to produce paths of blocks continu-
ously changing from rt-periodic to rt+1-periodic. By Theorem A, some kind
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of such passages must occur.) By [G-W] a ToM system cannot be almost
equicontinuous (which implies uniformly rigid). Is there any uniformly rigid
ToM system?

Question 2. As already mentioned, every ToP N-action is chaotic in
the sense of Li–Yorke. Is this also true for a ToM system or more generally
for a transitive system with a dense set of minimal points?
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