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Abstract. In the first part, we study algebras A such that A = R ∐ I, where R is a
subalgebra and I a two-sided nilpotent ideal. Under certain conditions on I, we show that

A is standardly stratified if and only if R is standardly stratified. Next, for A =
[

U

M

0
V

]

,

we show that A is standardly stratified if and only if the algebra R = U ×V is standardly
stratified and VM is a good V -module.

1. Introduction. In this work k will denote an algebraically closed field
and “algebra” always means a finite-dimensional basic k-algebra.
We first consider the case in which A is a split algebra, that is, an algebra

with a subalgebra R and a two-sided ideal I such that there is an R-bimodule
decomposition A = R ∐ I. The algebra structure in A = R ∐ I is given by

(r, i)(r′, i′) = (rr′, ri′ + ir′ + ii′).

We prove that, under certain hypotheses, R is standardly stratified if and
only if A is standardly stratified. We also study relations between the cate-
gories of good modules in both algebras.
In the third section we study the case of a lower triangular matrix algebra

of the type

A =

[

U

M

0

V

]

where U and V are algebras andM is a V -U -bimodule. Algebras of this type
can be viewed naturally as split algebras if we let R = U ×V and takeM as
an R-bimodule in which U acts as zero on the left and V acts as zero on the
right. However, the condition 2 assumed in Section 2 is almost never satisfied
if we order the idempotents of A in such a way that the idempotents of U

2000 Mathematics Subject Classification: 16E10, 16G20, 18G20.
Key words and phrases: split algebra, standardly stratified algebra, good modules.
The first author wants to thank CNPq (Brazil) for financial support. The third author

wants to thank Universidad de Guanajuato and Fapesp (Brazil) for financial support.

[303]



304 E. N. MARCOS ET AL.

are smaller than those of V . So our analysis for lower triangular matrices
follows a different approach.
Split algebras have been studied recently in various settings. For instance

their Hochschild cohomologies have been investigated in [3]. Some relations
between their almost split sequences have been found in [1]. Influenced by
these works, and others, we study these algebras from the point of view of
stratification.

2. Split-by-nilpotent algebras. We start this section by reviewing
some definitions and fixing the notations.
Let A be an algebra. Unless otherwise stated, “module” means a finitely

generated left module, and A-mod will denote the category of A-modules.
Let e = {e1, . . . , en} be a complete set of primitive orthogonal idempotents
with order given by the indices.
As usual Pi = Aei denotes the projective cover of the simple Si. For

each i we define the standard module ∆A(i) to be the maximal quotient of
Pi with composition factors Sj with j ≤ i. Let ∆ be the set of all these
standard modules ∆A(i). An A-module M will be called a ∆-good module,
or just a good module, if there is a finite chain of submodules

0 =M0 ⊂M1 ⊂ . . . ⊂Mt =M

such that Mi/Mi−1 is isomorphic to a module in ∆, for all i. The number
t does not depend on the filtration. We will call it the ∆-length of M and
denote it by l(M). The full subcategory of A-mod whose objects are the good
modules is denoted by FA(∆). The algebra A is said to be left standardly
stratified if A is a good module.
We come back now to our situation of a split algebra A = R ∐ I. We

assume in addition that I is nilpotent, which is equivalent to the condition
that I is contained in the radical of the algebra A, or that there is a complete
set of orthogonal primitive idempotents of A which are in the subalgebra R.
Throughout this section, we assume the following conditions on the

R-bimodule I:

• (Condition 1) IR is a right projective R-module.
• (Condition 2) For each i the A-module I⊗RSi has composition factors

only of the form Sj with j ≤ i.

Observe that the conditions above hold for the R-bimodule I if and only
if they hold for the R-bimodule A, since A = R ∐ I as an R-bimodule.
Since 1A ∈ R, we can assume that the ordered set e is also a set of

orthogonal primitive idempotents of R. Consider the following functors:

F : R⊗A − : A-mod→ R-mod and G : A⊗R − : R-mod→ A-mod.

We find that the functor R⊗AA⊗R− is isomorphic to 1R and also that the
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functor F : A ⊗R − preserves projectives and projective covers, and sends,
for each i, the R-simples Top(Rei) to the A-simples Top(Aei). If there is
no danger of misunderstanding, we will call either one Si. The main result
of this section states that, under our conditions 1 and 2, R is standardly
stratified if and only if A is. The following characterization of the family ∆
of standard modules, given by Dlab and Ringel, will be used.

Theorem 1. For an arbitrary k-algebra Λ, let D = {M1, . . . ,Mn} be
a family of Λ-modules. Then D is the complete ordered family of standard
modules (up to isomorphism) if and only the following three conditions hold :

• Top(Mi) ≃ Si for 1 ≤ i ≤ n.
• For each i, all composition factors of Mi are of the form Sj with j ≤ i.
• For each i, Ext1Λ(Mi, Sj) = 0 for all j ≤ i.

Lemma 2. Under conditions 1 and 2, the following statements are valid :

(1) ∆A(i) ≃ A⊗R ∆R(i).
(2) ∆R(i) ≃ R⊗A ∆A(i).

Proof. (1) We show that the family {A⊗R∆R(i)} satisfies the conditions
of Theorem 1.

• Since the functor A ⊗R − preserves projective covers, the top of the
A-module A⊗R ∆R(i) is the simple A-module Si.
• The exact sequence of A-modules 0→ I → A→ R→ 0 gives, for each

simple R-simple Sj with j ≤ i, the exact sequence

0 = Tor1R(R,Sj)→ I ⊗R Sj → A⊗R Sj → R⊗R Sj → 0

and so A⊗RSj has composition factors only simples Sk with k ≤ i. From this
fact and the exactness of the functor A⊗R− we deduce that all composition
factors of the A-module A⊗R ∆R(i) are simple of the form Sj with j ≤ i.
• Finally, we claim that Ext1A(A⊗R∆R(i), Sj) = 0 for j ≤ i: since A is an

R-projective module, Ext1A(A⊗R∆R(i), Sj) ≃ Ext
1
R(∆R(i),HomA(A,Sj)) ≃

Ext1R(∆R(i), Sj) = 0 for j ≤ i (see [8, Exercise 9.21]).

Therefore, from Theorem 1, we conclude that A⊗R ∆R(i) ≃ ∆A(i).
(2) The composition F ◦ G is naturally equivalent to IdR-mod, therefore

∆R(i) ≃ R⊗A A⊗R ∆R(i) ≃ R⊗A ∆A(i).

Lemma 3. For any good A-module M we have Tor1A(R,M) = 0.

Proof. Using the exact sequence of right A-modules 0→ I→A→R→ 0,
we get, for each ∆A(i), an exact sequence

0→ Tor1A(R,∆A(i))→ I ⊗A ∆A(i)→ ∆A(i)→ ∆R(i)→ 0.

Since ∆A(i) = A⊗R∆R(i) ≃ R⊗R∆R(i)∐ I ⊗R∆R(i) (as R-modules) and
since I ⊗A ∆A(i) ≃ I ⊗A A ⊗R ∆R(i) ≃ I ⊗R ∆R(i), we see by counting
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dimensions that Tor1A(R,∆A(i)) = 0. Then it follows by induction that
Tor1A(R,M) = 0 for all M ∈ FA(∆).

Proposition 4. With the general assumptions made for this section,
we have:

(1) N ∈ FR(∆) implies A⊗R N ∈ FA(∆).

(2) N ∈ FA(∆) implies R⊗A N ∈ FR(∆).

Proof. (1) We use induction on l(N). By the previous lemma, the result
is true ifN is one of the standard modules∆R(i). So, assume thatN contains
properly one of the ∆R(i) for some i = 1, . . . , n. Then there is a short exact
sequence

0→ ∆R(i)→ N → N/∆R(i)→ 0

in FR(∆). Applying the functor G = A⊗R − we get

0→ ∆A(i)→ A⊗R N → A⊗R (N/∆R(i))→ 0.

By induction and the fact that FA(∆) is closed under extensions, it follows
that A⊗R N is in FA(∆).

(2) Again, we use induction on l(N). Here, we get a long exact sequence

. . .→ Tor1A(R,N/∆A(i))→ R⊗A ∆A(i)→ R⊗A N → R⊗A N/∆A(i)→ 0.

Since by the previous lemma Tor1A(R,M) = 0 for allM ∈ FA(∆), the result
follows.

Corollary 5. A is a standardly stratified algebra if and only if R is.

Corollary 6. If the category FA(∆) is of finite representation type,
then so is FR(∆).

Proof. Let {M1, . . . ,Mm} be a complete set of isomorphism classes of
indecomposable A-modules in FA(∆) and let M = M1 ∐ . . . ∐ Mm. We
claim that FR(∆) = add(R ⊗A M). Let L ∈ FR(∆). Then A ⊗R L ≃
M t11 ∐M

t2
2 ∐ . . .∐M

tm
m so

M ≃ (R⊗AM1)
t1 ∐ . . .∐ (R⊗AMm)

tm , which is in add(R⊗AM).

In [6] Reiten and Platzeck observed that the subcategory of good mod-
ules is always contained in the subcategory of modules of finite projective
dimension. They also gave conditions for these subcategories to be equal.
We have the following proposition which also relates to these concepts. For
the statement we use the notation of [6].

Corollary 7. If FA(∆) = P
<∞(A), then FR(∆) = P

<∞(R).

Proof. If M ∈ P<∞(R), then it has a finite projective resolution of
R-modules, 0 → Pn → . . . → P 1 → P 0 → M → 0. Applying the functor
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G = A ⊗R − we get the following projective resolution of the A-module
A⊗RM :

0→ A⊗R P
n → . . .→ A⊗R P

1 → A⊗R P
0 → A⊗RM → 0.

Hence,A⊗RM , having finiteA-projective dimension, is in FA(∆). Therefore,
by Proposition 4, M ≃ R⊗A (A⊗RM) ∈ FR(∆).

Remarks 8. (1) Since the functor (R⊗A (A⊗R−)) is isomorphic to the
functor IdR-mod, for M and N ∈ R-mod, we find that M ≃ N if and only if
A⊗RM ≃ A⊗R N .

(2) Since I is contained in the radical of A, R ⊗AM = 0 if and only if
M = 0.

Corollary 9. The R-module M is decomposable (resp. indecompos-
able) if and only if the A-module A ⊗RM is decomposable (resp. indecom-
posable).

One particular case of a split algebra satisfying our assumptions is the
algebra A = R[x]/(x2), which is isomorphic to R ∐ R with multiplication
given by (r, s)(r′, s′) = (rr′, rs′+sr′). The isomorphism is given by r+sx 7→
(r, s).

It is clear that the quiver QR is a subquiver of QA. Moreover, QA is
obtained from QR by adding one loop, denoted by li, at each vertex vi. This
is a complete description of QA.

Now if J = {r1, . . . , rn} are relations defining a presentation of R, then
a set of relations for a presentation of A is obtained by adding to J all loops
l2i and all differences

{l2i for each i, αlo(α) − lt(α)α for each arrow α}.

We now give some examples.

Example 10. This example shows that it can happen that FR(∆) is of
finite representation type but FA(∆) is not.

Let A = k(1
α
→→
β
2) be the Kronecker algebra, and R = k(1

α
→ 2). In

this case I = 〈β〉 is the two-sided ideal generated by β (which is just the
one-dimensional vector space kβ). As R-bimodule, 〈β〉 is the simple S2⊗kS1
which, as a right R-module, is isomorphic to S1 which is a projective right
R-module. In this case our algebras are hereditary and FA(∆) = A-mod
and FR(∆) = R-mod. The category R-mod is of finite representation type
but A-mod is not.

Example 11. We have shown that there is an embedding on the inde-
composable objects from the category FR(∆) into FA(∆), given by A⊗R−.
We consider the algebra A = R[x]/(x2) in which FR(∆) has 3 indecom-
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posables but FA(∆) has 4 indecomposables (see [4]). In our example, the
algebras will be IIP, so that their good modules are the modules of finite
projective dimension.

Let R ≃ k(1
α
→ 2) and A ≃ kQA/I where QA is obtained from the quiver

ofQR by adding one loop li at each vertex i and the relations {l
2
1, l
2
2, αl1−l2α}

(as described before). We see that ∆R(i) = Si and the indecomposables
of the category R-mod = FR(∆) are S1, S2 and P1. So we have A⊗R S1
≃ ∆A(1), A ⊗R S2 ≃ ∆A(2) and A ⊗R P1 ≃ PA(1) are indecomposable
A-modules in FA(∆), but in addition we have the following indecomposable
A-module:

k k

‖ ց ‖

k k

which belongs to FA(∆) and is not of the form A⊗RM for anyM in R-mod.

Example 12. We now describe an example where I is not zero, but
nevertheless the functors F and G induce bijections between the indecom-
posable good modules.

We take as R the hereditary algebra k(1
α
→ 2). Then A ≃ kQA/(rad)

2

has radical square zero, where QA is obtained from QR by adding one loop
l at vertex 1. It is easy to see that in this case both categories have 3
indecomposable objects.

3. Algebras in lower triangular form. In this section we study al-
gebras, which are given as matrix algebras in lower triangular form, with
respect to being standardly stratified. We choose the idempotents conve-
niently. Let us observe again that these are always split algebras. But, with
our choice of idempotents, they almost never satisfy all the hypotheses of
the former section. So the point of view here is another one and the results
that we obtain are of a different nature.

We fix the following notations. U and V denote finite-dimensional k-
algebras, M a V -U -bimodule and A the finite-dimensional k-algebra A =
[

U
M
0
V

]

. Also, we take the ordered set g = {e1, . . . , et, ft+1, . . . , ft+r} as the
complete ordered set of orthogonal primitive idempotents of A, where e =
{e1, . . . , et} ⊂ U and f = {ft+1, . . . , ft+r} ⊂ V are the fixed complete
ordered sets of orthogonal idempotents of U, V , respectively. (Here, of course,

we identify ei with
[

ei
0
0
0

]

and fj with
[

0
0
0
fi

]

.)

Let us begin by quoting two well known results that will be useful.

Given Λ, a standardly stratified algebra with respect to h = (h1, . . . , hn),
let j be such that 1 ≤ j ≤ n and denote by εj the sum ε = hj + . . . + hn.
We now state two well known results of Dlab and Ringel.



STANDARDLY STRATIFIED ALGEBRAS 309

Theorem 13. (1) The algebra A/AεjA is standardly stratified and the
good A/AεjA-modules are the good A-modules annihilated by AεjA.
(2) The algebra εjAεj is standardly stratified with respect to {hj, . . . , hn}.

Remark 14. It follows from Theorem 13 that the set of standard
A-modules is the union of the set of standard U -modules and the set of
standard V -modules.

We recall the well known fact that there is an equivalence between the
category of A-modules and the category C whose objects are triples (X,Y, f)
where X is in U -mod, Y in V -mod and f : M ⊗U X → Y is a V -module
homomorphism. In what follows, by abuse of language, we identify the X of
U (resp. of V ) with the corresponding triple (X, 0, 0) (resp. (0, X, 0)).

The sequence (A,B, f)
(α,β)
−→ (A′, B′, f ′)

(α′β′)
−→ (A′′, B′′, f ′′) is exact if and

only if the sequences A
α
→ A′

α′
→ A′′ and B

β
→ B′

β′

→ B′′ are exact. Moreover
the indecomposable A-projective modules are of the form (P,M ⊗V P, Id)
where UP is projective, or of the form (0, Q, 0), where VQ is projective. The
indecomposable injective objects in C are objects of the form (I, 0, 0) where I
is an indecomposable injective U -module, and objects isomorphic to objects
of the form (HomV (M,J), J, φ) where J is an indecomposable injective V -
module and φ : M ⊗U HomV (M,J) → J is given by φ(m ⊗ f) = f(m) for
m ∈M and f ∈ HomV (M,J).

Lemma 15. The A-module (X,Y, f) is in FA(∆) if and only if X ∈
FU (∆) and Y ∈ FV (∆).

Proof. Let L = (X,Y, f). Then we have the following filtration: L =
Aε1L ⊇ Aε2L ⊇ . . . ⊇ Aεt−1L ⊇ (0, Y, 0) ⊇ Aεt+2L ⊇ . . . ⊇ Aεt+r+1L = 0.
Assuming that L is A-good we deduce that L/(0, Y, 0) ≃ (X, 0, 0) is A-good,
and it is annihilated by

[

0
M
0
V

]

. It follows that X ∈ FU (∆) and Y ∈ FV (∆).
The converse is analogous.

Proposition 16. The algebra A is standardly stratified with respect to
g if and only if the following conditions are satisfied.

(a) U is standardly stratified with respect to e.
(b) V is standardly stratified with respect to f .
(c) VM ∈ FV (∆).

Proof. First, assume that A is standardly stratified. Since AA ∈ FA(∆)
and A = (U,M, 1) ∐ (0, V, 0), Lemma 15 shows that UU ∈ FU (∆) and
M ∐ V ∈ FV (∆). The converse follows analogously using the other implica-
tion of Lemma 15.

We recall that a left standardly stratified algebra A is called quasi-
hereditary if EndA(∆A(i)) is a division ring for each i belonging to the
index set of the simple A-modules.
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Corollary 17. The algebra A is quasi-hereditary if and only if U and
V are quasi-hereditary and M ∈ FV (∆).

Proof. This follows easily from Remark 14 and the previous proposi-
tion.

We now want to investigate conditions, for lower triangular matrix al-
gebras, which imply that the category of good modules is the category of
modules of finite projective dimension. We write A =

[

U
M
0
V

]

and keep the

notations above. Then we know that there is an exact, full and faithful
functor V -mod → A-mod, given by Y 7→ (0, Y, 0), which takes projectives
to projectives, and also FV (∆) into FA(∆).

Theorem 18 [5]. Let A =
[

U
M
0
V

]

be such that VM has finite projective

dimension. If L = (X,Y, f) and pdL < ∞, then V Y and UX both have
finite projective dimension.

Proof. It is always true that if L has finite projective dimension then so
does UX. (The resolution of L induces a resolution of X.)
We now show that V Y also has finite projective dimension.
In fact, if L is A-projective then V Y is in add(M ∐ V ) so it has finite

projective dimension.
Let L be any A-module with finite projective resolution of the form

0→ Pn → Pn−1 → . . .→ P0 → L→ 0.

This induces an exact sequence

0→ Yn → Yn−1 → . . .→ Y0 → Y → 0

where all V Yi are in add(M ∐V ) and so have finite projective dimension. It
follows that Y has finite projective dimension.

Theorem 19. FA(∆) = P
<∞(A) if and only if FV (∆) = P

<∞(V ),
FU (∆) = P

<∞(U) and M ∈ P<∞(V ).

Proof. Assume that FA(∆) = P
<∞(A). Then AA is standardly stratified

and it follows that FV (∆) = P
<∞(V ) and, by Proposition 16, VM has finite

projective dimension. To see that FU (∆) = P
<∞(U), take a U -module X in

P<∞(U). We show by induction on the projective dimension of X that X is
A-good and therefore U -good. The hypothesis implies that U is standardly
stratified and therefore the projective U -modules are good. Assume now
that X has projective dimension n and that all U -modules of projective
dimension n− 1 are U -good. We have an exact sequence

0→ (ΩU (X),M ⊗U P (X), f)→ (P (X),M ⊗U P (X), Id)→ (X, 0, 0)→ 0,

where P (X) denotes the projective cover of X, and ΩU (X) the first syzygy
of X, which has projective dimension n−1. We also have the following exact
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sequence:

0→ (0,M ⊗U P (X), 0)→ (Ω,M ⊗U P (X), f)→ (ΩUX, 0, 0)→ 0.

By induction (ΩUX, 0, 0) has finite projective dimension and since
(0,M⊗U P (X), 0) is projective, (Ω,M⊗U P (X), f) also has finite projective
dimension.
Now using the first exact sequence we conclude that (X, 0, 0) has finite

projective dimension and therefore it is A-good.
Assume now that FV (∆) = P

<∞(V ), FU (∆) = P
<∞(U) and M ∈

FV (∆) = P
<∞(V ). Then, by Proposition 16, A is standardly stratified. Take

any A-module (X,Y, f) of finite projective dimension. Using Theorem 18 and
the fact that (0, Y, 0) is good, we infer that X has finite projective dimension
and therefore it is U -good.
It follows that (X,Y, f) is A-good.
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