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ASYMPTOTIC BEHAVIOR OF A SEQUENCE DEFINED

BY ITERATION WITH APPLICATIONS

BY

STEVO STEVIĆ (Beograd)

Abstract. We consider the asymptotic behavior of some classes of sequences defined
by a recurrent formula. The main result is the following: Let f : (0,∞)2 → (0,∞) be
a continuous function such that (a) 0 < f(x, y) < px + (1 − p)y for some p ∈ (0, 1)
and for all x, y ∈ (0, α), where α > 0; (b) f(x, y) = px + (1 − p)y −

∑

∞

s=mKs(x, y)
uniformly in a neighborhood of the origin, where m > 1, Ks(x, y) =

∑s
i=0 ai,sx

s−iyi;
(c) Km(1, 1) =

∑m
i=0 ai,m > 0. Let x0, x1 ∈ (0, α) and xn+1 = f(xn, xn−1), n ∈ N. Then

the sequence (xn) satisfies the following asymptotic formula:

xn ∼
(

2− p
(m− 1)

∑m
i=0 ai,m

)1/(m−1)
1

m−1
√
n
.

1. Introduction. In this paper we consider the asymptotic behavior of
some classes of sequences. The well known examples are:

(a) xn = xn−1 − x2n−1, x0 ∈ (0, 1);
(b) xn = arctanxn−1, x0 ∈ (0,∞);
(c) xn = sinxn−1, x0 ∈ (0,∞);
(d) xn = ln(1 + xn−1), x0 ∈ (0,∞).
Examining their convergence is a simple task. However a somewhat

harder problem is finding the asymptotic behavior for the sequences de-
fined by (a)–(d). Such problems frequently appear in problem section in
some journals (see, for example, [5] and [21]).

The following theorem was proved in [15]. The proof appearing there is
attributed to Jacobsthal.

Theorem A. Let f : (0, α) → (0, α), where α > 0, be a continuous
function such that 0 < f(x) < x for every x ∈ (0, α) and f(x) = x− axk +
bxk+p + o(xk+p) as x→ +0, where k > 1, p, a and b are positive numbers.
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Let x0 ∈ (0, α) and xn = f(xn−1), n ≥ 1. Then

xn ∼
1

((k − 1)an)1/(k−1) .

Our proof of Theorem A in [17] is somewhat different from the original
one, and the idea and structure of the proof were the starting point and
inspiration for our further investigations. For this class of sequences we de-
scribed, in [17], a method for finding an unlimited number of members in
its asymptotic development. Our goal is to generalize Theorem A. We prove
the following theorems.

Theorem 1. Let f : (0,∞)2 → (0,∞) be a continuous function such
that

(a) 0 < f(x, y) < px+ (1− p)y for some p ∈ (0, 1) and all x, y ∈ (0, α),
where α > 0;

(b) f(x, y) = px+(1−p)y−∑∞s=mKs(x, y) uniformly in a neighborhood
of the origin, where m > 1, Ks(x, y) =

∑s
i=0 ai,sx

s−iyi;

(c) Km(1, 1) =
∑m
i=0 ai,m > 0.

Let x0, x1 ∈ (0, α) and

(1) xn+1 = f(xn, xn−1), n ∈ N.

Then the sequence (xn) satisfies the following asymptotic formula:

(2) xn ∼
(

2− p
(m− 1)

∑m
i=0 ai,m

)1/(m−1)
1

m−1
√
n
.

Theorem 2. Let f : (0,∞)k+1 → (0,∞) be a continuous function such
that

(a) 0 < f(z1, . . . , zk+1) < 1 for all z1, . . . , zk+1 ∈ (0, α), where α > 0;
(b) f(z1, . . . , zk+1) = 1 −

∑
∞

s=mKs(z1, . . . , zk+1) uniformly in a neigh-
borhood of the origin, where m ≥ 1, and Ks(z1, . . . , zk+1) is a homogeneous
polynomial of order s;

(c) Km(1, . . . , 1) > 0.
Let x0, x1, . . . , xk ∈ (0, α) and

(3) xn+1 = xnf(xn, xn−1, . . . , xn−k), n ≥ k.

Then the sequence defined by (3) satisfies the following asymptotic formula:

(4) xn ∼
(

1

mKm(1, . . . , 1)

)1/m
1
m

√
n
.
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In [6] (see also [1] and [8]) the generalized Beddington–Holt stock recruit-
ment model was considered, i.e.

(5) xn+1 = axn +
bxn−1

1 + cxn−1 + dxn
, x0, x1 > 0, n = 1, 2, . . . ,

where a ∈ (0, 1), b ∈ R+ and c, d ∈ R+ ∪ {0}, with c+ d > 0.
In [18] it was proved that in the case a + b < 1, the zero equilibrium is

a geometrically global attractor of all positive solutions of equation (5).

In the case a + b = 1 and c > 0, it was proved that xn = O(1/n). We
also proved for a special choice of parameters that xn ∼ c/n as n→∞ (see
Example 1 in [18]). This example was the starting point for this paper and
it hints that a similar asymptotic formula holds for every sequence defined
by (5). Theorem 1 confirms this conjecture.

We can apply the main result of this paper to the following two equations:

(6) xn+1 = (axn + bxn−1e
−xn−1)e−xn , x0, x1 > 0, n = 1, 2, . . . ,

where a ∈ (0, 1), b ∈ [0,∞), in the case when a+ b = 1 and
(7) xn+1 = (αxn + βxn−1)e

−xn , x0, x1 > 0, n = 1, 2, . . . ,

where α ∈ (0, 1), β ∈ (0,∞), in the case when α+ β = 1.
Equations (6) and (7) may be viewed as describing some population

models. Equation (6) describes the growth of a mosquito population. Equa-
tion (7) is derived from a two life stage model where the young mature into
adults, and adults produce young. The global stability of these equations
was studied in [9].

We can also apply the main result of this paper to the perennial grass
model

xn+1 = axn +
bxn−1 + c

exn
, x0, x1 > 0, n = 1, 2, . . . ,

where a ∈ (0, 1), b, c ≥ 0, b+ c > 0, in the case when c = 0 and a+ b = 1.
The stability and oscillatory character of solutions of this equation have

been studied in [6] and [7].

Theorem 2 can be applied to the following discrete analogue of the delay
logistic equation (see, for example, [13] and [14]):

(8) Nt+1 =
αNt

1 + βNt−k
, α, β > 0, k ∈ N.

In [10] the authors obtain conditions for the oscillation and asymp-
totic stability of all positive solutions of (8) about its positive equilibrium
(α − 1)/β. If α = 1 we can easily see that Nt → 0 as t → ∞. The rate of
convergence is determined by Theorem 2.
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2. Auxiliary results. Before we prove the main result we need three
auxiliary results.

Lemma 1. Let the real sequence (an) of nonnegative numbers satisfy the
inequality

(9) an+2 ≤ (1− p)an+1 + pan, n ∈ N,

where p ∈ [0, 1). Then (an) converges.
Proof. Let bn = an+1+pan. Then (bn) is nonnegative and nonincreasing

by (9). Hence it converges. Let limn→∞ bn = b.

Since

an = bn−1 + bn−2(−p) + . . .+ b0(−p)n−1 + a0(−p)n,
in the standard manner, we obtain

lim
n→∞
an =

b

1 + p
,

as desired.

For generalizations of this useful lemma and closely related results, see
[2]–[4], [16], [19] and [20].

Note that Lemma 1 solves problems 5.2.3(i) and 5.2.4(i) in [11]. This is
incorporated in the following corollary.

Corollary 1. Consider the difference equation

(10) xn+1 =
βxn + γxn−1
A+ δxn−1 + αxn

,

where β, γ,A ∈ (0,∞), α, δ ∈ [0,∞) and α + δ > 0. Then every positive
solution of (10) converges to zero if and only if β + γ ≤ A.
Proof. Let β + γ = A. From (10) we have

xn+1 =
βxn + γxn−1
A+ δxn−1 + αxn

≤ β
A
xn +

γ

A
xn−1.

Thus by Lemma 1 the sequence (xn) converges, say to x ≥ 0. Letting n→∞
in (10) we obtain x = βx+γx

A+(δ+α)x . Hence x = 0.

If β + γ < A, then from (10) it follows that

xn+1 ≤
β + γ

A
max{xn, xn−1}.

By Corollary 1 of [18] we find that (xn) geometrically converges to zero.

Let β+ γ > A. Suppose that there exists a positive solution (xn) of (10)
such that xn → 0 as n→∞. Then for every ε > 0 there exists n0 such that
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|δxn−1+αxn| < ε for all n ≥ n0. Let 0 < ε < β+ γ−A. From (10) we have

xn+1 ≥
β

A+ ε
xn +

γ

A+ ε
xn−1 for n ≥ n0.

Let the sequence (zn) satisfy the difference equation

zn+1 =
β

A+ ε
zn +

γ

A+ ε
zn−1,

where z0 = x0 and z1 = x1. It is easy to show by induction that zn ≤ xn
for all n ∈ N. The positive characteristic root of the characteristic equation
of this equation is

λ1 =
β +
√
β2 + 4γ(A+ ε)

2(A+ ε)
> 1,

since β + γ > A+ ε.
The other root λ2 is negative and |λ2| ≤ |λ1|. Since the sequence (zn) is

positive we have
zn = c1λ

n
1 + c2λ

n
2

where c1 > 0. Hence zn → ∞ as n → ∞, and consequently xn → ∞ as
n→∞, which is a contradiction.
Lemma 2. Let p ∈ (0, 1), and let the sequence (yn) satisfy the difference

equation

(11) yn =
(1− p+ p2)yn−1 + p(1− p)

pyn−1 + 1− p
, y0 > 0.

Then yn → 1 as n→∞.
Proof. We solve this difference equation. We look for a solution of (11)

in the form yn = un/vn, where the sequences un and vn satisfy the system
of difference equations

(12)
un+1 = (1− p(1− p))un + p(1− p)vn,
vn+1 = pun + (1− p)vn,

where u0 = y0 and v1 = 1. This is a standard method for solving equations
of this type (see, for example, [12]).
From (12) we obtain

vn+2 − ((1− p)2 + 1)vn+1 + (1− p)2vn = 0 for n = 0, 1, . . . ,

and consequently

(13) vn = c1 + c2(1− p)2n for n = 0, 1, . . .

for some c1, c2 ∈ R. From (12) and (13) we obtain

un =
1

p
(vn+1 − (1− p)vn) = c1 − c2(1− p)2n+1.
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Hence

(14) yn =
c1 + c2(1− p)2n
c1 − c2(1− p)2n+1

for n = 0, 1, . . .

Since yn > 0 for all n ≥ 0 we have c1 6= 0. Letting n→∞ in (14) we obtain
the result.

Lemma 3. Let f : (0,∞)2 → (0,∞) be a continuous function such that
(a) 0 < f(x, y) < px+ (1− p)y for some p ∈ (0, 1) and all x, y ∈ (0, α),

where α > 0;

(b) f(x, y) = px+ (1− p)y + xo(1) + yo(1) as x2 + y2 → 0.
Let x0, x1 ∈ (0, α) and (xn) be defined by (1). Then limn→∞ xn = 0 and

(15) lim
n→∞

xn+1
xn
= 1.

Proof. Step 1. It is clear that (xn) is a positive sequence. Then from (1)
and by (a) we have

xn+1 = f(xn, xn−1) < pxn + (1− p)xn−1.
Thus, Lemma 1 shows that the limit x = limn→∞ xn exists. Assume that
x > 0; letting n → ∞ in (1), we get x = f(x, x). On the other hand, from
(a) it follows that f(x, x) < px+ (1− p)x = x for x > 0. Therefore x must
be zero.

Step 2. Let us show (15). It is obvious that (1) can be written in the
form

yn = p− εn +
1− p− δn
yn−1

where

yn =
xn+1
xn
, εn = o(1), dn = o(1).

Hence

yn =
[(p− εn)(p− εn−1) + 1− p− δn]yn−2 + (p− εn)(1− p− δn−1)

(p− εn−1)yn−2 + 1− p− δn−1
.

Let zn = y2n and γn = y2n+1. From the conditions of the lemma for
every ε > 0 there exists n0 ∈ N such that for every n ≥ n0 we have |εn| < ε
and |δn| < ε. We may suppose n0 = 1. Thus we have
[(p− ε)2 + 1− p− ε]zn−1 + (p− ε)(1− p− ε)

(p+ ε)zn−1 + 1− p+ ε

≤ zn ≤
(1− p+ ε+ (p+ ε)2)zn−1 + (p+ ε)(1− p+ ε)

(p− ε)zn−1 + 1− p− ε
.
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Let the sequences (fn) and (gn) satisfy the equations

fn =
[(p− ε)2 + 1− p− ε]fn−1 + (p− ε)(1− p− ε)

(p+ ε)fn−1 + 1− p+ ε
,

gn =
(1− p+ ε+ (p+ ε)2)gn−1 + (p+ ε)(1− p+ ε)

(p− ε)gn−1 + 1− p− ε
,

where f1 = z1 = g1.

It is easy to see that for ε ∈ (0,min{p, 1−p}) we have 0 ≤ fn ≤ zn ≤ gn.
As in Lemma 2 we can find explicit expressions for (fn) and (gn).

Let

fn = fn(ε) =
un(ε)

vn(ε)
=
un
vn
.

Then as in Lemma 2 we have

vn = c1(ε, p)λ
n
1 (ε, p) + c2(ε, p)λ

n
2 (ε, p),

where, for sufficiently small ε > 0, λ1(ε, p) is close to 1 and λ2(ε, p) is close
to (1− p)2. Since

vn+1 = (p+ ε)un + (1− p+ ε)vn
we have

un =
1

p+ ε
(vn+1 − (1− p+ ε)vn)

= [λ1 − (1− p+ ε)]
c1λ
n
1

p+ ε
+ [λ2 − (1− p+ ε)]

c2λ
n
2

p+ ε
.

By the same argument as in Lemma 2 we have c1(ε, p) > 0 for such ε.

From that we obtain

lim
n→∞
fn = lim

n→∞

un(ε)

vn(ε)
=
λ1 − (1− p+ ε)

p+ ε
→ 1 as ε→ 0.

Similarly we obtain

lim
ε→0
lim
n→∞
gn(ε) = 1,

which implies limn→∞ zn=1. In the same manner we obtain limn→∞ γn=1,
finishing the proof.

3. Proof of the main results. We are now in a position to prove the
main results.

Proof of Theorem 1. Step 1. limn→∞ xn = 0 and limn→∞ xn+1/xn = 1
are simple consequences of Lemma 3.

Step 2. We may suppose that (xn, xn−1) belong to the set where (b)
holds for every n ∈ N. We transform (1) to a system of difference equations.
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Let xn = yn−1. Then

yn = pyn−1 + (1− p)xn−1 −Km(yn−1, xn−1) + o((y2n−1 + x2n−1)m/2),(16)
xn = yn−1.

System (16) can be written in the following matrix form:
[
yn
xn

]
=

[
p 1− p
1 0

] [
yn−1
xn−1

]
−
[
Km(yn−1, xn−1) + o((y2n−1 + x2n−1)m/2)

0

]
.

Let

A =

[
p 1− p
1 0

]
.

The characteristic polynomial of A is P2(λ) = (λ−1)(λ−(p−1)). For λ = 1
and λ = p− 1 we obtain the corresponding characteristic vectors

~w1 =

[
1
1

]
and ~w2 =

[
1− p
−1

]
.

Let [
yn
xn

]
=

[
1 1− p
1 −1

] [
vn
un

]
, n ∈ N.

Then[
vn
un

]
=

[
1 0
0 p− 1

] [
vn−1
un−1

]

− 1

2− p

[
1 1− p
1 −1

][
Km(vn−1 + (1− p)un−1, vn−1 − un−1) + . . .

0

]
.

Thus we have

(17) vn = vn−1 −
1

2− p K̂m(vn−1, un−1) + o((v
2
n−1 + u

2
n−1)

m/2)

and

un = (p− 1)un−1 −
1

2− p K̂m(vn−1, un−1) + o((v
2
n−1 + u

2
n−1)

m/2),

where

K̂m(vn−1, un−1) = Km(vn−1 + (1− p)un−1, vn−1 − un−1).
Applying Step 1 we obtain

0 ≤ lim
n→∞

∣∣∣∣
un
vn

∣∣∣∣ = limn→∞
|xn+1 − xn|

xn+1 + (1− p)xn
≤ lim
n→∞

|xn+1 − xn|
(1− p)xn

= 0.

Hence, from (17),

vn = vn−1 −
∑m
i=0 ai,m
2− p vmn−1 + o(v

m
n−1).
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Finally, applying Theorem A and using the fact that xn = vn − un =
vn + o(vn) we obtain the result.

Example 1. Consider (5), where a+ b = 1. Since

f(x, y) = ax+
(1− a)y
1 + cy + dx

= ax+ (1− a)y + (1− a)y
∞∑

n=1

(−1)n(cy + dx)n

uniformly in |cy + dx| < 1, by Theorem 1 we obtain

xn ∼
2− a

(1− a)(c+ d)
1

n
.

Example 2. Consider (6), where a, b ∈ (0, 1) and a+ b = 1. Since
f(x, y) = (ax+ (1− a)ye−y)e−x

= ax+ (1− a)y + ax
∞∑

n=1

(−x)n + (1− a)y
∞∑

n=1

(−1)n(x+ y)n

uniformly in x2 + y2 ≤ r, r > 0, by Theorem 1 we obtain xn ∼ 1/n.
Example 3. Consider (7), where α, β ∈ (0, 1) and α+ β = 1. Since
f(x, y) = (αx+ (1− α)y)e−x

= αx+ (1− α)y + x
∞∑

n=1

(−x)n + (1− α)y
∞∑

n=1

(−1)nxn

uniformly in x2 + y2 ≤ r, r > 0, by Theorem 1 we obtain xn ∼ (2− α)/n.
Proof of Theorem 2. From the conditions of the theorem we have xn+1 <

xn for all n ≥ k + 1. As in Theorem 1, we have xn → 0 and xn+1/xn → 1
as n→∞.
From this and (3) we obtain

xn+1 = xn −Km(1, . . . , 1)xm+1n + o(xm+1n ).

By Theorem A we obtain the result.

Example 4. Consider (8), when α = 1 and x0, x1, . . . , xk ∈ R. Since

f(z1, . . . , zk+1) =
z1

1 + βzk+1
= z1

∞∑

n=0

(−βzk+1)n

uniformly on |βzk+1| < 1, by Theorem 2 we obtain xn ∼ 1/(βn).
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