COLLOQUIUM MATHEMATICUM

CONVOLUTION OPERATORS WITH
 ANISOTROPICALLY HOMOGENEOUS MEASURES ON $\mathbb{R}^{2 n}$ WITH n-DIMENSIONAL SUPPORT

BY

E. FERREYRA, T. GODOY and M. URCIUOLO (Córdoba)

Abstract

Let $\alpha_{i}, \beta_{i}>0,1 \leq i \leq n$, and for $t>0$ and $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$, let $t \bullet x=\left(t^{\alpha_{1}} x_{1}, \ldots, t^{\alpha_{n}} x_{n}\right), t \circ x=\left(t^{\beta_{1}} x_{1}, \ldots, t^{\beta_{n}} x_{n}\right)$ and $\|x\|=\sum_{i=1}^{n}\left|x_{i}\right|^{1 / \alpha_{i}}$. Let $\varphi_{1}, \ldots, \varphi_{n}$ be real functions in $C^{\infty}\left(\mathbb{R}^{n}-\{0\}\right)$ such that $\varphi=\left(\varphi_{1}, \ldots, \varphi_{n}\right)$ satisfies $\varphi(t \bullet x)$ $=t \circ \varphi(x)$. Let $\gamma>0$ and let μ be the Borel measure on $\mathbb{R}^{2 n}$ given by $$
\mu(E)=\int_{\mathbb{R}^{n}} \chi_{E}(x, \varphi(x))\|x\|^{\gamma-\alpha} d x
$$ where $\alpha=\sum_{i=1}^{n} \alpha_{i}$ and $d x$ denotes the Lebesgue measure on \mathbb{R}^{n}. Let $T_{\mu} f=\mu * f$ and let $\left\|T_{\mu}\right\|_{p, q}$ be the operator norm of T_{μ} from $L^{p}\left(\mathbb{R}^{2 n}\right)$ into $L^{q}\left(\mathbb{R}^{2 n}\right)$, where the L^{p} spaces are taken with respect to the Lebesgue measure. The type set E_{μ} is defined by $$
E_{\mu}=\left\{(1 / p, 1 / q):\left\|T_{\mu}\right\|_{p, q}<\infty, 1 \leq p, q \leq \infty\right\}
$$

In the case $\alpha_{i} \neq \beta_{k}$ for $1 \leq i, k \leq n$ we characterize the type set under certain additional hypotheses on φ.

1. Introduction. Let $\alpha_{i}, \beta_{i}>0,1 \leq i \leq n$, and for $t>0$ and $x=$ $\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$, let

$$
t \bullet x=\left(t^{\alpha_{1}} x_{1}, \ldots, t^{\alpha_{n}} x_{n}\right), \quad t \circ x=\left(t^{\beta_{1}} x_{1}, \ldots, t^{\beta_{n}} x_{n}\right)
$$

and let $\|x\|=\sum_{i=1}^{n}\left|x_{i}\right|^{1 / \alpha_{i}}$ be a homogeneous norm associated to the first group of dilations. Let $\varphi_{1}, \ldots, \varphi_{n}$ be real functions in $C^{\infty}\left(\mathbb{R}^{n}-\{0\}\right)$ such that $\varphi(x)=\left(\varphi_{1}(x), \ldots, \varphi_{n}(x)\right)$ is a homogeneous function with respect to these groups of dilations, i.e. $\varphi(t \bullet x)=t \circ \varphi(x)$. Let $\gamma>0$ and let μ be the Borel measure on $\mathbb{R}^{2 n}$ given by

$$
\mu(E)=\int_{\mathbb{R}^{n}} \chi_{E}(x, \varphi(x))\|x\|^{\gamma-\alpha} d x
$$

[^0]where $\alpha=\sum_{i=1}^{n} \alpha_{i}$ and $d x$ denotes the Lebesgue measure on \mathbb{R}^{n}. Let T_{μ} be the convolution operator defined, for $f \in S\left(\mathbb{R}^{2 n}\right)$, by $T_{\mu} f(x)=(\mu * f)(x)$ and let $\left\|T_{\mu}\right\|_{p, q}$ be the operator norm of T_{μ} from $L^{p}\left(\mathbb{R}^{2 n}\right)$ into $L^{q}\left(\mathbb{R}^{2 n}\right)$, where the L^{p} spaces are taken with respect to the Lebesgue measure. The type set E_{μ} is defined by
$$
E_{\mu}=\left\{(1 / p, 1 / q):\left\|T_{\mu}\right\|_{p, q}<\infty, 1 \leq p, q \leq \infty\right\}
$$

A very interesting survey of results concerning the type set for convolution operators with singular measures can be found in $[R]$. The type set associated with fractional measures on \mathbb{R}^{2} supported on the graph of the parabola $\left(t, t^{2}\right)$ has been characterized by M. Christ in [C], using a Littlewood-Paley decomposition of the operator. Also, convolution operators supported on surfaces of half the ambient dimension have been studied by S. W. Drury and K . Guo in [D-G], covering a wide amount of cases. As there, if $\varphi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a twice continuously differentiable function, we say that $x \in \mathbb{R}^{n}$ is an elliptic point for φ if there exists $\lambda=\lambda_{x}>0$ such that $\left|\operatorname{det}\left(\varphi^{\prime \prime}(x) h\right)\right| \geq \lambda|h|^{n}$ for all $h \in \mathbb{R}^{n}$ ([D-G], p. 154).

When we deal with isotropic dilations, in [F-G-U] we have already obtained a complete description of E_{μ} in the case that every $x \neq 0$ is an elliptic point for φ. In this paper we obtain an explicit description of E_{μ}, for an anisotropically homogeneous and smooth φ, under the following assumptions:
(H1) The dilations satisfy $\alpha_{i} \neq \beta_{k}$ for $1 \leq i, k \leq n$.
(H2) The first differential $\varphi^{\prime}(x)$ is invertible for all $x \in \mathbb{R}^{n}-\{0\}$.
(H3) Every $x \neq 0$ is an elliptic point for φ.
For some families of dilations, it is enough to require hypothesis (H 3), since (H2) is its consequence. We will adapt M. Christ's arguments ([C]) to our setting, using some results obtained by S. W. Drury and K. Guo in [D-G]. Throughout the paper we will assume that all the hypotheses concerning φ and $\alpha_{i}, \beta_{k}, 1 \leq i, k \leq n$, stated in this introduction hold. Also c will denote a positive constant not necessarily the same at each occurrence.

Acknowledgments. We wish to express our thanks to Prof. Fulvio Ricci for his useful suggestions.
2. Preliminaries. The Riesz-Thorin theorem implies that E_{μ} is a convex set. On the other hand, it is well known that E_{μ} lies below the principal diagonal $1 / q=1 / p$. Also, a result of Oberlin (see e.g. [O], Th. 1) says that

$$
\begin{equation*}
E_{\mu} \subset\{(1 / p, 1 / q): 1 / q \geq 2 / p-1\} \tag{2.1}
\end{equation*}
$$

Since the adjoint T_{μ}^{*} is a convolution operator with a measure of the same kind, we also have

$$
\begin{equation*}
E_{\mu} \subset\{(1 / p, 1 / q): 1 / q \geq 1 /(2 p)\} \tag{2.2}
\end{equation*}
$$

Let η be a function in $C_{\mathrm{c}}^{\infty}\left(\mathbb{R}^{n}\right)$ such that

$$
\operatorname{supp}(\eta) \subset\left\{x \in \mathbb{R}^{n}: 1 / 4 \leq\|x\| \leq 2\right\}
$$

$0 \leq \eta \leq 1$ and $\sum_{j \in \mathbb{Z}} \eta\left(2^{j} \bullet x\right)=1$ if $x \neq 0$. For $j \in \mathbb{Z}$, let μ_{j} be the Borel measure on $\mathbb{R}^{2 n}$ defined by

$$
\mu_{j}(E)=\int_{\mathbb{R}^{n}} \chi_{E}(x, \varphi(x)) \eta\left(2^{j} \bullet x\right)\|x\|^{\gamma-\alpha} d x
$$

and let $T_{\mu_{j}}$ be the associated convolution operator. So $T_{\mu}=\sum_{j \in \mathbb{Z}} T_{\mu_{j}}$. For $t>0$ and $(x, y) \in \mathbb{R}^{2 n}$ we set

$$
t \diamond(x, y)=(t \bullet x, t \circ y)
$$

and for $f: \mathbb{R}^{2 n} \rightarrow \mathbb{C}$, we define $(t \diamond f)(x, y)=f(t \diamond(x, y))$. So $\|t \diamond f\|_{\infty}=\|f\|_{\infty}$ and $\|t \diamond f\|_{q}=t^{-(\alpha+\beta) / q}\|f\|_{q}, 1 \leq q<\infty$, where $\beta=\sum_{k=1}^{n} \beta_{k}$. A standard homogeneity argument gives

Lemma 2.1. Let $1 \leq p, q \leq \infty$. Then

$$
\left\|T_{\mu_{j}}\right\|_{p, q}=2^{(-\gamma-(\alpha+\beta) / q+(\alpha+\beta) / p) j}\left\|T_{\mu_{0}}\right\|_{p, q}
$$

for all $j \in \mathbb{Z}$. Moreover, if T_{μ} is bounded from $L^{p}\left(\mathbb{R}^{2 n}\right)$ into $L^{q}\left(\mathbb{R}^{2 n}\right)$ then $1 / q=1 / p-\gamma /(\alpha+\beta)$.

Proof. For $(x, y) \in \mathbb{R}^{2 n}$ a change of variable gives

$$
\begin{aligned}
T_{\mu_{0}}\left(2^{-j} \diamond f\right) & (x, y) \\
& =\int_{\mathbb{R}^{n}} f\left(2^{-j} \bullet x-2^{-j} \bullet w, 2^{-j} \circ y-\varphi\left(2^{-j} \bullet w\right)\right) \eta(w)\|w\|^{\gamma-\alpha} d w \\
& =2^{j \alpha} \int_{\mathbb{R}^{n}} f\left(2^{-j} \bullet x-z, 2^{-j} \circ y-\varphi(z)\right) \eta\left(2^{j} \bullet z\right)\left\|2^{j} \bullet z\right\|^{\gamma-\alpha} d z \\
& =2^{j \gamma}\left(2^{-j} \diamond T_{\mu_{j}} f\right)(x, y) .
\end{aligned}
$$

So

$$
\left\|T_{\mu_{j}}\right\|_{p, q}=2^{(-\gamma-(\alpha+\beta) / q+(\alpha+\beta) / p) j}\left\|T_{\mu_{0}}\right\|_{p, q}
$$

and the first assertion of the lemma follows. On the other hand, if T_{μ} is bounded then $\sup _{j \in \mathbb{Z}}\left\|T_{\mu_{j}}\right\|_{p, q}<\infty$ and so $-\gamma-(\alpha+\beta) / q+(\alpha+\beta) / p=0$.

Remark 2.2. Let D be the intersection, in the $(1 / p, 1 / q)$ plane, of the lines $1 / q=2 / p-1,1 / q=1 / p-\gamma /(\alpha+\beta)$, and let D^{\prime} be its reflection in the non-principal diagonal. So

$$
D=\left(1-\frac{\gamma}{\alpha+\beta}, 1-\frac{2 \gamma}{\alpha+\beta}\right) \quad \text { and } \quad D^{\prime}=\left(\frac{2 \gamma}{\alpha+\beta}, \frac{\gamma}{\alpha+\beta}\right)
$$

Then (2.1), (2.2) and Lemma 2.1 imply that E_{μ} is the empty set for $\gamma>$ $(\alpha+\beta) / 3$, and, for $\gamma \leq(\alpha+\beta) / 3, E_{\mu}$ is contained in the closed segment with endpoints D and D^{\prime}. Let ν_{0} be the Borel measure given by $\nu_{0}(E)=\int \chi_{E}(w, \varphi(w)) \eta(w) d w$. Then Theorem 3 of [D-G] and a compactness argument imply that $(2 / 3,1 / 3) \in E_{\nu_{0}}$. Now $T_{\mu_{0}} f \leq c T_{\nu_{0}} f$ for $f \geq 0$, thus $(2 / 3,1 / 3) \in E_{\mu_{0}}$. Since $(1,1) \in E_{\mu_{0}}$, the Riesz-Thorin theorem implies that if $\gamma \leq(\alpha+\beta) / 3$ then D belongs to $E_{\mu_{0}}$. Moreover, for these γ, if p_{D}, q_{D} are given by $D=\left(1 / p_{D}, 1 / q_{D}\right)$, Lemma 2.1 says that there exists c independent of j such that

$$
\begin{equation*}
\left\|T_{\mu_{j}}\right\|_{p_{D}, q_{D}} \leq c \tag{2.3}
\end{equation*}
$$

for all $j \in \mathbb{Z}$.
3. $L^{p}-L^{q}$ estimates. We modify, to our present setting, Christ's arguments developed in [C], involving a Littlewood-Paley decomposition of the operator. A similar decomposition, in a different setting, can be found in [Se].

Consider the Fourier transform $\widehat{\mu}_{0}$. For $\xi=\left(\xi_{1}, \ldots, \xi_{2 n}\right) \in \mathbb{R}^{2 n}$ we put $\xi^{\prime}=\left(\xi_{1}, \ldots, \xi_{n}\right), \xi^{\prime \prime}=\left(\xi_{n+1}, \ldots, \xi_{2 n}\right)$. Then

$$
\widehat{\mu}_{0}(\xi)=\int_{\mathbb{R}^{n}} e^{-i\left\langle\xi^{\prime}, w\right\rangle-i\left\langle\xi^{\prime \prime}, \varphi(w)\right\rangle} \eta(w)\|w\|^{\gamma-\alpha} d w .
$$

For a fixed ξ, let $\Phi(w)=\left\langle\xi^{\prime}, w\right\rangle+\left\langle\xi^{\prime \prime}, \varphi(w)\right\rangle, w \in \mathbb{R}^{n}$. Suppose that Φ has a critical point w_{0} belonging to the support of η. Then

$$
\xi_{j}+\sum_{k=1}^{n} \xi_{n+k} \frac{\partial \varphi_{k}}{\partial w_{j}}\left(w_{0}\right)=0 \quad \text { for } j=1, \ldots, n .
$$

Now, the maps $w \mapsto \varphi^{\prime}(w)$ and (from (H2)) $w \mapsto\left[\varphi^{\prime}(w)\right]^{-1}$ are continuous on $\mathbb{R}^{n}-\{0\}$, hence there exist two positive constants c_{1}, c_{2} (independent of ξ) such that ξ belongs to the cone

$$
\Gamma_{0}=\left\{\xi \in \mathbb{R}^{2 n}: c_{1}\left|\xi^{\prime \prime}\right|<\left|\xi^{\prime}\right|<c_{2}\left|\xi^{\prime \prime}\right|\right\} .
$$

For $1 \leq i, k \leq n$, let

$$
\begin{aligned}
& \Gamma_{0}^{i, k}=\left\{\xi \in \Gamma_{0}:\left|\xi^{\prime}\right|<2 \sqrt{n}\left|\xi_{i}\right| \text { and }\left|\xi^{\prime \prime}\right|<2 \sqrt{n}\left|\xi_{n+k}\right|\right\}, \\
& C_{0}^{i, k}=\left\{\xi \in \Gamma_{0}:\left|\xi^{\prime}\right|<4 \sqrt{n}\left|\xi_{i}\right| \text { and }\left|\xi^{\prime \prime}\right|<4 \sqrt{n}\left|\xi_{n+k}\right|\right\} .
\end{aligned}
$$

Lemma 3.1. If $\alpha_{i} \neq \beta_{k}$ for $1 \leq i, k \leq n$, then

$$
\left\{j \in \mathbb{Z}:\left(2^{j} \diamond C_{0}^{i, k}\right) \cap C_{0}^{i, k} \neq \emptyset\right\}
$$

is a finite set.

Proof. Let $j \in \mathbb{Z}$ and $\xi \in C_{0}^{i, k}$ be such that $2^{j} \diamond \xi \in C_{0}^{i, k}$. Then $\left|2^{j} \bullet \xi^{\prime}\right|<$ $4 \sqrt{n} 2^{j \alpha_{i}}\left|\xi_{i}\right|$ and $\left|2^{j} \circ \xi^{\prime \prime}\right|<4 \sqrt{n} 2^{j \beta_{k}}\left|\xi_{n+k}\right|$. Since $2^{j} \diamond \xi \in \Gamma_{0}$, we have $c_{1}\left|2^{j} \circ \xi^{\prime \prime}\right|<\left|2^{j} \bullet \xi^{\prime}\right|<c_{2}\left|2^{j} \circ \xi^{\prime \prime}\right|$. Now,

$$
\begin{aligned}
c_{1} 2^{j \beta_{k}}\left|\xi_{n+k}\right| & \leq c_{1}\left|2^{j} \circ \xi^{\prime \prime}\right|<\left|2^{j} \bullet \xi^{\prime}\right|<4 \sqrt{n} 2^{j \alpha_{i}}\left|\xi_{i}\right| \\
& <4 \sqrt{n} 2^{j \alpha_{i}} c_{2}\left|\xi^{\prime \prime}\right|<16 n 2^{j \alpha_{i}} c_{2}\left|\xi_{n+k}\right| .
\end{aligned}
$$

So $2^{j\left(\beta_{k}-\alpha_{i}\right)}<16 n c_{2} / c_{1}$. In a similar way we obtain $c_{1} /\left(16 n c_{2}\right)<2^{j\left(\beta_{k}-\alpha_{i}\right)}$. Since $\alpha_{i} \neq \beta_{k}$ for $1 \leq i, k \leq n$, the lemma follows.

For $1 \leq i, k \leq n$, let $m_{0}^{i, k}$ be a function belonging to $C^{\infty}\left(\mathbb{R}^{2 n}-\{0\}\right)$ homogeneous of degree zero with respect to the Euclidean dilations on $\mathbb{R}^{2 n}$ such that $m_{0}^{i, k} \equiv 1$ on $\Gamma_{0}^{i, k}, 0 \leq m_{0}^{i, k} \leq 1, \operatorname{supp}\left(m_{0}^{i, k}\right) \subset C_{0}^{i, k}$, and let $m_{j}^{i, k}(y)=m_{0}^{i, k}\left(2^{-j} \diamond y\right)$. Let $Q_{j}^{i, k}$ be the operator with multiplier $m_{j}^{i, k}$. Let $h \in C_{\mathrm{c}}^{\infty}\left(\mathbb{R}^{2 n}\right), 0 \leq h \leq 1$, be identically one in a neighborhood of the origin. Taking account of Proposition 4 in $[\mathrm{S}]$, p. 341, from the above observation about the critical points of Φ, we note that

$$
\begin{equation*}
\widehat{\mu}_{0}(1-h) \prod_{1 \leq i, k \leq n}\left(1-m_{0}^{i, k}\right) \in S\left(\mathbb{R}^{2 n}\right) \tag{3.1}
\end{equation*}
$$

Let $h_{j}(y)=h\left(2^{-j} \diamond y\right)$ and let P_{j} be the Fourier multiplier operator with symbol h_{j}.

Remark 3.2. Lemma 3.1 implies that there exists $N>0$ such that for all $y \in \mathbb{R}^{2 n}-\{0\}$ the set $\left\{j \in \mathbb{Z}: 2^{-j} \diamond y \in C_{0}^{i, k}\right\}$ has at most N elements, so $m^{i, k}(y):=\sum_{j \in \mathbb{Z}} \varepsilon_{j} m_{j}^{i, k}(y), \varepsilon_{j}= \pm 1$, is a well defined, $C^{\infty}\left(\mathbb{R}^{2 n}-\{0\}\right)$ and homogeneous function of degree zero. Moreover, for each $s=\left(s_{1}, \ldots, s_{2 n}\right)$, the function $\sum_{j \in \mathbb{Z}}\left|(\partial / \partial y)^{s} m_{j}^{i, k}(y)\right|$ is homogeneous of degree $-\left(s_{1}+\ldots+s_{2 n}\right)$, so Theorem 3 in [St], p. 96, applies, showing that $m^{i, k}$ is an L^{p} multiplier, for $1<p<\infty$, and that the norm of the associated operator has a bound independent of the choices of $\left\{\varepsilon_{j}\right\}_{j \in \mathbb{Z}}$.

Theorem 3.3. If $\gamma \leq(\alpha+\beta) / 3$ then E_{μ} is the closed segment with endpoints D and D^{\prime}.

Proof. By Remark 2.2, it is enough to prove that D and D^{\prime} belong to E_{μ}. Let $\left\{Q_{j}^{r}\right\}_{1 \leq r \leq n^{2}}$ be an arrangement of the set $\left\{Q_{j}^{i, k}\right\}_{1 \leq i, k \leq n}$. For $J \in \mathbb{N}$, we write

$$
\begin{aligned}
\sum_{|j|<J} T_{\mu_{j}} & =\sum_{|j|<J} T_{\mu_{j}} P_{j}+\sum_{|j|<J} T_{\mu_{j}}\left(I-P_{j}\right) \\
& =\sum_{|j|<J} T_{\mu_{j}} P_{j}+\sum_{|j|<J} T_{\mu_{j}}\left(I-P_{j}\right) Q_{j}^{1}+\sum_{|j|<J} T_{\mu_{j}}\left(I-P_{j}\right)\left(I-Q_{j}^{1}\right)
\end{aligned}
$$

$$
\begin{aligned}
= & \sum_{|j|<J} T_{\mu_{j}} P_{j}+\sum_{|j|<J} T_{\mu_{j}}\left(I-P_{j}\right) Q_{j}^{1}+\sum_{|j|<J} T_{\mu_{j}}\left(I-P_{j}\right)\left(I-Q_{j}^{1}\right) Q_{j}^{2} \\
& +\sum_{|j|<J} T_{\mu_{j}}\left(I-P_{j}\right)\left(I-Q_{j}^{1}\right)\left(I-Q_{j}^{2}\right)=\ldots \\
= & \sum_{|j|<J} T_{\mu_{j}} P_{j}+\sum_{|j|<J} T_{\mu_{j}}\left(I-P_{j}\right) Q_{j}^{1} \\
& +\sum_{1 \leq l \leq n^{2}-1} \sum_{|j|<J} T_{\mu_{j}}\left(I-P_{j}\right) \prod_{1 \leq r \leq l}\left(I-Q_{j}^{r}\right) Q_{j}^{l+1} \\
& +\sum_{|j|<J} T_{\mu_{j}}\left(I-P_{j}\right) \prod_{1 \leq r \leq n^{2}}\left(I-Q_{j}^{r}\right)
\end{aligned}
$$

The kernel K_{J} of the convolution operator

$$
\sum_{|j|<J} T_{\mu_{j}}\left(I-P_{j}\right) \prod_{1 \leq r \leq n^{2}}\left(I-Q_{j}^{r}\right)
$$

satisfies

$$
K_{J}(-\xi)=\sum_{|j|<J} 2^{j(\alpha+\beta-\gamma)} \widehat{g}\left(2^{j} \diamond \xi\right)
$$

with $g=\widehat{\mu}_{0}(1-h) \prod_{1 \leq i, k \leq n}\left(1-m_{0}^{i, k}\right)$. So, by using (3.1), a standard homogeneity argument shows that, for all $J \in \mathbb{N}$,

$$
\left|K_{J}(\xi)\right| \leq\left(\sum_{i=1}^{n}\left|\xi_{i}\right|^{1 / \alpha_{i}}+\sum_{k=1}^{n}\left|\xi_{n+k}\right|^{1 / \beta_{k}}\right)^{-(\alpha+\beta-\gamma)}
$$

and so they belong to the weak $L^{p_{D}}$ space, with weak constant uniformly bounded in J. Also, a similar argument gives the same fact for the kernels of $\sum_{|j|<J} T_{\mu_{j}} P_{j}$. Then the weak Young inequality implies that there exists $c>0$ independent of J such that

$$
\left\|\sum_{|j|<J} T_{\mu_{j}}\left(I-P_{j}\right) \prod_{1 \leq r \leq n^{2}}\left(I-Q_{j}^{r}\right)\right\|_{p_{D}, q_{D}} \leq c
$$

and

$$
\left\|\sum_{|j|<J} T_{\mu_{j}} P_{j}\right\|_{p_{D}, q_{D}} \leq c
$$

Now Remark 3.2 allows us to use Littlewood-Paley inequalities. As in [C] we obtain, for $1 \leq l \leq n^{2}-1$,

$$
\left\|\sum_{|j|<J} T_{\mu_{j}}\left(I-P_{j}\right) \prod_{1 \leq r \leq l}\left(I-Q_{j}^{r}\right) Q_{j}^{l+1} f\right\|_{q} \leq c\left\|\left\{T_{\mu_{j}}\right\}\right\|_{p, q, 2}\left\|\left\{f_{j}\right\}\right\|_{L^{p}\left(l^{2}\right)}
$$

where $f_{j}=\prod_{1 \leq r \leq l}\left(I-Q_{j}^{r}\right) Q_{j}^{l+1} f$. Since the assertions of Remark 3.2 also hold when we replace $m_{j}^{i, k}$ by a finite product of the form $m_{j}^{r_{1}} \ldots m_{j}^{r_{s}}$, $1 \leq r_{1}, \ldots, r_{s} \leq n^{2}$, we get $\left\|\left\{f_{j}\right\}\right\|_{L^{p}\left(l^{2}\right)} \leq c\|f\|_{p}$.

A similar estimate holds for $\left\|\sum_{|j|<J} T_{\mu_{j}}\left(I-P_{j}\right) Q_{j}^{1} f\right\|_{q}$.
Now, taking account of (2.3) we deduce (as in [C]) that there exist $0<$ $\theta<1$ and $c>0$, independent of J, such that

$$
\left\|\sum_{|j|<J} T_{\mu_{j}}\right\|_{p_{D}, q_{D}}<c\left(1+\left\|\sum_{|j|<J} T_{\mu_{j}}\right\|_{p_{D}, q_{D}}^{\theta}\right)
$$

and so $\left\|\sum_{|j|<J} T_{\mu_{j}}\right\|_{p_{D}, q_{D}}$ is bounded independently of J. From Fatou's lemma, it follows that $D \in E_{\mu}$. Since T_{μ}^{*} is a convolution operator with a measure of the same kind, a duality argument shows that $D^{\prime} \in E_{\mu}$.

We now consider a local version of the problem, that is, we study the type set corresponding to the convolution operator T_{σ} with the Borel measure given by

$$
\sigma(E)=\int_{\|x\| \leq 1} \chi_{E}(x, \varphi(x))\|x\|^{\gamma-\alpha} d x
$$

with $\gamma>0$.
TheOrem 3.4. If $\gamma>(\alpha+\beta) / 3$, then E_{σ} is the closed triangular region with vertices $(2 / 3,1 / 3),(0,0)$ and $(1,1)$. If $\gamma \leq(\alpha+\beta) / 3$ then E_{σ} is the closed polygonal region with vertices $D, D^{\prime},(0,0)$ and $(1,1)$.

Proof. We have $E_{\mu} \subset E_{\sigma}$. Since E_{σ} is a convex set and since σ is a finite measure, $(1,1)$ and $(0,0)$ belong to E_{σ}. On the other hand, the constraints (2.1) and (2.2) hold for E_{σ}. Moreover, Lemma 2.1 implies that if $(1 / p, 1 / q) \in$ E_{σ}, then $1 / q \geq 1 / p-\gamma /(\alpha+\beta)$. Thus the case $\gamma \leq(\alpha+\beta) / 3$ follows from Theorem 3.3.

If $\gamma>(\alpha+\beta) / 3$, then $(2 / 3,1 / 3)$ lies above the line $1 / q=1 / p-\gamma /(\alpha+\beta)$ and we have noted in Remark 2.2 that $(2 / 3,1 / 3)$ belongs to $E_{\mu_{0}}$, so Lemma 2.1 implies that $\left\|\sum_{j \geq 0} T_{\mu_{j}}\right\|_{3 / 2,3}=c\left\|T_{\mu_{0}}\right\|_{3 / 2,3}$. Now, for $f \geq 0, T_{\sigma} f \leq$ $\sum_{j \geq 0} T_{\mu_{j}} f$ and the assertion follows.

REMARK 3.5. If either $\alpha_{1}=\ldots=\alpha_{n}$ or $\beta_{1}=\ldots=\beta_{n}$, then (H3) implies (H2). Indeed, for $1 \leq i, k \leq n$,

$$
\frac{\partial \varphi_{k}}{\partial x_{i}}(t \bullet x)=t^{\beta_{k}-\alpha i} \frac{\partial \varphi_{k}}{\partial x_{i}}(x)
$$

Taking the derivative with respect to t, at $t=1$, we obtain

$$
\left(\beta_{k}-\alpha_{i}\right) \frac{\partial \varphi_{k}}{\partial x_{i}}(x)=\sum_{l=1}^{n} x_{l} \alpha_{l} \frac{\partial^{2} \varphi_{k}}{\partial x_{i} \partial x_{l}}(x)
$$

Thus, the matrix, with respect to the canonical basis of \mathbb{R}^{n}, of the linear operator $\varphi^{\prime \prime}(x)\left(\alpha_{1} x_{1}, \ldots, \alpha_{n} x_{n}\right)$ is given by

$$
\left[\begin{array}{ccc}
\left(\beta_{1}-\alpha_{1}\right) \frac{\partial \varphi_{1}}{\partial x_{1}}(x) & \ldots & \left(\beta_{n}-\alpha_{1}\right) \frac{\partial \varphi_{n}}{\partial x_{1}}(x) \tag{3.2}\\
\vdots & & \vdots \\
\left(\beta_{1}-\alpha_{n}\right) \frac{\partial \varphi_{1}}{\partial x_{n}}(x) & \ldots & \left(\beta_{n}-\alpha_{n}\right) \frac{\partial \varphi_{n}}{\partial x_{n}}(x)
\end{array}\right]
$$

So if either $\alpha_{1}=\ldots=\alpha_{n}$ or $\beta_{1}=\ldots=\beta_{n}$ then

$$
c \operatorname{det}\left(\varphi^{\prime}(x)\right)=\operatorname{det}\left(\varphi^{\prime \prime}(x)\left(\alpha_{1} x_{1}, \ldots, \alpha_{n} x_{n}\right)\right)
$$

Hence (H3) implies (H2).
On the other hand, if either $\alpha_{1}=\ldots=\alpha_{n}$ or $\beta_{1}=\ldots=\beta_{n}$ and (H1) fails, then there does not exist a homogeneous function φ that satisfies (H3). Indeed, in this case, (3.2) implies that

$$
\operatorname{det}\left(\varphi^{\prime \prime}(x)\left(\alpha_{1} x_{1}, \ldots, \alpha_{n} x_{n}\right)\right)=0
$$

for every $x \in \mathbb{R}^{n}$. Then no $x \in \mathbb{R}^{n}$ is an elliptic point for φ.
Examples. Let us show two examples of functions φ that satisfy the hypothesis of Theorems 3.4 and 3.5.

1) Let

$$
\varphi\left(x_{1}, x_{2}\right)=\left(x_{1}^{4}-6 x_{1}^{2} x_{2}^{2}+x_{2}^{4},\left(4 x_{1}^{3} x_{2}-4 x_{1} x_{2}^{3}\right) \sqrt{x_{1}^{2}+x_{2}^{2}}\right)
$$

In this case $\varphi(t \bullet x)=t \circ \varphi(x)$ with $\alpha_{1}=\alpha_{2}=1$ and $\beta_{1}=4, \beta_{2}=5$. Taking account of Remark 3.5, we only need to check (H3). An explicit computation shows that the discriminant of the quadratic form

$$
\left(h_{1}, h_{2}\right) \mapsto \operatorname{det}\left(\varphi^{\prime \prime}\left(x_{1}, x_{2}\right)\left(h_{1}, h_{2}\right)\right)
$$

is negative for $\left(x_{1}, x_{2}\right) \neq(0,0)$, so (H3) holds.
2) Let

$$
\varphi\left(x_{1}, x_{2}\right)=\left(x_{1} x_{2}, x_{2}^{2}-x_{1}^{2} \sqrt{x_{2}^{2}+x_{1}^{4}}\right)
$$

In this case $\varphi(t \bullet x)=t \circ \varphi(x)$ with $\alpha_{1}=1, \alpha_{2}=2$ and $\beta_{1}=3, \beta_{2}=4$. A computation shows that

$$
\operatorname{det}\left(\varphi^{\prime}\left(x_{1}, x_{2}\right)\right)=\frac{2 \sqrt{x_{2}^{2}+x_{1}^{4}} x_{2}^{2}+x_{1}^{2} x_{2}^{2}+4 x_{1}^{6}}{\sqrt{x_{2}^{2}+x_{1}^{4}}} \neq 0, \quad\left(x_{1}, x_{2}\right) \neq(0,0)
$$

and so (H2) holds. On the other hand, the discriminant of the quadratic form

$$
\left(h_{1}, h_{2}\right) \mapsto \operatorname{det}\left(\varphi^{\prime \prime}\left(x_{1}, x_{2}\right)\left(h_{1}, h_{2}\right)\right)
$$

is

$$
\frac{-8 \sqrt{x_{2}^{2}+x_{1}^{4}} x_{2}^{2}-8 \sqrt{x_{2}^{2}+x_{1}^{4}} x_{1}^{4}+4 x_{1}^{6}}{\left(x_{2}^{2}+x_{1}^{4}\right)^{3}}<0, \quad\left(x_{1}, x_{2}\right) \neq(0,0)
$$

so that (H3) holds.

REFERENCES

[C] M. Christ, Endpoint bounds for singular fractional integral operators, UCLA preprint, 1988.
[D-G] S. W. Drury and K. Guo, Convolution estimates related to surfaces of half the ambient dimension, Math. Proc. Cambridge Philos. Soc. 110 (1991), 151-159.
[F-G-U] E. Ferreyra, T. Godoy and M. Urciuolo, The type set for some measures on $\mathbb{R}^{2 n}$ with n-dimensional support, Czech Math. J., to appear.
[O] D. Oberlin, Convolution estimates for some measures on curves, Proc. Amer. Math. Soc. 99 (1987), 56-60.
[R] F. Ricci, Limitatezza $L^{p}-L^{q}$ per operatori di convoluzione definiti da misure singolari in \mathbb{R}^{n}, Boll. Un. Mat. Ital. A (7) 11 (1997), 237-252.
[Se] S. Secco, Fractional integration along homogeneous curves in \mathbb{R}^{3}, Math. Scand. 85 (1999), 259-270.
[S] E. M. Stein, Harmonic Analysis. Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Univ. Press, Princeton, NJ, 1993.
[St] -, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, NJ, 1970.

FaMAF, Universidad Nacional de Córdoba
CIEM
Ciudad Universitaria
5000 Córdoba, Argentina
E-mail: eferrey@mate.uncor.edu godoy@mate.uncor.edu urciuolo@mate.uncor.edu

Received 12 July 2001;
revised 28 February 2002

[^0]: 2000 Mathematics Subject Classification: Primary 42B15; Secondary 42B20, 44A35.
 Key words and phrases: L^{p} improving measures, convolution operators.
 Research partially supported by Agencia Córdoba Ciencia, CONICET and SECYTUNC.

