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ON THE NONLINEAR NEUMANN PROBLEM AT RESONANCE

WITH CRITICAL SOBOLEV NONLINEARITY

BY

J. CHABROWSKI (Brisbane) and SHUSEN YAN (Sydney)

Abstract. We consider the Neumann problem for the equation −∆u − λu =
Q(x)|u|2

∗

−2u, u ∈ H1(Ω), where Q is a positive and continuous coefficient on Ω and
λ is a parameter between two consecutive eigenvalues λk−1 and λk. Applying a min-max
principle based on topological linking we prove the existence of a solution.

1. Introduction. In this paper we are concerned with the semilinear
Neumann problem







−∆u− λu = Q(x)|u|2
∗−2u in Ω,

∂

∂ν
u(x) = 0 on ∂Ω,

(1.1)

where Ω ⊂ R
N is a bounded domain with a smooth boundary ∂Ω and

ν is the unit outward normal at the boundary ∂Ω. The coefficient Q is
continuous and positive on Ω and 2∗ = 2N/(N − 2), N ≥ 3, denotes the
critical Sobolev exponent. The parameter λ satisfies the inequality

λk−1 < λ < λk(1.2)

for some k ≥ 2. Here {λk}, k = 1, 2, . . . , denotes the sequence of eigenvalues
for the Neumann problem

{

−∆u = λu in Ω,
∂

∂ν
u(x) = 0 on ∂Ω.

Each eigenvalue is repeated according to its multiplicity. It is well known
that λ1 = 0 < λ2 ≤ λ3 ≤ . . . and the eigenspace corresponding to λ1 = 0
consists of constant functions.
If the parameter λ does not interfere with the spectrum of the opera-

tor −∆, then problem (1.1) can be written in the form






−∆u+ λu = Q(x)|u|2
∗−2u in Ω,

∂

∂ν
u(x) = 0 on ∂Ω,

(1.3)
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where λ > 0. Problem (1.3) has an extensive literature, specially in the case
Q(x) ≡ 1 on Ω; we refer to papers [1]–[6], [12], [19], [20]–[24], [16]–[18].
Solutions of (1.3) were obtained as minimizers of the variational problem

mλ = inf
{ \
Ω

(|∇u|2 + λu2) dx; u ∈ H1(Ω),
\
Ω

Q(x)|u|2
∗

dx = 1
}

.(1.4)

A suitable multiple of a minimizer for mλ is a solution of problem (1.3).
These solutions are called the least energy solutions. The least energy solu-
tions can be chosen to be positive and have a tendency to concentrate at
the most curved part of the boundary of ∂Ω as λ→∞. Some extensions of
these results to problem (1.3) with Q(x) 6≡ const can be found in [8]–[10].
To describe these results and supply some motivation for our paper we

need some notations. Let QM = maxx∈Ω Q(x) and Qm = maxx∈∂Ω Q(x).
By H(y) we denote the mean curvature of ∂Ω at y ∈ ∂Ω with respect to
the inner normal to ∂Ω. The existence of least energy solutions has been
examined in papers [10] and [8]. In particular, if QM ≤ 2

2/(N−2)Qm and
Qm = Q(y) with y ∈ ∂Ω satisfying

|Q(x)−Q(y)| = o(|x− y|) for x near y,(1.5)

then problem (1.1) has a least energy solution for every λ > 0. If QM >
22/(N−2)Qm, then there exists Λ > 0 such that problem (1.1) has a least
energy solution for each 0 < λ ≤ Λ and no least energy solution for λ > Λ.
A similar situation occurs if

{y; y ∈ ∂Ω, Q(y) = Qm} ⊂ {y; y ∈ ∂Ω,H(y) < 0}.

In this case, if QM ≤ 2
2/(N−2)Qm, there exists a constant Λ > 0 such that

problem (1.1) has a least energy solution for each 0 < λ ≤ Λ and no least
energy solution for each λ > Λ. The existence of positive solutions in the case
λ = 0 has been established in the paper [9]. In this case positive solutions
exist provided Q changes sign and

T
Ω Q(x) dx < 0. If λ interferes with the

spectrum of −∆, then the method of the constrained minimization (1.4)
breaks down as the quadratic functional appearing in mλ changes sign. To
obtain the existence of solutions in this case we apply a min-max method
based on topological linking [25]. The main existence results of this paper
are contained in Section 3: Theorems 3.3 and 3.4. To apply the topological
linking we need to investigate Palais–Smale sequences of the variational
functional for problem (1.1).
We recall that a C1 functional φ : X → R on a Banach space X satisfies

the Palais–Smale condition at a level c ((PS)c condition for short) if each
sequence {xn} ⊂ X such that

(∗) φ(xn)→ c,
(∗∗) φ′(xn)→ 0 in X

∗

is relatively compact in X.
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Finally, any sequence {xn} satisfying (∗) and (∗∗) is called a Palais–
Smale sequence at level c (a (PS)c sequence for short).

Throughout this paper we denote strong convergence by “→” and weak
convergence by “⇀”. The norms in the Lebesgue spaces Lq(Ω) are denoted
by ‖ · ‖q. By H

1(Ω) we denote the standard Sobolev space on Ω equipped
with the norm

‖u‖2 =
\
Ω

(|∇u|2 + u2) dx.

The paper is organized as follows. In Section 2 we determine the energy
level of the variational functional for (1.1) below which the Palais–Smale
condition holds. The approach is based on the P. L. Lions concentration-
compactness principle. Section 3 is devoted to the existence results for (1.1).
First we verify that the variational functional for (1.1) has the geometry of
topological linking. We use instantons to show that at a min-max level the
Palais–Smale condition holds. This restricts the validity of the existence
results to dimensions N ≥ 5 in Theorem 3.3 and N ≥ 7 in Theorem 3.4.

2. The Palais–Smale condition. Solutions to problem (1.1) will be
found as critical points of the variational functional

Jλ(u) =
1

2

\
Ω

(|∇u|2 − λu2) dx−
1

2∗

\
Ω

Q(x)|u|2
∗

dx

for u ∈ H1(Ω).

Lemma 2.1. Let {um} ⊂ H
1(Ω) be such that Jλ(um) → c and J

′
λ(um)

→ 0 in H−1(Ω). Then the sequence {um} is bounded in H
1(Ω).

Proof. We argue by contradiction. Assume that ‖um‖ → ∞. We set
vm = um/‖um‖. Then\

Ω

(∇um∇φ− λumφ) dx−
\
Ω

Q(x)|um|
2∗−2umφdx→ 0(2.1)

as m → ∞ for each φ ∈ H1(Ω). Since ‖vm‖ = 1 for each m, we may
assume that vm ⇀ v in H

1(Ω) and vm → v in L
p(Ω) for each 2 ≤ p < 2∗.

Consequently, we deduce from (2.1) that\
Ω

Q(x)|v|2
∗−2vφ dx = 0(2.2)

for each φ ∈ H1(Ω). This implies that v = 0 a.e. on Ω. Since {um} is a
Palais–Smale sequence we see that

1

2

\
Ω

(|∇vm|
2 − λv2m) dx−

1

2∗
‖um‖

2∗−2
\
Ω

Q(x)|vm|
2∗ dx→ 0(2.3)
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and \
Ω

(|∇vm|
2 − λv2m) dx− ‖um‖

2∗−2
\
Ω

Q(x)|vm|
2∗ dx→ 0(2.4)

as m→∞. Since vm → 0 in L
2(Ω), (2.3) and (2.4) can be rewritten as

1

2

\
Ω

|∇vm|
2 dx−

1

2∗
‖um‖

2∗−2
\
Ω

Q(x)|vm|
2∗ dx→ 0

and \
Ω

|∇vm|
2 dx− ‖um‖

2∗−2
\
Ω

Q(x)|vm|
2∗ dx→ 0.

This is only possible when
T
Ω |∇vm|

2 dx→ 0 and ‖um‖
2∗−2

T
Ω Q(x)|vm|

2∗ dx
→ 0, which is impossible.

Proposition 2.2. (i) Let QM ≤ 2
2/(N−2)Qm. Then Jλ satisfies the

(PS)c condition with

c <
SN/2

2NQ
(N−2)/2
m

.

(ii) Let QM > 2
2/(N−2)Qm. Then Jλ satisfies the (PS)c condition with

c <
SN/2

NQ
(N−2)/2
M

.

Proof. (i) Let {um} be a (PS)c sequence with

c <
SN/2

2NQ
(N−2)/2
m

and J ′λ(um)→ 0 in H
−1(Ω). By Lemma 2.1, {um} is bounded in H

1(Ω) and
we may assume that um ⇀ u in H

1(Ω) and um → u in L
p(Ω), 2 ≤ p < 2∗.

By the concentration-compactness principle [14], we may assume that

|um|
2∗ ⇀ |u|2

∗

+
∑

j∈J

νjδxj and |∇um|
2 ⇀ |∇u|2 +

∑

j∈J

µjδxj

in the sense of measure, where νj > 0, µj > 0 are constants and the set J is
at most countable. Moreover,

if xj ∈ Ω, then Sν
2/2∗

j ≤ µj,

if xj ∈ ∂Ω, then
Sν
2/2∗

j

22/N
≤ µj.

Fix xj . Using a family of test functions concentrating at xj we check that
Q(xj)νj = µj , j ∈ J . Hence, if νj > 0, then

SN/2

Q(xj)N/2
≤ νj if xj ∈ Ω,(2.5)
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SN/2

2Q(xj)N/2
≤ νj if xj ∈ ∂Ω.(2.6)

We now write

Jλ(um)−
1

2
〈J ′λ(um), um〉 =

1

N

\
Ω

Q(x)|um|
2∗ dx

and letting m→∞ we get

c ≥
1

N

\
Ω

Q(x)|u|2
∗

dx+
1

N

∑

j∈J

Q(xj)νj.

If νj > 0 for some j ∈ J , then

c ≥
SN/2

NQ(xj)N/2
Q(xj) ≥

SN/2

NQ
(N−2)/2
M

≥
SN/2

2NQ
(N−2)/2
m

if xj ∈ Ω,

c ≥
SN/2

2NQ(xj)N/2
Q(xj) ≥

SN/2

2NQ
(N−2)/2
m

if xj ∈ ∂Ω.

We see that in both cases we obtain a contradiction. This yields um → u in
L2
∗

(Ω) and in L2(Ω). Using the fact that J ′λ(um)→ 0 in H
−1(Ω), it is easy

to show that ∇um → ∇u in L
2(Ω) and the result follows.

In a similar manner we prove (ii).

3. Existence of solutions of problem (1.1). Throughout this section
we assume that λ satisfies (1.2). Let {ej} be the sequence of eigenfunctions
corresponding to {λj} and set E

− = span{e1, . . . , ek−1}. We have the or-
thogonal decomposition of H1(Ω),

H1(Ω) = E− ⊕ E+.

Let z◦ ∈ E
+ − {0} and define the set

M = {u ∈ H1(Ω); u = v + sz◦, v ∈ E
−, s ≥ 0 and ‖u‖ ≤ R}

(see [25, Section 2.7]).

The proof of the following result is standard.

Proposition 3.1. There exist α > 0, ̺ > 0 and R > ̺ (R depending
on z◦) such that

Jλ(u)

{

≥ α for all u ∈ E+ ∩ ∂B(0, ̺),

≤ 0 for all u ∈ ∂M .

Let

U(x) = cN/(1 + |x|
2)(N−2)/2,

where cN = (N(N − 2))
(N−2)/4. It is known that ‖∇U‖22 = ‖U‖

2∗
2∗ = S

N/2.
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For ε > 0 and y ∈ R
N we set

Uε,y(x) = U

(

x− y

ε

)

=
cNε
(N−2)/2

(ε2 + |x|2)(N−2)/2
.

Our argument is based on topological linking. Towards this end we define

Zε = E
− ⊕ RUε,y = E

− ⊕ RU+ε,y,

where U+ε,y denotes the projection of Uε,y onto E
+. From now on we use

z◦ = U
+
ε,y in the definition of M .

Proposition 3.2. (i) Let N ≥ 5. Suppose that QM ≤ 2
2/(N−2)Qm and

that Q(y) = Qm for some y ∈ ∂Ω with H(y) > 0 and

|Q(x)−Q(y)| = o(|x− y|) for x near y.

Then

sup
u∈M
Jλ(u) <

SN/2

2NQ
(N−2)/2
m

(3.1)

for ε > 0 sufficiently small.

(ii) Let N ≥ 7. Suppose that QM > 2
2/(N−2)Qm and that DiQ(y) = 0,

D2ijQ(y) = 0, i, j = 1, . . . , N , for some y ∈ {x; Q(x) = QM}. Then

sup
u∈M
Jλ(u) <

SN/2

NQ
(N−2)/2
M

.(3.2)

Proof. (i) We follow, with some modifications, the argument on pp. 52–
53 in [25]. If u 6= 0, then

max
t≥0
Jλ(tu) =

1

N
·
{
T
Ω(|∇u|

2 − λu2) dx}N/2

{
T
Ω Q(x)|u|

2∗ dx}(N−2)/2

whenever the integral in the numerator is positive, and the maximum is
0 otherwise. In what follows we always denote by Ci positive constants
independent of ε. It is clear that if

mε = sup
u∈Zε, ‖u‖2∗,Q=1

\
RN

(|∇u|2 − λu2) dx <
S

22/NQ
(N−2)/N
m

,(3.3)

then

sup
Zε

Jλ(u) <
SN/2

2NQ
(N−2)/2
m

and this obviously implies (i). For simplicity we assume that y = 0 and set
Uε = Uε,0. If u ∈ Zε and ‖u‖2∗,Q = 1, then

u = u− + sUε = (u
− + sU−ε ) + sU

+
ε ,



NONLINEAR NEUMANN PROBLEM AT RESONANCE 147

where U−ε denotes the projection of Uε onto E
−. We now observe that\

Ω

(|∇U−ε |
2 − λ(U−ε )

2) dx ≤ 0,

so \
Ω

|∇U−ε |
2 dx ≤ λ

\
Ω

(U−ε )
2 dx ≤ λ

\
Ω

U2ε dx = O(ε
2).

Therefore

‖U−ε ‖2∗ ≤ C2(‖∇U
−
ε ‖2 + ‖U

−
ε ‖2)→ 0.

From this we deduce that there exists a constant C3 > 0 such that
0 < s ≤ C3 and ‖u

−‖2∗ ≤ C3. Since all norms in E
− are equivalent, we

have ‖u−‖∞ ≤ C‖u
−‖2∗ ≤ C

′. It follows from the convexity of ‖ · ‖2
∗

2∗,Q that

1 = ‖u‖2
∗

2∗,Q ≥ ‖sUε‖
2∗

2∗,Q + 2
∗
\
Ω

Q(x)u−(sUε)
2∗−1 dx

≥ ‖sUε‖
2∗

2∗,Q − C4‖Uε‖
2∗−1
2∗−1.

This implies that

‖sUε‖
2∗

2∗,Q ≤ 1 + C5ε
(N−2)/2.(3.4)

Since all norms in E− are equivalent we see that\
Ω

(∇u−∇Uε − λu
−Uε) dx ≤ C5(‖∇Uε‖1 + ‖Uε‖1)‖u

−‖2(3.5)

= O(ε(N−2)/2)‖u−‖2.

It follows from the regularity of Q at 0 that

‖Uε‖
2∗

2∗,Q = Qm
\
Ω

U2
∗

ε dx+ o(ε).(3.6)

By (3.5) we have\
Ω

(|∇u|2−λu2) dx ≤ (λk−1 − λ)
\
Ω

|u−|2 dx+O(ε(N−2)/2)‖u−‖2(3.7)

+ s2
\
Ω

(|∇Uε|
2 − λU2ε ) dx

= − (λ− λk−1)‖u
−‖22 +O(ε

(N−2)/2)‖u−‖2

+ s2
\
Ω

(|∇Uε|
2 − λU2ε ) dx

= − (λ− λk−1)‖u
−‖22 +O(ε

(N−2)/2)‖u−‖2

+

T
Ω(|∇Uε|

2 − λU2ε ) dx

(
T
Ω Q(x)U

2∗
ε dx)

2/2∗

(

s2
∗

\
Ω

Q(x)U2
∗

ε dx
)2/2∗

.



148 J. CHABROWSKI AND S. S. YAN

To proceed further, we use the following asymptotic formula: if we let

Eλ(u) =

T
Ω(|∇u|

2 − λu2) dx

(
T
Ω Q(x)|u|

2∗ dx)2/2∗
,

then

Eλ(Uε) =
S

22/N
−ANH(y)ε− aNλε

2 +O(ε2) + o(λε2) if N ≥ 5,(3.8)

where AN > 0 and aN > 0 are constants depending on N . It follows from
(3.6)–(3.8) that if N ≥ 5 then

mε ≤ − (λ− λk−1)‖u
−‖22 +O(ε

(N−2)/2‖u−‖2)

+

[

S

22/N
Q(N−2)/Nm −ANQ

−(N−2)/N
m H(y)ε+ o(ε)

]

(1 + C4ε
(N−2)/2)

<
S

22/NQ
(N−2)/N
m

for ε sufficiently small.

(ii) The only change is in the estimation of mε. We have

mε ≤ − (λ− λk−1)‖u
−‖22 +O(ε

(N−2)/2)‖u−‖2

+

T
Ω(|∇Uε|

2 − λU2ε ) dx

(
T
Ω Q(x)U

2∗
ε dx)

2/2∗

( \
Ω

s2
∗

Q(x)U2
∗

ε dx
)2/2∗

≤ − (λ− λk−1)‖u
−‖22 +O(ε

(N−2)/2)‖u−‖2

+
K1 +O(ε

N−2)− λcε2

(K2QM + o(ε2))(N−2)/N

( \
Ω

s2
∗

Q(x)U2
∗

ε dx
)2/2∗

= − (λ− λk−1)‖u
−‖22 +O(ε

(N−2)/2)‖u−‖2

+ (K1+O(ε
N−2)−λcε2)((K2Qm)

−(N−2)/N +o(ε2))(1+C4ε
(N−2)/2)

≤
S

Q
(N−2)/N
M

+O(ε(N−2)/2)− cλε2,

where c > 0 is a constant independent of ε, K1 =
T
RN
|∇U |2 dx and K2 =T

RN
U2
∗

dx. Since S = K1/K
(N−2)/2
2 , by taking ε sufficiently small the result

follows.

Applying a min-max theorem based on topological linking [25], we derive
the following existence result:

Theorem 3.3. Under assumptions (i) and (ii) of Proposition 3.2 prob-
lem (1.1) admits a nontrivial solution.
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By a similar argument we can establish the existence result in the case
when ∂Ω has a flat part. We need the following assumption:

(F) D(a, 0) ⊂ ∂Ω for some a > 0, where D(a, 0) = B(0, a) ∩ {xN = 0}
and {x; x ∈ ∂Ω, Q(x) = Qm} ⊂ D(a, 0).

Theorem 3.4. Let N ≥ 5. Suppose that (F) holds and that DiQ(y) = 0,
DijQ(y) = 0, i, j = 1, . . . , N , for some y ∈ ∂Ω with Qm = Q(y). Then
problem (1.1) admits a nontrivial solution.

Proof. Without loss of generality we may assume that y = 0. It is suffi-
cient to notice thatT

Ω(|∇Uε|
2 − λU2ε ) dx

(
T
Ω Q(x)U

2∗
ε dx)

2/2∗
=

K2/2 +O(ε
N−2)− λ

T
Ω U
2
ε dx

((K2/2)Qm +O(εN ) + o(ε2))(N−2)/N
.

As is easy to see, the above expression is strictly less than S/(22/NQ
(N−2)/N
m )

for ε sufficiently small. The remaining part of the proof is the same as in
Theorem 3.3.
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