COLLOQUIUM MATHEMATICUM

POSSIBLY THERE IS NO UNIFORMLY COMPLETELY RAMSEY NULL SET OF SIZE 2^{ω}

BY

ANDRZEJ NOWIK (Gdańsk)

Abstract

We show that under the axiom $\mathrm{CPA}_{\text {cube }}$ there is no uniformly completely Ramsey null set of size 2^{ω}. In particular, this holds in the iterated perfect set model. This answers a question of U. Darji.

1. Introduction. The class of uniformly completely Ramsey null sets $\left(\mathrm{UCR}_{0}\right.$ sets) was defined and investigated in [Da], and also in [N1] and [N2]. In this paper we continue the investigation of this class and other kinds of small sets defined analogously. The main purpose of this paper is to give a full answer to the problem of U. Darji (see [Da, Question 1]) whether there is always an UCR_{0} set of size continuum. We show that under the axiom $\mathrm{CPA}_{\text {cube }}$ there is no such set. In particular, since by Theorem 7.0.4 of [CP], $\mathrm{CPA}_{\text {cube }}$ holds in the iterated perfect set model, there is no such set in this model. Thus the answer to Darji's question is negative.
2. Definitions. We identify $[\omega]^{\omega}$ with a subset of 2^{ω}. We often identify $[\omega] \leq \omega$ with the space 2^{ω} via the standard isomorphism. For example, if $x, y \in 2^{\omega}$, then $x \subseteq y$ means that $\forall_{n \in \omega} x(n) \leq y(n)$. If $s \in[\omega]^{<\omega}, A \in[\omega]^{\omega}$ and $\max s<\min A$ then we define $[s, A]=\left\{x \in[\omega]^{\omega}: s \subseteq x \subseteq s \cup A\right\}$. These sets are called the Ellentuck neighborhoods. Moreover let $[s, A] \leq \omega=$ $\{x \subseteq \omega: s \subseteq x \subseteq s \cup A\}$.

We denote by $\psi_{s, A}$ the standard homeomorphism $\psi: 2^{\omega} \rightarrow[s, A] \leq \omega$ defined by $\psi(x)=s \cup\left\{a_{n}: x(n)=1\right\}$, where $A=\left\{a_{0}, a_{1}, a_{2}, \ldots\right\}$ with $a_{0}<a_{1}<a_{2}<\ldots$

Recall that $X \subseteq[\omega]^{\omega}$ is completely Ramsey null (for short, X is CR_{0}) if for every Ellentuck neighborhood $[s, A]$ there exists $B \in[A]^{\omega}$ such that $[s, B] \cap X=\emptyset$, and X is completely Ramsey (X is CR) if for every $[s, A]$ there exists $B \in[A]^{\omega}$ such that $[s, B] \cap X=\emptyset \vee[s, B] \subseteq X$. A set $X \subseteq$ 2^{ω} is uniformly completely Ramsey null if for every continuous function

[^0]$F: 2^{\omega} \rightarrow 2^{\omega}$ and for every $Y \subseteq X, F^{-1}[Y]$ is completely Ramsey. We then write $X \in \mathrm{UCR}_{0}$. We will use the following characterization of UCR_{0} sets given in [N1]: A set $X \subseteq 2^{\omega}$ is UCR_{0} if for each continuous function $F: 2^{\omega} \rightarrow 2^{\omega}$ there exists $A \in[\omega]^{\omega}$ such that $|F[P(A)] \cap X| \leq \omega$.

We will use the following definitions from [CP]:

- A subset C of the product $\prod_{n \in \omega} 2^{\omega}$ of Cantor sets is said to be a perfect cube if $C=\prod_{n \in \omega} C_{n}$, where $C_{n} \in \operatorname{Perf}\left(2^{\omega}\right)$ for each n.
- Let $\mathcal{F}_{\text {cube }}$ stand for the family of all continuous injections from a perfect cube C onto a set $P \in \operatorname{Perf}\left(2^{\omega}\right)$. The elements of $\mathcal{F}_{\text {cube }}$ are called cubes.
- We say that a family $\mathcal{E} \subseteq \operatorname{Perf}\left(2^{\omega}\right)$ is $\mathcal{F}_{\text {cube-dense }}$ (or cube-dense) in $\operatorname{Perf}\left(2^{\omega}\right)$ provided

$$
\forall_{f \in \mathcal{F}_{\text {cube }}} \exists_{g \in \mathcal{F}_{\text {cube }}}(g \subseteq f \wedge \operatorname{ran}(g) \in \mathcal{E}) .
$$

- Define

$$
s_{0}^{\text {cube }}=\left\{2^{\omega} \backslash \bigcup \mathcal{E}: \mathcal{E} \text { is } \mathcal{F}_{\text {cube-dense }} \text { in } \operatorname{Perf}\left(2^{\omega}\right)\right\} .
$$

Throughout this note we will use one fixed bijection $\langle\cdot, \cdot\rangle: \omega \times \omega \rightarrow \omega$. For each $A \in[\omega]^{\omega}$ and $n<\omega$ we define $(A)_{n}=\left\{a_{\langle k, n\rangle}: k \in \omega\right\}$ where $A=\left\{a_{0}, a_{1}, a_{2} \ldots\right\}$ and $a_{0}<a_{1}<a_{2}<\ldots$

Finally, for a finite set $A \in[\omega]^{<\omega}$ we define $(A)_{n}=\left\{a_{\langle k, n\rangle}: k \in \omega \wedge\right.$ $\langle k, n\rangle \leq r\}$ where $A=\left\{a_{0}, a_{1}, \ldots, a_{r}\right\}$ and $a_{0}<a_{1}<\ldots<a_{r}$.

For $X \subseteq\left(2^{\omega}\right)^{2}$ we denote by $X_{(x)}$ and $X^{(y)}$ the x-section and y-section of X, respectively (i.e. $X_{(x)}=\{y:\langle x, y\rangle \in X\}, X^{(y)}=\{x:\langle x, y\rangle \in X\}$).

For completeness we briefly outline the definition of Σ and $w \Sigma$ QN sets (see [BRR]).

We say that a sequence of functions $f_{k}: X \rightarrow \mathbb{R}_{+}$converges quasinormally to $0\left(f_{k} \xrightarrow{\text { QN }} 0\right)$ if there is a sequence $\varepsilon_{n} \rightarrow 0$ such that $\forall_{x \in X} \forall_{k}^{\infty} f_{k}(x)<\varepsilon_{k}$.

We say that a sequence of functions $f_{k}: X \rightarrow \mathbb{R}_{+}(\Sigma)$ converges to 0 if $\forall_{x \in X} \quad \sum_{k=1}^{\infty} f_{k}(x)<\infty$.

A topological space X is a Σ space if for each sequence of continuous functions $f_{k}: X \rightarrow \mathbb{R}_{+}$, if $f_{k} \rightarrow 0$ pointwise then there is a subsequence k_{l} such that $f_{k_{l}} \xrightarrow{(\Sigma)} 0$.

Analogously, X is a w Σ QN space if for each sequence of continuous functions $f_{k}: X \rightarrow \mathbb{R}_{+}$, if $f_{k} \xrightarrow{(\Sigma)} 0$ then there is a subsequence k_{l} such that $f_{k l} \xrightarrow{\text { QN }} 0$.
3. \mathcal{F} - UCR_{0} sets. The following terminology will be useful in our proof.

Definition 3.1. Suppose that \mathcal{F} is an arbitrary family of Borel functions from 2^{ω} to 2^{ω}. We say that $X \subseteq 2^{\omega}$ is an \mathcal{F} - UCR_{0} set if for every $F \in \mathcal{F}$ and every $Y \subseteq X, F^{-1}[Y]$ is completely Ramsey.

First note that \mathcal{F} - UCR_{0} is a σ-ideal and if $\mathcal{F} \subseteq \mathcal{G}$ then \mathcal{G} - $\mathrm{UCR}_{0} \subseteq$ \mathcal{F} - UCR_{0}. In what follows we shall consider this general definition for the following families of functions from 2^{ω} to 2^{ω} :

- 1-1 = all one-to-one continuous functions.
- Count $=$ all continuous functions with countable preimages of points.
- 1-1-Borel $=$ all one-to-one Borel functions.
- Count-Borel $=$ all Borel functions with countable preimages of points.

Note that in [N2], a special case of this definition was considered for \mathcal{F} being the family of all Borel functions from 2^{ω} to 2^{ω}.

FACT 3.2. 1-1-Borel-UCR ${ }_{0}=$ Count-Borel- UCR_{0}.
Proof. The inclusion \supseteq is obvious. Conversely, let $X \in 1-1$-Borel- UCR_{0}. Let $Y \subseteq X$ and let $[s, E]$ be an Ellentuck neighborhood. Let $B: 2^{\omega} \rightarrow 2^{\omega}$ be a Borel mapping with countable preimages of points.

Since $\forall_{y \in 2^{\omega}}\left|(\operatorname{Graph}(B))^{(y)}\right| \leq \omega$, by the Luzin-Novikov Theorem (see for instance [Ke, Theorem 18.10]) there are Borel sets $b_{n} \subseteq\left(2^{\omega}\right)^{2}$ such that $\bigcup_{n \in \omega} b_{n}=\operatorname{Graph}(B)$ and $\forall_{y \in 2^{\omega}}\left|b_{n}^{(y)}\right| \leq 1$. Define A_{n} for $n \in \omega$ by letting $A_{n}=\pi_{x}\left[b_{n}\right]$. Then $\bigcup_{n \in \omega} A_{n}=2^{\omega}$, since $2^{\omega}=\pi_{x}[\operatorname{Graph}(B)]=$ $\bigcup_{n \in \omega} \pi_{x}\left[b_{n}\right]=\bigcup_{n \in \omega} A_{n}$. Since $A_{n} \in \Sigma_{1}^{1}, A_{n}$ is completely Ramsey, hence there exists an Ellentuck neighborhood $\left[s_{1}, E_{1}\right] \subseteq[s, E]$ and $n_{0} \in \omega$ such that $\left[s_{1}, E_{1}\right] \subseteq A_{n_{0}}$.

Define $B_{1}=B \upharpoonright\left[s_{1}, E_{1}\right]$. It is easy to see that B_{1} is one-to-one. There is an $i \in 2$ and an Ellentuck neighborhood $\left[s_{2}, E_{2}\right] \subseteq\left[s_{1}, E_{1}\right]$ such that $\left[s_{2}, E_{2}\right] \subseteq$ $B_{1}^{-1}\left[\mathcal{C}_{\langle i\rangle}\right]$, where $\mathcal{C}_{s}=\left\{x \in 2^{\omega}: s \subseteq x\right\}$. Next, let $B_{2}:\left[s_{1}, E_{1}\right] \leq \omega \rightarrow 2^{\omega}$ be an extension of $B_{1} \upharpoonright\left[s_{2}, E_{2}\right]$ to a one-to-one Borel function. Since $X \in 1$-1-Borel-UCR ${ }_{0}$, there exists $E_{3} \in\left[E_{2}\right]^{\omega}$ such that

$$
\left[s_{2}, E_{3}\right] \subseteq B_{2}^{-1}[Y] \vee\left[s_{2}, E_{3}\right] \cap B_{2}^{-1}[Y]=\emptyset
$$

Hence

$$
\left[s_{2}, E_{3}\right] \subseteq B^{-1}[Y] \vee\left[s_{2}, E_{3}\right] \cap B^{-1}[Y]=\emptyset
$$

This proves that $X \in$ Count-Borel-UCR ${ }_{0}$.
Thus we have the following diagram of inclusions:

Next, we reformulate the characterization of UCR_{0} sets from Theorem 1 of [N1] in our more general language:

Theorem 3.3. Suppose that \mathcal{F} is a family of Borel functions from 2^{ω} to 2^{ω}. Assume that:

1. For each $s \in[\omega]^{<\omega}, E \in[\omega]^{\omega}$ such that $\max (s)<\min (E)$ and $F \in \mathcal{F}$ we have $F \circ \psi_{s, E} \in \mathcal{F}$.
2. For every perfect set $P \subseteq 2^{\omega}$ there exist $F \in \mathcal{F}$ and $X \subseteq P$ such that $f^{-1}[X] \notin \mathrm{CR}$.

Then for every $X \subseteq 2^{\omega}$ the following statements are equivalent:

$$
\begin{gather*}
X \in \mathcal{F}-\mathrm{UCR}_{0} . \tag{1}\\
\forall_{F \in \mathcal{F}} \exists_{A \in[\omega] \omega}|F[P(A)] \cap X| \leq \omega . \tag{2}
\end{gather*}
$$

Proof. The proof is essentially the same as the proof of Theorem 1 in [N1]. We use assumption 2 to assure that there is no perfect set in $\mathcal{F}-\mathrm{UCR}_{0}$. Assumption 1 is necessary in the proof of the implication $(2) \Rightarrow(1)$.

Unfortunately, we do not know of any examples of sets distinguishing the properties Borel-UCR ${ }_{0}, \mathrm{UCR}_{0}$, Count- UCR_{0}, 1 -1- UCR_{0}, 1 -1-Borel- UCR_{0}.

4. Main result

Theorem 4.1. Every $1-1-\mathrm{UCR}_{0}$ set is an $s_{0}^{\text {cube }}$ set.
Proof. By Fact 1.0.3 from [CP] it is enough to consider functions defined on the entire space $\left(2^{\omega}\right)^{\omega}$. So, suppose that $f: \prod_{n \in \omega} 2^{\omega} \rightarrow 2^{\omega}$ is a cube. Let

$$
F: 2^{\omega} \rightarrow\left(2^{\omega}\right)^{\omega}, \quad F(Z)=\left((Z)_{n}\right)_{n \in \omega}
$$

Note that a variant of this function has been used in [N2] to prove that every UCR_{0} set is an $\left(s_{0}^{2}\right)$ set.

We show that F is continuous. Let $Z \in 2^{\omega}$ and $\left(W_{n}\right)_{n<n_{0}}$ be a finite sequence of open subsets of 2^{ω} and suppose that $F(Z) \in \prod_{n<n_{0}} W_{n} \times$ $\prod_{n \geq n_{0}} 2^{\omega}$. Then we can find $K_{0} \in \omega$ such that for every $B \in 2^{\omega}$, if $B \cap K_{0}=$ $Z \cap K_{0}$ and $n<n_{0}$ then $(B)_{n} \in W_{n}$. Therefore F is continuous. It is also easy to see that $f \circ F$ is one-to-one, because f is a cube and F is one-to-one.

Let X be a $1-1-\mathrm{UCR}_{0}$ set. Then there is a set $A \in[\omega]^{\omega}$ such that $|(f \circ F)[P(A)] \cap X| \leq \omega$. Let $\left\{a_{0}, a_{1}, a_{2}, \ldots\right\}$ be an increasing enumeration of the elements of A. We define $\Xi:\left(2^{\omega}\right)^{\omega} \rightarrow P(A)$ by $a_{2\langle k, n\rangle} \in \Xi\left(\left(x_{n}\right)_{n \in \omega}\right) \Leftrightarrow x_{n}(k)=0, \quad a_{2\langle k, n\rangle+1} \in \Xi\left(\left(x_{n}\right)_{n \in \omega}\right) \Leftrightarrow x_{n}(k)=1$.

Claim 4.2. The image $F\left[\Xi\left[\left(2^{\omega}\right)^{\omega}\right]\right]$ is a perfect cube in $\left(2^{\omega}\right)^{\omega}$, denoted by C.

Proof. Define $E_{k, n}=\left\{a_{2\langle k, n\rangle}, a_{2\langle k, n\rangle+1}\right\}$. It is clear that $\left(E_{k, n}\right)_{k, n \in \omega}$ is a partition of A into 2-element subsets.

Define

$$
D_{n}=\left\{x \in 2^{\omega}: x \subseteq \bigcup_{k \in \omega} E_{k, n} \wedge \forall_{k \in \omega}\left|E_{k, n} \cap x\right|=1\right\}
$$

These sets are perfect. We will show that

$$
F\left[\Xi\left[\left(2^{\omega}\right)^{\omega}\right]\right]=\prod_{n \in \omega} D_{n}
$$

$" \subseteq$ ": Let $\left(x_{n}\right) \in F\left[\Xi\left[\left(2^{\omega}\right)^{\omega}\right]\right]$ and fix $n_{0} \in \omega$. Let $B \in \Xi\left[\left(2^{\omega}\right)^{\omega}\right]$ be such that $\left(x_{n}\right)_{n \in \omega}=F(B)$. Obviously, $B \in P(A)$. From the definition of F we conclude that

$$
\forall_{n \in \omega} x_{n}=(B)_{n}
$$

It easily follows from the definition of Ξ that $\operatorname{ran}(\Xi) \subseteq[\omega]^{\omega}$. Therefore, let $\left\{b_{0}, b_{1}, \ldots\right\}$ be an increasing enumeration of the elements of B.

Since from the definition of Ξ we easily see that $\forall_{k, n \in \omega}\left|B \cap E_{k, n}\right|=1$, we have $\forall_{k, n \in \omega} b_{\langle k, n\rangle} \in E_{k, n}$. Hence, $(B)_{n_{0}}=\left\{b_{\left\langle k, n_{0}\right\rangle}: k \in \omega\right\}$ and therefore $x_{n_{0}}=(B)_{n_{0}} \subseteq \bigcup_{k \in \omega} E_{k, n_{0}}$ and $\forall_{k \in \omega}\left|E_{k, n_{0}} \cap x_{n_{0}}\right|=1$. Finally, $x_{n_{0}} \in D_{n_{0}}$.
" \supseteq ": Let $\left(x_{n}\right)_{n \in \omega} \in \prod_{n \in \omega} D_{n}$. Define $x=\bigcup_{n \in \omega} x_{n}$. Since $x_{n} \in D_{n}$, we conclude that $\left(x_{n}\right)_{n \in \omega}$ are pairwise disjoint and $\forall_{k, n \in \omega}\left|E_{k, n} \cap x\right|=1$. Let $\left\{b_{0}, b_{1}, \ldots\right\}$ be an increasing enumeration of the elements of x. Then $\forall_{k, n \in \omega} b_{\langle k, n\rangle} \in E_{k, n}$. Hence $F(x)=\left(x_{n}\right)_{n \in \omega}$.

Now, define $\left(z_{n}\right)_{n \in \omega} \in\left(2^{\omega}\right)^{\omega}$ by

$$
z_{n}(k)=0 \Leftrightarrow a_{2\langle k, n\rangle} \in x, \quad z_{n}(k)=1 \Leftrightarrow a_{2\langle k, n\rangle+1} \in x
$$

Since $\Xi\left(\left(z_{n}\right)_{n \in \omega}\right)=x$, we finally obtain $F\left(\Xi\left(\left(z_{n}\right)_{n \in \omega}\right)\right)=\left(x_{n}\right)_{n \in \omega}$, therefore $\left(x_{n}\right)_{n \in \omega} \in F\left[\Xi\left[\left(2^{\omega}\right)^{\omega}\right]\right]$. This finishes the proof of the Claim.

Thus we obtain $|f[C] \cap X| \leq \omega$. Since next we can find a perfect cube $D \subseteq C$ such that $f[D] \cap X=\emptyset$, we finally conclude that X is an $s_{0}^{\text {cube }}$ set.

Corollary 4.3. Assume $\mathrm{CPA}_{\text {cube }}$. Then every $1-1-\mathrm{UCR}_{0}$ set has size $\leq \omega_{1}$ and $2^{\omega}=\omega_{2}$ holds.

Proof. This follows immediately from Proposition 1.0.4 of [CP] (stating that under $\mathrm{CPA}_{\text {cube }}, s_{0}^{\text {cube }} \subseteq\left[2^{\omega}\right] \leq \omega_{1}$) and from the previous theorem.

Corollary 4.4. Under the axiom $\mathrm{CPA}_{\text {cube }}$ there is no UCR_{0} set of size 2^{ω}. In particular, this holds in the iterated perfect set model.

This answers a question of Darji from [Da].
Recall the following notion of smallness considered in [Sc]. We say that $X \subseteq 2^{\omega} \times 2^{\omega}$ has property $\left(s_{0}^{2}\right)$ if every set $P \times Q \in \operatorname{Perf} \times$ Perf has a subset $P_{1} \times Q_{1} \in \operatorname{Perf} \times$ Perf disjoint from X. It was proven in [Sc] that the class of $\left(s_{0}^{2}\right)$ sets is a σ-ideal on $2^{\omega} \times 2^{\omega}$. It was also proven in [N2] that every UCR_{0} set is an $\left(s_{0}^{2}\right)$ set. Note that Theorem 4.1 is a strengthening of this result, since we have the following easy fact:

Observation 4.5. Every $s_{0}^{\text {cube }}$ set is an $\left(s_{0}^{2}\right)$ set.
Proof. Let $X \in s_{0}^{\text {cube }}$. Suppose that $P, Q \subseteq 2^{\omega}$ are perfect sets. We may assume that $P \approx 2^{\omega}$ and $Q \approx 2^{\omega}$. Let h_{P}, h_{Q} be arbitrary homeomorphisms between $\prod_{n \in \omega} 2^{\omega}$ and P, Q, respectively. Define the following cube:

$$
f: \prod_{n \in \omega} 2^{\omega} \rightarrow 2^{\omega} \times 2^{\omega}, \quad f\left(\left(x_{n}\right)_{n \in \omega}\right)=\left\langle h_{P}\left(\left(x_{2 n}\right)_{n \in \omega}\right), h_{Q}\left(\left(x_{2 n+1}\right)_{n \in \omega}\right)\right\rangle
$$

Since $X \in s_{0}^{\text {cube }}$ there exists a subcube $g \subseteq f, g: \prod_{n \in \omega} C_{n} \rightarrow 2^{\omega} \times 2^{\omega}$ $\left(C_{n} \in \operatorname{Perf}\right)$, such that $\operatorname{ran}(g) \cap X=\emptyset$. We define two perfect sets, P_{1} and Q_{1}, by putting

$$
P_{1}=h_{P}\left[\prod_{n \in \omega} C_{2 n}\right] \quad \text { and } \quad Q_{1}=h_{Q}\left[\prod_{n \in \omega} C_{2 n+1}\right] .
$$

It is easy to see that P_{1}, Q_{1} are perfect sets and $P_{1} \times Q_{1} \subseteq \operatorname{ran}(g)$. Therefore $\left(P_{1} \times Q_{1}\right) \cap X=\emptyset$ and $P_{1} \times Q_{1} \subseteq P \times Q$. This proves that $X \in\left(s_{0}^{2}\right)$.
5. Thin sets related to trigonometric series. In this section we briefly discuss the relation between thin sets related to trigonometric series and \mathcal{F} - UCR_{0} sets.

Theorem 5.1. Let $X \subseteq 2^{\omega}$ be a Σ set and let $h: 2^{\omega} \rightarrow 2^{\omega}$ be a continuous one-to-one function. Then $h^{-1}[X] \in \mathrm{CR}_{0}$. In particular, every Σ set is a $1-1-\mathrm{UCR}_{0}$ set.

Proof. Since every continuous image of a Σ set is a Σ set, it is sufficient to show that $X \cap[\omega]^{\omega} \in \mathrm{CR}_{0}$. We notice that for every Ellentuck neighborhood $[s, A]$ the set $[s, A]^{\leq \omega}$ is homeomorphic to 2^{ω}, hence finally it is enough to show that there exists $A \in[\omega]^{\omega}$ such that $[A]^{\omega} \cap X=\emptyset$.

We will make use of the following sequence of functions $f_{n}: 2^{\omega} \rightarrow \mathbb{R}$ defined in $[B R R]$ and used there to prove that $2^{\omega} \notin \mathrm{wQN}$:

$$
f_{n}(x)= \begin{cases}\frac{1}{|\{i \leq n: x(i)=1\}|} & \text { if } x(n)=1 \\ \frac{1}{n+1} & \text { if } x(n)=0\end{cases}
$$

Obviously $f_{n} \in C\left(2^{\omega}\right)$. One easily checks that $f_{n}(x) \rightarrow 0$ for each $x \in 2^{\omega}$. By assumption, there exists a subsequence $\left(f_{n_{k}}\right)_{k \in \omega}$ such that $\sum_{k \in \omega} f_{n_{k}}(x)$ $<\infty$ for each $x \in X$. Let $A=\left\{n_{k_{0}}, n_{k_{1}}, \ldots\right\}$. Suppose that $B \in[A]^{\omega}$. Clearly $B=\left\{n_{k_{r_{0}}}, n_{k_{r_{1}}}, \ldots\right\}$ where $\left(r_{l}\right)_{l \in \omega}$ is an increasing sequence of natural numbers. Moreover,

$$
f_{n_{k_{r_{l}}}}(B)=\frac{1}{\left|\left\{s \leq n_{k_{r_{l}}}: s \in B\right\}\right|}=\frac{1}{l+1} .
$$

Thus $\sum_{k \in \omega} f_{n_{k}}(B)=\infty$ so $B \notin\left\{x: \sum_{k \in \omega} f_{n_{k}}(x)<\infty\right\}$. Therefore

$$
[A]^{\omega} \cap\left\{x: \sum_{k \in \omega} f_{n_{k}}(x)<\infty\right\}=\emptyset .
$$

This proves that $[A]^{\omega} \cap X=\emptyset$.
Theorem 5.2. Let $X \subseteq 2^{\omega}$ be $a \mathrm{w} \Sigma \mathrm{QN}$ set and let $h: 2^{\omega} \rightarrow 2^{\omega}$ be a continuous one-to-one function. Then $h^{-1}[X] \in \mathrm{CR}_{0}$. In particular, every $\mathrm{w} \Sigma \mathrm{QN}$ set is a $1-1-\mathrm{UCR}_{0}$ set.

Proof. As in the proof of Theorem 5.1, it is enough to show that there exists $A \in[\omega]^{\omega}$ such that $X \cap[A]^{\omega}=\emptyset$.

We will slightly modify the functions from the previous proof. Namely, set

$$
f_{n}(x)= \begin{cases}2^{-|\{i \leq n: x(i)=1\}|} & \text { if } x(n)=1, \\ 2^{-(n+1)} & \text { if } x(n)=0 .\end{cases}
$$

Obviously $f_{n} \in C\left(2^{\omega}\right)$. Let $x \in 2^{\omega}$. Then

$$
\sum_{n \in \omega} f_{n}(x) \leq \sum_{n \in \omega} 2^{-(n+1)}+\sum_{n \in \omega} 2^{-(n+1)}<\infty .
$$

Since $X \in \mathrm{w} \Sigma \mathrm{QN}$ there exists a subsequence $\left(n_{k}\right)$ such that $f_{n_{k}} \upharpoonright X \xrightarrow{\text { QN }} 0$. Then there exists a sequence $\left(\varepsilon_{k}\right)_{k \in \omega}$ of positive numbers converging to zero such that

$$
X \subseteq\left\{x \in 2^{\omega}: \forall_{k}^{\infty} f_{n_{k}}(x)<\varepsilon_{k}\right\} .
$$

Next, choose an increasing sequence $\left(i_{j}\right)_{j \in \omega}$ of natural numbers such that $1 / 2^{j+1}>\varepsilon_{i_{j}}$. Let $A=\left\{n_{i_{0}}, n_{i_{1}}, n_{i_{2}}, \ldots\right\}$. Suppose that $B \in[A]^{\omega}$. Clearly $B=\left\{n_{i_{r_{0}}}, n_{i_{r_{1}}}, n_{i_{r_{2}}}, \ldots\right\}$, where $\left(r_{l}\right)_{l \in \omega}$ is an increasing sequence of natural numbers. Moreover,

$$
f_{n_{i_{r_{l}}}}(B)=2^{-\left|\left\{s \leq n_{i_{r_{l}}}: s \in B\right\}\right|}=2^{-(l+1)} \geq 2^{-\left(r_{l}+1\right)}>\varepsilon_{i_{r_{l}}} .
$$

Thus $\exists_{k}^{\infty} f_{n_{k}}(x)>\varepsilon_{k}$. Therefore $[A]^{\omega} \cap\left\{x: \forall_{k}^{\infty} f_{n_{k}}(x)<\varepsilon_{k}\right\}=\emptyset$. This proves that $[A]^{\omega} \cap X=\emptyset$.

Unfortunately, we are still unable to prove that every Σ set is a UCR_{0} set. Even, we do not know whether every γ-set is a UCR_{0} set.

Acknowledgements. I would like to thank Professor Krzysztof Ciesielski for his valuable remarks which allowed me to improve the main result of this article.

REFERENCES

[BRR] L. Bukovský, I. Recław and M. Repický, Spaces not distinguishing convergences of real-valued functions, Topology Appl. 112 (2001), 13-40.
[CP] K. Ciesielski and J. Pawlikowski, Covering Property Axiom CPA, http://www. math.wvu.edu/~ kcies.
[Da] U. Darji, On completely Ramsey sets, Colloq. Math. 64 (1993), 163-171.
[Ke] A. S. Kechris, Classical Descriptive Set Theory, Springer, Berlin, 1995.
[N1] A. Nowik, Additive properties and uniformly completely Ramsey sets, Colloq. Math. 82 (1999), 191-199.
[N2] -, On Borel version of uniformly completely Ramsey sets, Bull. Polish Acad. Sci. Math., to appear.
[Sc] K. Schilling, A tale of two (s)-ities, Real Anal. Exchange 24 (1998), 477-482.

Permanent address:
Institute of Mathematics
University of Gdańsk
Wita Stwosza 57
80-952 Gdańsk, Poland
E-mail: matan@julia.univ.gda.pl

Current address:
Institute of Mathematics
Polish Academy of Sciences
Abrahama 18
81-825 Sopot, Poland
E-mail: nowik@impan.gda.pl

Received 24 July 2001;
revised 22 January 2002

[^0]: 2000 Mathematics Subject Classification: Primary 03E15; Secondary 03E20, 28E15.
 Key words and phrases: Uniformly Completely Ramsey null sets, CPA axiom, Σ sets, $w \Sigma$ QN sets.

