COLLOQUIUM MATHEMATICUM

VOL. 93

2002

NO. 2

CONVOLUTION OPERATORS WITH ANISOTROPICALLY HOMOGENEOUS MEASURES ON \mathbb{R}^{2n} WITH n-DIMENSIONAL SUPPORT

 $_{\rm BY}$

E. FERREYRA, T. GODOY and M. URCIUOLO (Córdoba)

Abstract. Let $\alpha_i, \beta_i > 0, 1 \le i \le n$, and for t > 0 and $x = (x_1, \ldots, x_n) \in \mathbb{R}^n$, let $t \bullet x = (t^{\alpha_1}x_1, \ldots, t^{\alpha_n}x_n), t \circ x = (t^{\beta_1}x_1, \ldots, t^{\beta_n}x_n)$ and $||x|| = \sum_{i=1}^n |x_i|^{1/\alpha_i}$. Let $\varphi_1, \ldots, \varphi_n$ be real functions in $C^{\infty}(\mathbb{R}^n - \{0\})$ such that $\varphi = (\varphi_1, \ldots, \varphi_n)$ satisfies $\varphi(t \bullet x) = t \circ \varphi(x)$. Let $\gamma > 0$ and let μ be the Borel measure on \mathbb{R}^{2n} given by

$$\mu(E) = \int_{\mathbb{R}^n} \chi_E(x, \varphi(x)) \|x\|^{\gamma - \alpha} \, dx,$$

where $\alpha = \sum_{i=1}^{n} \alpha_i$ and dx denotes the Lebesgue measure on \mathbb{R}^n . Let $T_{\mu}f = \mu * f$ and let $||T_{\mu}||_{p,q}$ be the operator norm of T_{μ} from $L^p(\mathbb{R}^{2n})$ into $L^q(\mathbb{R}^{2n})$, where the L^p spaces are taken with respect to the Lebesgue measure. The type set E_{μ} is defined by

$$E_{\mu} = \{ (1/p, 1/q) : \|T_{\mu}\|_{p,q} < \infty, \ 1 \le p, q \le \infty \}.$$

In the case $\alpha_i \neq \beta_k$ for $1 \leq i, k \leq n$ we characterize the type set under certain additional hypotheses on φ .

1. Introduction. Let $\alpha_i, \beta_i > 0, 1 \leq i \leq n$, and for t > 0 and $x = (x_1, \ldots, x_n) \in \mathbb{R}^n$, let

$$t \bullet x = (t^{\alpha_1} x_1, \dots, t^{\alpha_n} x_n), \quad t \circ x = (t^{\beta_1} x_1, \dots, t^{\beta_n} x_n)$$

and let $||x|| = \sum_{i=1}^{n} |x_i|^{1/\alpha_i}$ be a homogeneous norm associated to the first group of dilations. Let $\varphi_1, \ldots, \varphi_n$ be real functions in $C^{\infty}(\mathbb{R}^n - \{0\})$ such that $\varphi(x) = (\varphi_1(x), \ldots, \varphi_n(x))$ is a homogeneous function with respect to these groups of dilations, i.e. $\varphi(t \bullet x) = t \circ \varphi(x)$. Let $\gamma > 0$ and let μ be the Borel measure on \mathbb{R}^{2n} given by

$$\mu(E) = \int_{\mathbb{R}^n} \chi_E(x, \varphi(x)) \|x\|^{\gamma - \alpha} \, dx,$$

²⁰⁰⁰ Mathematics Subject Classification: Primary 42B15; Secondary 42B20, 44A35. Key words and phrases: L^p improving measures, convolution operators.

Research partially supported by Agencia Córdoba Ciencia, CONICET and SECYT-UNC.

where $\alpha = \sum_{i=1}^{n} \alpha_i$ and dx denotes the Lebesgue measure on \mathbb{R}^n . Let T_{μ} be the convolution operator defined, for $f \in S(\mathbb{R}^{2n})$, by $T_{\mu}f(x) = (\mu * f)(x)$ and let $||T_{\mu}||_{p,q}$ be the operator norm of T_{μ} from $L^p(\mathbb{R}^{2n})$ into $L^q(\mathbb{R}^{2n})$, where the L^p spaces are taken with respect to the Lebesgue measure. The type set E_{μ} is defined by

$$E_{\mu} = \{ (1/p, 1/q) : \|T_{\mu}\|_{p,q} < \infty, \ 1 \le p, q \le \infty \}.$$

A very interesting survey of results concerning the type set for convolution operators with singular measures can be found in [R]. The type set associated with fractional measures on \mathbb{R}^2 supported on the graph of the parabola (t, t^2) has been characterized by M. Christ in [C], using a Littlewood–Paley decomposition of the operator. Also, convolution operators supported on surfaces of half the ambient dimension have been studied by S. W. Drury and K. Guo in [D-G], covering a wide amount of cases. As there, if $\varphi : \mathbb{R}^n \to \mathbb{R}^n$ is a twice continuously differentiable function, we say that $x \in \mathbb{R}^n$ is an *elliptic point* for φ if there exists $\lambda = \lambda_x > 0$ such that $|\det(\varphi''(x)h)| \ge \lambda |h|^n$ for all $h \in \mathbb{R}^n$ ([D-G], p. 154).

When we deal with isotropic dilations, in [F-G-U] we have already obtained a complete description of E_{μ} in the case that every $x \neq 0$ is an elliptic point for φ . In this paper we obtain an explicit description of E_{μ} , for an anisotropically homogeneous and smooth φ , under the following assumptions:

- (H1) The dilations satisfy $\alpha_i \neq \beta_k$ for $1 \leq i, k \leq n$.
- (H2) The first differential $\varphi'(x)$ is invertible for all $x \in \mathbb{R}^n \{0\}$.
- (H3) Every $x \neq 0$ is an elliptic point for φ .

For some families of dilations, it is enough to require hypothesis (H3), since (H2) is its consequence. We will adapt M. Christ's arguments ([C]) to our setting, using some results obtained by S. W. Drury and K. Guo in [D-G]. Throughout the paper we will assume that all the hypotheses concerning φ and $\alpha_i, \beta_k, 1 \leq i, k \leq n$, stated in this introduction hold. Also c will denote a positive constant not necessarily the same at each occurrence.

Acknowledgments. We wish to express our thanks to Prof. Fulvio Ricci for his useful suggestions.

2. Preliminaries. The Riesz-Thorin theorem implies that E_{μ} is a convex set. On the other hand, it is well known that E_{μ} lies below the principal diagonal 1/q = 1/p. Also, a result of Oberlin (see e.g. [O], Th. 1) says that

(2.1)
$$E_{\mu} \subset \{(1/p, 1/q) : 1/q \ge 2/p - 1\}.$$

Since the adjoint T^*_{μ} is a convolution operator with a measure of the same kind, we also have

(2.2)
$$E_{\mu} \subset \{(1/p, 1/q) : 1/q \ge 1/(2p)\}$$

Let η be a function in $C^{\infty}_{c}(\mathbb{R}^{n})$ such that

 $supp(\eta) \subset \{x \in \mathbb{R}^n : 1/4 < ||x|| < 2\},\$

 $0 \leq \eta \leq 1$ and $\sum_{i \in \mathbb{Z}} \eta(2^j \bullet x) = 1$ if $x \neq 0$. For $j \in \mathbb{Z}$, let μ_j be the Borel measure on \mathbb{R}^{2n} defined by

$$\mu_j(E) = \int_{\mathbb{R}^n} \chi_E(x,\varphi(x))\eta(2^j \bullet x) \|x\|^{\gamma-\alpha} \, dx$$

and let T_{μ_j} be the associated convolution operator. So $T_{\mu} = \sum_{j \in \mathbb{Z}} T_{\mu_j}$. For t > 0 and $(x, y) \in \mathbb{R}^{2n}$ we set

$$t \diamond (x, y) = (t \bullet x, t \circ y)$$

and for $f : \mathbb{R}^{2n} \to \mathbb{C}$, we define $(t \diamond f)(x, y) = f(t \diamond (x, y))$. So $||t \diamond f||_{\infty} = ||f||_{\infty}$ and $||t \diamond f||_q = t^{-(\alpha+\beta)/q} ||f||_q$, $1 \le q < \infty$, where $\beta = \sum_{k=1}^n \beta_k$. A standard homogeneity argument gives

LEMMA 2.1. Let $1 \leq p, q \leq \infty$. Then $||T_{\mu_i}||_{p,q} = 2^{(-\gamma - (\alpha + \beta)/q + (\alpha + \beta)/p)j} ||T_{\mu_0}||_{p,q}$

for all $j \in \mathbb{Z}$. Moreover, if T_{μ} is bounded from $L^{p}(\mathbb{R}^{2n})$ into $L^{q}(\mathbb{R}^{2n})$ then $1/q = 1/p - \gamma/(\alpha + \beta).$

Proof. For
$$(x, y) \in \mathbb{R}^{2n}$$
 a change of variable gives

$$T_{\mu_0}(2^{-j} \diamond f)(x, y) = \int_{\mathbb{R}^n} f(2^{-j} \bullet x - 2^{-j} \bullet w, 2^{-j} \circ y - \varphi(2^{-j} \bullet w))\eta(w) \|w\|^{\gamma-\alpha} dw$$

$$= 2^{j\alpha} \int_{\mathbb{R}^n} f(2^{-j} \bullet x - z, 2^{-j} \circ y - \varphi(z))\eta(2^j \bullet z) \|2^j \bullet z\|^{\gamma-\alpha} dz$$

$$= 2^{j\gamma}(2^{-j} \diamond T_{\mu_j}f)(x, y).$$
So

$$||T_{\mu_j}||_{p,q} = 2^{(-\gamma - (\alpha + \beta)/q + (\alpha + \beta)/p)j} ||T_{\mu_0}||_{p,q}$$

and the first assertion of the lemma follows. On the other hand, if T_{μ} is bounded then $\sup_{j \in \mathbb{Z}} ||T_{\mu_j}||_{p,q} < \infty$ and so $-\gamma - (\alpha + \beta)/q + (\alpha + \beta)/p = 0$.

REMARK 2.2. Let D be the intersection, in the (1/p, 1/q) plane, of the lines 1/q = 2/p - 1, $1/q = 1/p - \gamma/(\alpha + \beta)$, and let D' be its reflection in the non-principal diagonal. So

$$D = \left(1 - \frac{\gamma}{\alpha + \beta}, 1 - \frac{2\gamma}{\alpha + \beta}\right)$$
 and $D' = \left(\frac{2\gamma}{\alpha + \beta}, \frac{\gamma}{\alpha + \beta}\right)$.

Then (2.1), (2.2) and Lemma 2.1 imply that E_{μ} is the empty set for $\gamma > (\alpha + \beta)/3$, and, for $\gamma \leq (\alpha + \beta)/3$, E_{μ} is contained in the closed segment with endpoints D and D'. Let ν_0 be the Borel measure given by $\nu_0(E) = \int \chi_E(w,\varphi(w))\eta(w) dw$. Then Theorem 3 of [D-G] and a compactness argument imply that $(2/3, 1/3) \in E_{\nu_0}$. Now $T_{\mu_0}f \leq cT_{\nu_0}f$ for $f \geq 0$, thus $(2/3, 1/3) \in E_{\mu_0}$. Since $(1, 1) \in E_{\mu_0}$, the Riesz–Thorin theorem implies that if $\gamma \leq (\alpha + \beta)/3$ then D belongs to E_{μ_0} . Moreover, for these γ , if p_D, q_D are given by $D = (1/p_D, 1/q_D)$, Lemma 2.1 says that there exists c independent of j such that

(2.3)
$$||T_{\mu_j}||_{p_D,q_D} \le c$$

for all $j \in \mathbb{Z}$.

3. $L^{p}-L^{q}$ estimates. We modify, to our present setting, Christ's arguments developed in [C], involving a Littlewood–Paley decomposition of the operator. A similar decomposition, in a different setting, can be found in [Se].

Consider the Fourier transform $\widehat{\mu}_0$. For $\xi = (\xi_1, \ldots, \xi_{2n}) \in \mathbb{R}^{2n}$ we put $\xi' = (\xi_1, \ldots, \xi_n), \, \xi'' = (\xi_{n+1}, \ldots, \xi_{2n})$. Then

$$\widehat{\mu}_0(\xi) = \int_{\mathbb{R}^n} e^{-i\langle \xi', w \rangle - i\langle \xi'', \varphi(w) \rangle} \eta(w) \|w\|^{\gamma - \alpha} \, dw.$$

For a fixed ξ , let $\Phi(w) = \langle \xi', w \rangle + \langle \xi'', \varphi(w) \rangle$, $w \in \mathbb{R}^n$. Suppose that Φ has a critical point w_0 belonging to the support of η . Then

$$\xi_j + \sum_{k=1}^n \xi_{n+k} \frac{\partial \varphi_k}{\partial w_j}(w_0) = 0 \quad \text{for } j = 1, \dots, n.$$

Now, the maps $w \mapsto \varphi'(w)$ and (from (H2)) $w \mapsto [\varphi'(w)]^{-1}$ are continuous on $\mathbb{R}^n - \{0\}$, hence there exist two positive constants c_1, c_2 (independent of ξ) such that ξ belongs to the cone

$$\Gamma_0 = \{\xi \in \mathbb{R}^{2n} : c_1 |\xi''| < |\xi'| < c_2 |\xi''| \}.$$

For $1 \leq i, k \leq n$, let

$$\Gamma_0^{i,k} = \{\xi \in \Gamma_0 : |\xi'| < 2\sqrt{n} \, |\xi_i| \text{ and } |\xi''| < 2\sqrt{n} \, |\xi_{n+k}|\},\$$

$$C_0^{i,k} = \{\xi \in \Gamma_0 : |\xi'| < 4\sqrt{n} \, |\xi_i| \text{ and } |\xi''| < 4\sqrt{n} \, |\xi_{n+k}|\}.$$

LEMMA 3.1. If $\alpha_i \neq \beta_k$ for $1 \leq i, k \leq n$, then

$$\{j \in \mathbb{Z} : (2^j \diamond C_0^{i,k}) \cap C_0^{i,k} \neq \emptyset\}$$

is a finite set.

Proof. Let $j \in \mathbb{Z}$ and $\xi \in C_0^{i,k}$ be such that $2^j \diamond \xi \in C_0^{i,k}$. Then $|2^j \bullet \xi'| < 4\sqrt{n} 2^{j\alpha_i} |\xi_i|$ and $|2^j \circ \xi''| < 4\sqrt{n} 2^{j\beta_k} |\xi_{n+k}|$. Since $2^j \diamond \xi \in \Gamma_0$, we have $c_1 |2^j \circ \xi''| < |2^j \bullet \xi'| < c_2 |2^j \circ \xi''|$. Now,

$$c_1 2^{j\beta_k} |\xi_{n+k}| \le c_1 |2^j \circ \xi''| < |2^j \bullet \xi'| < 4\sqrt{n} 2^{j\alpha_i} |\xi_i| < 4\sqrt{n} 2^{j\alpha_i} c_2 |\xi''| < 16n 2^{j\alpha_i} c_2 |\xi_{n+k}|.$$

So $2^{j(\beta_k - \alpha_i)} < 16nc_2/c_1$. In a similar way we obtain $c_1/(16nc_2) < 2^{j(\beta_k - \alpha_i)}$. Since $\alpha_i \neq \beta_k$ for $1 \le i, k \le n$, the lemma follows.

For $1 \leq i, k \leq n$, let $m_0^{i,k}$ be a function belonging to $C^{\infty}(\mathbb{R}^{2n} - \{0\})$ homogeneous of degree zero with respect to the Euclidean dilations on \mathbb{R}^{2n} such that $m_0^{i,k} \equiv 1$ on $\Gamma_0^{i,k}$, $0 \leq m_0^{i,k} \leq 1$, $\operatorname{supp}(m_0^{i,k}) \subset C_0^{i,k}$, and let $m_j^{i,k}(y) = m_0^{i,k}(2^{-j} \diamond y)$. Let $Q_j^{i,k}$ be the operator with multiplier $m_j^{i,k}$. Let $h \in C_c^{\infty}(\mathbb{R}^{2n}), 0 \leq h \leq 1$, be identically one in a neighborhood of the origin. Taking account of Proposition 4 in [S], p. 341, from the above observation about the critical points of Φ , we note that

(3.1)
$$\widehat{\mu}_0(1-h) \prod_{1 \le i,k \le n} (1-m_0^{i,k}) \in S(\mathbb{R}^{2n}).$$

Let $h_j(y) = h(2^{-j} \diamond y)$ and let P_j be the Fourier multiplier operator with symbol h_j .

REMARK 3.2. Lemma 3.1 implies that there exists N > 0 such that for all $y \in \mathbb{R}^{2n} - \{0\}$ the set $\{j \in \mathbb{Z} : 2^{-j} \diamond y \in C_0^{i,k}\}$ has at most N elements, so $m^{i,k}(y) := \sum_{j \in \mathbb{Z}} \varepsilon_j m_j^{i,k}(y), \varepsilon_j = \pm 1$, is a well defined, $C^{\infty}(\mathbb{R}^{2n} - \{0\})$ and homogeneous function of degree zero. Moreover, for each $s = (s_1, \ldots, s_{2n})$, the function $\sum_{j \in \mathbb{Z}} |(\partial/\partial y)^s m_j^{i,k}(y)|$ is homogeneous of degree $-(s_1 + \ldots + s_{2n})$, so Theorem 3 in [St], p. 96, applies, showing that $m^{i,k}$ is an L^p multiplier, for 1 , and that the norm of the associated $operator has a bound independent of the choices of <math>\{\varepsilon_j\}_{j \in \mathbb{Z}}$.

THEOREM 3.3. If $\gamma \leq (\alpha + \beta)/3$ then E_{μ} is the closed segment with endpoints D and D'.

Proof. By Remark 2.2, it is enough to prove that D and D' belong to E_{μ} . Let $\{Q_j^r\}_{1 \leq r \leq n^2}$ be an arrangement of the set $\{Q_j^{i,k}\}_{1 \leq i,k \leq n}$. For $J \in \mathbb{N}$, we write

$$\sum_{|j| < J} T_{\mu_j} = \sum_{|j| < J} T_{\mu_j} P_j + \sum_{|j| < J} T_{\mu_j} (I - P_j)$$
$$= \sum_{|j| < J} T_{\mu_j} P_j + \sum_{|j| < J} T_{\mu_j} (I - P_j) Q_j^1 + \sum_{|j| < J} T_{\mu_j} (I - P_j) (I - Q_j^1)$$

$$= \sum_{|j| < J} T_{\mu_j} P_j + \sum_{|j| < J} T_{\mu_j} (I - P_j) Q_j^1 + \sum_{|j| < J} T_{\mu_j} (I - P_j) (I - Q_j^1) Q_j^2$$

+ $\sum_{|j| < J} T_{\mu_j} (I - P_j) (I - Q_j^1) (I - Q_j^2) = \dots$
= $\sum_{|j| < J} T_{\mu_j} P_j + \sum_{|j| < J} T_{\mu_j} (I - P_j) Q_j^1$
+ $\sum_{1 \le l \le n^2 - 1} \sum_{|j| < J} T_{\mu_j} (I - P_j) \prod_{1 \le r \le l} (I - Q_j^r) Q_j^{l+1}$
+ $\sum_{|j| < J} T_{\mu_j} (I - P_j) \prod_{1 \le r \le n^2} (I - Q_j^r).$

The kernel K_J of the convolution operator

$$\sum_{|j| < J} T_{\mu_j} (I - P_j) \prod_{1 \le r \le n^2} (I - Q_j^r)$$

satisfies

$$K_J(-\xi) = \sum_{|j| < J} 2^{j(\alpha+\beta-\gamma)} \widehat{g}(2^j \diamond \xi)$$

with $g = \hat{\mu}_0(1-h) \prod_{1 \le i,k \le n} (1-m_0^{i,k})$. So, by using (3.1), a standard homogeneity argument shows that, for all $J \in \mathbb{N}$,

$$|K_J(\xi)| \le \left(\sum_{i=1}^n |\xi_i|^{1/\alpha_i} + \sum_{k=1}^n |\xi_{n+k}|^{1/\beta_k}\right)^{-(\alpha+\beta-\gamma)}$$

and so they belong to the weak L^{p_D} space, with weak constant uniformly bounded in J. Also, a similar argument gives the same fact for the kernels of $\sum_{|j| < J} T_{\mu_j} P_j$. Then the weak Young inequality implies that there exists c > 0 independent of J such that

$$\left\| \sum_{|j| < J} T_{\mu_j} (I - P_j) \prod_{1 \le r \le n^2} (I - Q_j^r) \right\|_{p_D, q_D} \le c$$

and

$$\left\|\sum_{|j|$$

Now Remark 3.2 allows us to use Littlewood–Paley inequalities. As in [C] we obtain, for $1 \le l \le n^2 - 1$,

$$\Big|\sum_{|j|$$

where $f_j = \prod_{1 \le r \le l} (I - Q_j^r) Q_j^{l+1} f$. Since the assertions of Remark 3.2 also hold when we replace $m_j^{i,k}$ by a finite product of the form $m_j^{r_1} \dots m_j^{r_s}$, $1 \le r_1, \dots, r_s \le n^2$, we get $\|\{f_j\}\|_{L^p(l^2)} \le c \|f\|_p$.

A similar estimate holds for $\|\sum_{|j| < J} T_{\mu_j}(I - P_j)Q_j^1 f\|_q$.

Now, taking account of (2.3) we deduce (as in [C]) that there exist $0 < \theta < 1$ and c > 0, independent of J, such that

$$\Big\| \sum_{|j| < J} T_{\mu_j} \Big\|_{p_D, q_D} < c \Big(1 + \Big\| \sum_{|j| < J} T_{\mu_j} \Big\|_{p_D, q_D}^{\theta} \Big),$$

and so $\|\sum_{|j| < J} T_{\mu_j}\|_{p_D,q_D}$ is bounded independently of J. From Fatou's lemma, it follows that $D \in E_{\mu}$. Since T^*_{μ} is a convolution operator with a measure of the same kind, a duality argument shows that $D' \in E_{\mu}$.

We now consider a local version of the problem, that is, we study the type set corresponding to the convolution operator T_{σ} with the Borel measure given by

$$\sigma(E) = \int_{\|x\| \le 1} \chi_E(x, \varphi(x)) \|x\|^{\gamma - \alpha} \, dx$$

with $\gamma > 0$.

THEOREM 3.4. If $\gamma > (\alpha + \beta)/3$, then E_{σ} is the closed triangular region with vertices (2/3, 1/3), (0,0) and (1,1). If $\gamma \leq (\alpha + \beta)/3$ then E_{σ} is the closed polygonal region with vertices D, D', (0,0) and (1,1).

Proof. We have $E_{\mu} \subset E_{\sigma}$. Since E_{σ} is a convex set and since σ is a finite measure, (1, 1) and (0, 0) belong to E_{σ} . On the other hand, the constraints (2.1) and (2.2) hold for E_{σ} . Moreover, Lemma 2.1 implies that if $(1/p, 1/q) \in E_{\sigma}$, then $1/q \ge 1/p - \gamma/(\alpha + \beta)$. Thus the case $\gamma \le (\alpha + \beta)/3$ follows from Theorem 3.3.

If $\gamma > (\alpha + \beta)/3$, then (2/3, 1/3) lies above the line $1/q = 1/p - \gamma/(\alpha + \beta)$ and we have noted in Remark 2.2 that (2/3, 1/3) belongs to E_{μ_0} , so Lemma 2.1 implies that $\|\sum_{j\geq 0} T_{\mu_j}\|_{3/2,3} = c \|T_{\mu_0}\|_{3/2,3}$. Now, for $f \geq 0$, $T_{\sigma}f \leq \sum_{j\geq 0} T_{\mu_j}f$ and the assertion follows.

REMARK 3.5. If either $\alpha_1 = \ldots = \alpha_n$ or $\beta_1 = \ldots = \beta_n$, then (H3) implies (H2). Indeed, for $1 \leq i, k \leq n$,

$$\frac{\partial \varphi_k}{\partial x_i}(t \bullet x) = t^{\beta_k - \alpha i} \frac{\partial \varphi_k}{\partial x_i}(x).$$

Taking the derivative with respect to t, at t = 1, we obtain

$$(\beta_k - \alpha_i) \frac{\partial \varphi_k}{\partial x_i}(x) = \sum_{l=1}^n x_l \alpha_l \frac{\partial^2 \varphi_k}{\partial x_i \partial x_l}(x).$$

Thus, the matrix, with respect to the canonical basis of \mathbb{R}^n , of the linear operator $\varphi''(x)(\alpha_1 x_1, \ldots, \alpha_n x_n)$ is given by

(3.2)
$$\begin{bmatrix} (\beta_1 - \alpha_1) \frac{\partial \varphi_1}{\partial x_1}(x) & \dots & (\beta_n - \alpha_1) \frac{\partial \varphi_n}{\partial x_1}(x) \\ \vdots & & \vdots \\ (\beta_1 - \alpha_n) \frac{\partial \varphi_1}{\partial x_n}(x) & \dots & (\beta_n - \alpha_n) \frac{\partial \varphi_n}{\partial x_n}(x) \end{bmatrix}$$
So if either $\alpha_1 = \dots = \alpha_n$ or $\beta_1 = \dots = \beta_n$ then

So if either $\alpha_1 = \ldots = \alpha_n$ or $\beta_1 = \ldots = \beta_n$ then

$$c \det(\varphi'(x)) = \det(\varphi''(x)(\alpha_1 x_1, \dots, \alpha_n x_n)).$$

Hence (H3) implies (H2).

On the other hand, if either $\alpha_1 = \ldots = \alpha_n$ or $\beta_1 = \ldots = \beta_n$ and (H1) fails, then there does not exist a homogeneous function φ that satisfies (H3). Indeed, in this case, (3.2) implies that

$$\det(\varphi''(x)(\alpha_1 x_1,\ldots,\alpha_n x_n))=0$$

for every $x \in \mathbb{R}^n$. Then no $x \in \mathbb{R}^n$ is an elliptic point for φ .

EXAMPLES. Let us show two examples of functions φ that satisfy the hypothesis of Theorems 3.4 and 3.5.

1) Let

$$\varphi(x_1, x_2) = (x_1^4 - 6x_1^2x_2^2 + x_2^4, (4x_1^3x_2 - 4x_1x_2^3)\sqrt{x_1^2 + x_2^2}).$$

In this case $\varphi(t \bullet x) = t \circ \varphi(x)$ with $\alpha_1 = \alpha_2 = 1$ and $\beta_1 = 4$, $\beta_2 = 5$. Taking account of Remark 3.5, we only need to check (H3). An explicit computation shows that the discriminant of the quadratic form

 $(h_1, h_2) \mapsto \det(\varphi''(x_1, x_2)(h_1, h_2))$

is negative for $(x_1, x_2) \neq (0, 0)$, so (H3) holds.

2) Let

$$\varphi(x_1, x_2) = (x_1 x_2, x_2^2 - x_1^2 \sqrt{x_2^2 + x_1^4})$$

In this case $\varphi(t \bullet x) = t \circ \varphi(x)$ with $\alpha_1 = 1$, $\alpha_2 = 2$ and $\beta_1 = 3$, $\beta_2 = 4$. A computation shows that

$$\det(\varphi'(x_1, x_2)) = \frac{2\sqrt{x_2^2 + x_1^4} x_2^2 + x_1^2 x_2^2 + 4x_1^6}{\sqrt{x_2^2 + x_1^4}} \neq 0, \quad (x_1, x_2) \neq (0, 0)$$

and so (H2) holds. On the other hand, the discriminant of the quadratic form

$$(h_1, h_2) \mapsto \det(\varphi''(x_1, x_2)(h_1, h_2))$$

is

$$\frac{-8\sqrt{x_2^2 + x_1^4} x_2^2 - 8\sqrt{x_2^2 + x_1^4} x_1^4 + 4x_1^6}{(x_2^2 + x_1^4)^3} < 0, \quad (x_1, x_2) \neq (0, 0),$$

so that (H3) holds.

REFERENCES

- [C] M. Christ, Endpoint bounds for singular fractional integral operators, UCLA preprint, 1988.
- [D-G] S. W. Drury and K. Guo, Convolution estimates related to surfaces of half the ambient dimension, Math. Proc. Cambridge Philos. Soc. 110 (1991), 151–159.
- [F-G-U] E. Ferreyra, T. Godoy and M. Urciuolo, The type set for some measures on \mathbb{R}^{2n} with n-dimensional support, Czech Math. J., to appear.
- [O] D. Oberlin, Convolution estimates for some measures on curves, Proc. Amer. Math. Soc. 99 (1987), 56–60.
- [R] F. Ricci, Limitatezza $L^p L^q$ per operatori di convoluzione definiti da misure singolari in \mathbb{R}^n , Boll. Un. Mat. Ital. A (7) 11 (1997), 237–252.
- [Se] S. Secco, Fractional integration along homogeneous curves in \mathbb{R}^3 , Math. Scand. 85 (1999), 259–270.
- [S] E. M. Stein, Harmonic Analysis. Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Univ. Press, Princeton, NJ, 1993.
- [St] —, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, NJ, 1970.

FaMAF, Universidad Nacional de Córdoba

CIEM

Ciudad Universitaria

5000 Córdoba, Argentina

E-mail: eferrey@mate.uncor.edu godoy@mate.uncor.edu

urciuolo@mate.uncor.edu

Received 12 July 2001; revised 28 February 2002

(4089)