COLLOQUIUM MATHEMATICUM

ON THE NONLINEAR NEUMANN PROBLEM AT RESONANCE WITH CRITICAL SOBOLEV NONLINEARITY

BY

J. CHABROWSKI (Brisbane) and SHUSEN YAN (Sydney)

Abstract

We consider the Neumann problem for the equation $-\Delta u-\lambda u=$ $Q(x)|u|^{2^{*}-2} u, u \in H^{1}(\Omega)$, where Q is a positive and continuous coefficient on $\bar{\Omega}$ and λ is a parameter between two consecutive eigenvalues λ_{k-1} and λ_{k}. Applying a min-max principle based on topological linking we prove the existence of a solution.

1. Introduction. In this paper we are concerned with the semilinear Neumann problem

$$
\begin{cases}-\Delta u-\lambda u=Q(x)|u|^{2^{*}-2} u & \text { in } \Omega, \tag{1.1}\\ \frac{\partial}{\partial \nu} u(x)=0 & \text { on } \partial \Omega,\end{cases}
$$

where $\Omega \subset \mathbb{R}^{N}$ is a bounded domain with a smooth boundary $\partial \Omega$ and ν is the unit outward normal at the boundary $\partial \Omega$. The coefficient Q is continuous and positive on Ω and $2^{*}=2 N /(N-2), N \geq 3$, denotes the critical Sobolev exponent. The parameter λ satisfies the inequality

$$
\begin{equation*}
\lambda_{k-1}<\lambda<\lambda_{k} \tag{1.2}
\end{equation*}
$$

for some $k \geq 2$. Here $\left\{\lambda_{k}\right\}, k=1,2, \ldots$, denotes the sequence of eigenvalues for the Neumann problem

$$
\begin{cases}-\Delta u=\lambda u & \text { in } \Omega, \\ \frac{\partial}{\partial \nu} u(x)=0 & \text { on } \partial \Omega .\end{cases}
$$

Each eigenvalue is repeated according to its multiplicity. It is well known that $\lambda_{1}=0<\lambda_{2} \leq \lambda_{3} \leq \ldots$ and the eigenspace corresponding to $\lambda_{1}=0$ consists of constant functions.

If the parameter λ does not interfere with the spectrum of the operator $-\Delta$, then problem (1.1) can be written in the form

$$
\begin{cases}-\Delta u+\lambda u=Q(x)|u|^{2^{*}-2} u & \text { in } \Omega, \tag{1.3}\\ \frac{\partial}{\partial \nu} u(x)=0 & \text { on } \partial \Omega,\end{cases}
$$

2000 Mathematics Subject Classification: 35B33, 35J65, 35J20.
Key words and phrases: Neumann problem, critical Sobolev exponent, linking.
where $\lambda>0$. Problem (1.3) has an extensive literature, specially in the case $Q(x) \equiv 1$ on Ω; we refer to papers [1]-[6], [12], [19], [20]-[24], [16]-[18]. Solutions of (1.3) were obtained as minimizers of the variational problem

$$
\begin{equation*}
m_{\lambda}=\inf \left\{\int_{\Omega}\left(|\nabla u|^{2}+\lambda u^{2}\right) d x ; u \in H^{1}(\Omega), \int_{\Omega} Q(x)|u|^{2^{*}} d x=1\right\} \tag{1.4}
\end{equation*}
$$

A suitable multiple of a minimizer for m_{λ} is a solution of problem (1.3). These solutions are called the least energy solutions. The least energy solutions can be chosen to be positive and have a tendency to concentrate at the most curved part of the boundary of $\partial \Omega$ as $\lambda \rightarrow \infty$. Some extensions of these results to problem (1.3) with $Q(x) \not \equiv$ const can be found in [8]-[10].

To describe these results and supply some motivation for our paper we need some notations. Let $Q_{M}=\max _{x \in \bar{\Omega}} Q(x)$ and $Q_{m}=\max _{x \in \partial \Omega} Q(x)$. By $H(y)$ we denote the mean curvature of $\partial \Omega$ at $y \in \partial \Omega$ with respect to the inner normal to $\partial \Omega$. The existence of least energy solutions has been examined in papers [10] and [8]. In particular, if $Q_{M} \leq 2^{2 /(N-2)} Q_{m}$ and $Q_{m}=Q(y)$ with $y \in \partial \Omega$ satisfying

$$
\begin{equation*}
|Q(x)-Q(y)|=o(|x-y|) \quad \text { for } x \text { near } y \tag{1.5}
\end{equation*}
$$

then problem (1.1) has a least energy solution for every $\lambda>0$. If $Q_{M}>$ $2^{2 /(N-2)} Q_{m}$, then there exists $\Lambda>0$ such that problem (1.1) has a least energy solution for each $0<\lambda \leq \Lambda$ and no least energy solution for $\lambda>\Lambda$. A similar situation occurs if

$$
\left\{y ; y \in \partial \Omega, Q(y)=Q_{m}\right\} \subset\{y ; y \in \partial \Omega, H(y)<0\}
$$

In this case, if $Q_{M} \leq 2^{2 /(N-2)} Q_{m}$, there exists a constant $\bar{\Lambda}>0$ such that problem (1.1) has a least energy solution for each $0<\lambda \leq \bar{\Lambda}$ and no least energy solution for each $\lambda>\bar{\Lambda}$. The existence of positive solutions in the case $\lambda=0$ has been established in the paper [9]. In this case positive solutions exist provided Q changes sign and $\int_{\Omega} Q(x) d x<0$. If λ interferes with the spectrum of $-\Delta$, then the method of the constrained minimization (1.4) breaks down as the quadratic functional appearing in m_{λ} changes sign. To obtain the existence of solutions in this case we apply a min-max method based on topological linking [25]. The main existence results of this paper are contained in Section 3: Theorems 3.3 and 3.4. To apply the topological linking we need to investigate Palais-Smale sequences of the variational functional for problem (1.1).

We recall that a C^{1} functional $\phi: X \rightarrow \mathbb{R}$ on a Banach space X satisfies the Palais-Smale condition at a level $c\left((\mathrm{PS})_{c}\right.$ condition for short) if each sequence $\left\{x_{n}\right\} \subset X$ such that

$$
\begin{aligned}
(*) \phi\left(x_{n}\right) & \rightarrow c, \\
(* *) \phi^{\prime}\left(x_{n}\right) & \rightarrow 0 \text { in } X^{*}
\end{aligned}
$$

is relatively compact in X.

Finally, any sequence $\left\{x_{n}\right\}$ satisfying $(*)$ and $(* *)$ is called a PalaisSmale sequence at level $c\left(\mathrm{a}(\mathrm{PS})_{c}\right.$ sequence for short).

Throughout this paper we denote strong convergence by " \rightarrow " and weak convergence by " $\boldsymbol{}$ ". The norms in the Lebesgue spaces $L^{q}(\Omega)$ are denoted by $\|\cdot\|_{q}$. By $H^{1}(\Omega)$ we denote the standard Sobolev space on Ω equipped with the norm

$$
\|u\|^{2}=\int_{\Omega}\left(|\nabla u|^{2}+u^{2}\right) d x .
$$

The paper is organized as follows. In Section 2 we determine the energy level of the variational functional for (1.1) below which the Palais-Smale condition holds. The approach is based on the P. L. Lions concentrationcompactness principle. Section 3 is devoted to the existence results for (1.1). First we verify that the variational functional for (1.1) has the geometry of topological linking. We use instantons to show that at a min-max level the Palais-Smale condition holds. This restricts the validity of the existence results to dimensions $N \geq 5$ in Theorem 3.3 and $N \geq 7$ in Theorem 3.4.
2. The Palais-Smale condition. Solutions to problem (1.1) will be found as critical points of the variational functional

$$
J_{\lambda}(u)=\frac{1}{2} \int_{\Omega}\left(|\nabla u|^{2}-\lambda u^{2}\right) d x-\frac{1}{2^{*}} \int_{\Omega} Q(x)|u|^{2^{*}} d x
$$

for $u \in H^{1}(\Omega)$.
Lemma 2.1. Let $\left\{u_{m}\right\} \subset H^{1}(\Omega)$ be such that $J_{\lambda}\left(u_{m}\right) \rightarrow c$ and $J_{\lambda}^{\prime}\left(u_{m}\right)$ $\rightarrow 0$ in $H^{-1}(\Omega)$. Then the sequence $\left\{u_{m}\right\}$ is bounded in $H^{1}(\Omega)$.

Proof. We argue by contradiction. Assume that $\left\|u_{m}\right\| \rightarrow \infty$. We set $v_{m}=u_{m} /\left\|u_{m}\right\|$. Then

$$
\begin{equation*}
\int_{\Omega}\left(\nabla u_{m} \nabla \phi-\lambda u_{m} \phi\right) d x-\int_{\Omega} Q(x)\left|u_{m}\right|^{2^{*}-2} u_{m} \phi d x \rightarrow 0 \tag{2.1}
\end{equation*}
$$

as $m \rightarrow \infty$ for each $\phi \in H^{1}(\Omega)$. Since $\left\|v_{m}\right\|=1$ for each m, we may assume that $v_{m} \rightharpoonup v$ in $H^{1}(\Omega)$ and $v_{m} \rightarrow v$ in $L^{p}(\Omega)$ for each $2 \leq p<2^{*}$. Consequently, we deduce from (2.1) that

$$
\begin{equation*}
\int_{\Omega} Q(x)|v|^{2^{*}-2} v \phi d x=0 \tag{2.2}
\end{equation*}
$$

for each $\phi \in H^{1}(\Omega)$. This implies that $v=0$ a.e. on Ω. Since $\left\{u_{m}\right\}$ is a Palais-Smale sequence we see that

$$
\begin{equation*}
\frac{1}{2} \int_{\Omega}\left(\left|\nabla v_{m}\right|^{2}-\lambda v_{m}^{2}\right) d x-\frac{1}{2^{*}}\left\|u_{m}\right\|^{2^{*}-2} \int_{\Omega} Q(x)\left|v_{m}\right|^{2^{*}} d x \rightarrow 0 \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{\Omega}\left(\left|\nabla v_{m}\right|^{2}-\lambda v_{m}^{2}\right) d x-\left\|u_{m}\right\|^{2^{*}-2} \int_{\Omega} Q(x)\left|v_{m}\right|^{2^{*}} d x \rightarrow 0 \tag{2.4}
\end{equation*}
$$

as $m \rightarrow \infty$. Since $v_{m} \rightarrow 0$ in $L^{2}(\Omega),(2.3)$ and (2.4) can be rewritten as

$$
\frac{1}{2} \int_{\Omega}\left|\nabla v_{m}\right|^{2} d x-\frac{1}{2^{*}}\left\|u_{m}\right\|^{2^{*}-2} \int_{\Omega} Q(x)\left|v_{m}\right|^{2^{*}} d x \rightarrow 0
$$

and

$$
\int_{\Omega}\left|\nabla v_{m}\right|^{2} d x-\left\|u_{m}\right\|^{2^{*}-2} \int_{\Omega} Q(x)\left|v_{m}\right|^{2^{*}} d x \rightarrow 0 .
$$

This is only possible when $\int_{\Omega}\left|\nabla v_{m}\right|^{2} d x \rightarrow 0$ and $\left\|u_{m}\right\|^{2^{*}-2} \int_{\Omega} Q(x)\left|v_{m}\right|^{2^{*}} d x$ $\rightarrow 0$, which is impossible.

Proposition 2.2. (i) Let $Q_{M} \leq 2^{2 /(N-2)} Q_{m}$. Then J_{λ} satisfies the $(\mathrm{PS})_{c}$ condition with

$$
c<\frac{S^{N / 2}}{2 N Q_{m}^{(N-2) / 2}}
$$

(ii) Let $Q_{M}>2^{2 /(N-2)} Q_{m}$. Then J_{λ} satisfies the $(\mathrm{PS})_{c}$ condition with

$$
c<\frac{S^{N / 2}}{N Q_{M}^{(N-2) / 2}}
$$

Proof. (i) Let $\left\{u_{m}\right\}$ be a $(\mathrm{PS})_{c}$ sequence with

$$
c<\frac{S^{N / 2}}{2 N Q_{m}^{(N-2) / 2}}
$$

and $J_{\lambda}^{\prime}\left(u_{m}\right) \rightarrow 0$ in $H^{-1}(\Omega)$. By Lemma 2.1, $\left\{u_{m}\right\}$ is bounded in $H^{1}(\Omega)$ and we may assume that $u_{m} \rightharpoonup u$ in $H^{1}(\Omega)$ and $u_{m} \rightarrow u$ in $L^{p}(\Omega), 2 \leq p<2^{*}$. By the concentration-compactness principle [14], we may assume that

$$
\left|u_{m}\right|^{2^{*}} \rightharpoonup|u|^{2^{*}}+\sum_{j \in J} \nu_{j} \delta_{x_{j}} \quad \text { and } \quad\left|\nabla u_{m}\right|^{2} \rightharpoonup|\nabla u|^{2}+\sum_{j \in J} \mu_{j} \delta_{x_{j}}
$$

in the sense of measure, where $\nu_{j}>0, \mu_{j}>0$ are constants and the set J is at most countable. Moreover,

$$
\begin{aligned}
& \text { if } \quad x_{j} \in \Omega, \quad \text { then } \quad S \nu_{j}^{2 / 2^{*}} \leq \mu_{j} \\
& \text { if } \quad x_{j} \in \partial \Omega, \quad \text { then } \quad \frac{S \nu_{j}^{2 / 2^{*}}}{2^{2 / N}} \leq \mu_{j}
\end{aligned}
$$

Fix x_{j}. Using a family of test functions concentrating at x_{j} we check that $Q\left(x_{j}\right) \nu_{j}=\mu_{j}, j \in J$. Hence, if $\nu_{j}>0$, then

$$
\begin{equation*}
\frac{S^{N / 2}}{Q\left(x_{j}\right)^{N / 2}} \leq \nu_{j} \quad \text { if } x_{j} \in \Omega \tag{2.5}
\end{equation*}
$$

$$
\begin{equation*}
\frac{S^{N / 2}}{2 Q\left(x_{j}\right)^{N / 2}} \leq \nu_{j} \quad \text { if } x_{j} \in \partial \Omega \tag{2.6}
\end{equation*}
$$

We now write

$$
J_{\lambda}\left(u_{m}\right)-\frac{1}{2}\left\langle J_{\lambda}^{\prime}\left(u_{m}\right), u_{m}\right\rangle=\frac{1}{N} \int_{\Omega} Q(x)\left|u_{m}\right|^{2^{*}} d x
$$

and letting $m \rightarrow \infty$ we get

$$
c \geq \frac{1}{N} \int_{\Omega} Q(x)|u|^{2^{*}} d x+\frac{1}{N} \sum_{j \in J} Q\left(x_{j}\right) \nu_{j}
$$

If $\nu_{j}>0$ for some $j \in J$, then

$$
\begin{array}{ll}
c \geq \frac{S^{N / 2}}{N Q\left(x_{j}\right)^{N / 2}} Q\left(x_{j}\right) \geq \frac{S^{N / 2}}{N Q_{M}^{(N-2) / 2}} \geq \frac{S^{N / 2}}{2 N Q_{m}^{(N-2) / 2}} & \text { if } x_{j} \in \Omega \\
c \geq \frac{S^{N / 2}}{2 N Q\left(x_{j}\right)^{N / 2}} Q\left(x_{j}\right) \geq \frac{S^{N / 2}}{2 N Q_{m}^{(N-2) / 2}} & \text { if } x_{j} \in \partial \Omega
\end{array}
$$

We see that in both cases we obtain a contradiction. This yields $u_{m} \rightarrow u$ in $L^{2^{*}}(\Omega)$ and in $L^{2}(\Omega)$. Using the fact that $J_{\lambda}^{\prime}\left(u_{m}\right) \rightarrow 0$ in $H^{-1}(\Omega)$, it is easy to show that $\nabla u_{m} \rightarrow \nabla u$ in $L^{2}(\Omega)$ and the result follows.

In a similar manner we prove (ii).
3. Existence of solutions of problem (1.1). Throughout this section we assume that λ satisfies (1.2). Let $\left\{e_{j}\right\}$ be the sequence of eigenfunctions corresponding to $\left\{\lambda_{j}\right\}$ and set $E^{-}=\operatorname{span}\left\{e_{1}, \ldots, e_{k-1}\right\}$. We have the orthogonal decomposition of $H^{1}(\Omega)$,

$$
H^{1}(\Omega)=E^{-} \oplus E^{+}
$$

Let $z_{\circ} \in E^{+}-\{0\}$ and define the set

$$
M=\left\{u \in H^{1}(\Omega) ; u=v+s z_{0}, v \in E^{-}, s \geq 0 \text { and }\|u\| \leq R\right\}
$$

(see [25, Section 2.7]).
The proof of the following result is standard.
Proposition 3.1. There exist $\alpha>0, \varrho>0$ and $R>\varrho(R$ depending on z_{0}) such that

$$
J_{\lambda}(u) \begin{cases}\geq \alpha & \text { for all } u \in E^{+} \cap \partial B(0, \varrho) \\ \leq 0 & \text { for all } u \in \partial M\end{cases}
$$

Let

$$
U(x)=c_{N} /\left(1+|x|^{2}\right)^{(N-2) / 2}
$$

where $c_{N}=(N(N-2))^{(N-2) / 4}$. It is known that $\|\nabla U\|_{2}^{2}=\|U\|_{2^{*}}^{2^{*}}=S^{N / 2}$.

For $\varepsilon>0$ and $y \in \mathbb{R}^{N}$ we set

$$
U_{\varepsilon, y}(x)=U\left(\frac{x-y}{\varepsilon}\right)=\frac{c_{N} \varepsilon^{(N-2) / 2}}{\left(\varepsilon^{2}+|x|^{2}\right)^{(N-2) / 2}}
$$

Our argument is based on topological linking. Towards this end we define

$$
Z_{\varepsilon}=E^{-} \oplus \mathbb{R} U_{\varepsilon, y}=E^{-} \oplus \mathbb{R} U_{\varepsilon, y}^{+}
$$

where $U_{\varepsilon, y}^{+}$denotes the projection of $U_{\varepsilon, y}$ onto E^{+}. From now on we use $z_{o}=U_{\varepsilon, y}^{+}$in the definition of M.

Proposition 3.2. (i) Let $N \geq 5$. Suppose that $Q_{M} \leq 2^{2 /(N-2)} Q_{m}$ and that $Q(y)=Q_{m}$ for some $y \in \partial \Omega$ with $H(y)>0$ and

$$
|Q(x)-Q(y)|=o(|x-y|) \quad \text { for } x \text { near } y
$$

Then

$$
\begin{equation*}
\sup _{u \in M} J_{\lambda}(u)<\frac{S^{N / 2}}{2 N Q_{m}^{(N-2) / 2}} \tag{3.1}
\end{equation*}
$$

for $\varepsilon>0$ sufficiently small.
(ii) Let $N \geq 7$. Suppose that $Q_{M}>2^{2 /(N-2)} Q_{m}$ and that $D_{i} Q(y)=0$, $D_{i j}^{2} Q(y)=0, i, j=1, \ldots, N$, for some $y \in\left\{x ; Q(x)=Q_{M}\right\}$. Then

$$
\begin{equation*}
\sup _{u \in M} J_{\lambda}(u)<\frac{S^{N / 2}}{N Q_{M}^{(N-2) / 2}} \tag{3.2}
\end{equation*}
$$

Proof. (i) We follow, with some modifications, the argument on pp. 5253 in [25]. If $u \neq 0$, then

$$
\max _{t \geq 0} J_{\lambda}(t u)=\frac{1}{N} \cdot \frac{\left\{\int_{\Omega}\left(|\nabla u|^{2}-\lambda u^{2}\right) d x\right\}^{N / 2}}{\left\{\int_{\Omega} Q(x)|u|^{2^{*}} d x\right\}^{(N-2) / 2}}
$$

whenever the integral in the numerator is positive, and the maximum is 0 otherwise. In what follows we always denote by C_{i} positive constants independent of ε. It is clear that if

$$
\begin{equation*}
m_{\varepsilon}=\sup _{u \in Z_{\varepsilon},\|u\|_{2^{*}, Q}=1} \int_{\mathbb{R}^{N}}\left(|\nabla u|^{2}-\lambda u^{2}\right) d x<\frac{S}{2^{2 / N} Q_{m}^{(N-2) / N}} \tag{3.3}
\end{equation*}
$$

then

$$
\sup _{Z_{\varepsilon}} J_{\lambda}(u)<\frac{S^{N / 2}}{2 N Q_{m}^{(N-2) / 2}}
$$

and this obviously implies (i). For simplicity we assume that $y=0$ and set $U_{\varepsilon}=U_{\varepsilon, 0}$. If $u \in Z_{\varepsilon}$ and $\|u\|_{2^{*}, Q}=1$, then

$$
u=u^{-}+s U_{\varepsilon}=\left(u^{-}+s U_{\varepsilon}^{-}\right)+s U_{\varepsilon}^{+}
$$

where U_{ε}^{-}denotes the projection of U_{ε} onto E^{-}. We now observe that

$$
\int_{\Omega}\left(\left|\nabla U_{\varepsilon}^{-}\right|^{2}-\lambda\left(U_{\varepsilon}^{-}\right)^{2}\right) d x \leq 0
$$

so

$$
\int_{\Omega}\left|\nabla U_{\varepsilon}^{-}\right|^{2} d x \leq \lambda \int_{\Omega}\left(U_{\varepsilon}^{-}\right)^{2} d x \leq \lambda \int_{\Omega} U_{\varepsilon}^{2} d x=O\left(\varepsilon^{2}\right)
$$

Therefore

$$
\left\|U_{\varepsilon}^{-}\right\|_{2^{*}} \leq C_{2}\left(\left\|\nabla U_{\varepsilon}^{-}\right\|_{2}+\left\|U_{\varepsilon}^{-}\right\|_{2}\right) \rightarrow 0 .
$$

From this we deduce that there exists a constant $C_{3}>0$ such that $0<s \leq C_{3}$ and $\left\|u^{-}\right\|_{2^{*}} \leq C_{3}$. Since all norms in E^{-}are equivalent, we have $\left\|u^{-}\right\|_{\infty} \leq C\left\|u^{-}\right\|_{2^{*}} \leq C^{\prime}$. It follows from the convexity of $\|\cdot\|_{2^{*}, Q}^{2^{*}}$ that

$$
\begin{aligned}
1 & =\|u\|_{2^{*}, Q}^{2^{*}} \geq\left\|s U_{\varepsilon}\right\|_{2^{*}, Q}^{2^{*}}+2^{*} \int_{\Omega} Q(x) u^{-}\left(s U_{\varepsilon}\right)^{2^{*}-1} d x \\
& \geq\left\|s U_{\varepsilon}\right\|_{2^{*}, Q}^{2^{*}}-C_{4}\left\|U_{\varepsilon}\right\|_{2^{*}-1}^{2^{*}-1}
\end{aligned}
$$

This implies that

$$
\begin{equation*}
\left\|s U_{\varepsilon}\right\|_{2^{*}, Q}^{2^{*}} \leq 1+C_{5} \varepsilon^{(N-2) / 2} \tag{3.4}
\end{equation*}
$$

Since all norms in E^{-}are equivalent we see that

$$
\begin{align*}
\int_{\Omega}\left(\nabla u^{-} \nabla U_{\varepsilon}-\lambda u^{-} U_{\varepsilon}\right) d x & \leq C_{5}\left(\left\|\nabla U_{\varepsilon}\right\|_{1}+\left\|U_{\varepsilon}\right\|_{1}\right)\left\|u^{-}\right\|_{2} \tag{3.5}\\
& =O\left(\varepsilon^{(N-2) / 2}\right)\left\|u^{-}\right\|_{2}
\end{align*}
$$

It follows from the regularity of Q at 0 that

$$
\begin{equation*}
\left\|U_{\varepsilon}\right\|_{2^{*}, Q}^{2^{*}}=Q_{m} \int_{\Omega} U_{\varepsilon}^{2^{*}} d x+o(\varepsilon) \tag{3.6}
\end{equation*}
$$

By (3.5) we have

$$
\begin{align*}
\int_{\Omega}\left(|\nabla u|^{2}-\lambda u^{2}\right) d x \leq & \left(\lambda_{k-1}-\lambda\right) \int_{\Omega}\left|u^{-}\right|^{2} d x+O\left(\varepsilon^{(N-2) / 2}\right)\left\|u^{-}\right\|_{2} \tag{3.7}\\
& +s^{2} \int_{\Omega}\left(\left|\nabla U_{\varepsilon}\right|^{2}-\lambda U_{\varepsilon}^{2}\right) d x \\
= & -\left(\lambda-\lambda_{k-1}\right)\left\|u^{-}\right\|_{2}^{2}+O\left(\varepsilon^{(N-2) / 2}\right)\left\|u^{-}\right\|_{2} \\
& +s^{2} \int_{\Omega}\left(\left|\nabla U_{\varepsilon}\right|^{2}-\lambda U_{\varepsilon}^{2}\right) d x \\
= & -\left(\lambda-\lambda_{k-1}\right)\left\|u^{-}\right\|_{2}^{2}+O\left(\varepsilon^{(N-2) / 2}\right)\left\|u^{-}\right\|_{2} \\
& +\frac{\int_{\Omega}\left(\left|\nabla U_{\varepsilon}\right|^{2}-\lambda U_{\varepsilon}^{2}\right) d x}{\left(\int_{\Omega} Q(x) U_{\varepsilon}^{2^{*}} d x\right)^{2 / 2^{*}}}\left(s^{2^{*}} \int_{\Omega} Q(x) U_{\varepsilon}^{2^{*}} d x\right)^{2 / 2^{*}} .
\end{align*}
$$

To proceed further, we use the following asymptotic formula: if we let

$$
E_{\lambda}(u)=\frac{\int_{\Omega}\left(|\nabla u|^{2}-\lambda u^{2}\right) d x}{\left(\int_{\Omega} Q(x)|u|^{2^{*}} d x\right)^{2 / 2^{*}}},
$$

then

$$
\begin{equation*}
E_{\lambda}\left(U_{\varepsilon}\right)=\frac{S}{2^{2 / N}}-A_{N} H(y) \varepsilon-a_{N} \lambda \varepsilon^{2}+O\left(\varepsilon^{2}\right)+o\left(\lambda \varepsilon^{2}\right) \quad \text { if } N \geq 5 \tag{3.8}
\end{equation*}
$$

where $A_{N}>0$ and $a_{N}>0$ are constants depending on N. It follows from (3.6)-(3.8) that if $N \geq 5$ then

$$
\begin{aligned}
m_{\varepsilon} \leq & -\left(\lambda-\lambda_{k-1}\right)\left\|u^{-}\right\|_{2}^{2}+O\left(\varepsilon^{(N-2) / 2}\left\|u^{-}\right\|_{2}\right) \\
& +\left[\frac{S}{2^{2 / N}} Q_{m}^{(N-2) / N}-A_{N} Q_{m}^{-(N-2) / N} H(y) \varepsilon+o(\varepsilon)\right]\left(1+C_{4} \varepsilon^{(N-2) / 2}\right) \\
< & \frac{S}{2^{2 / N} Q_{m}^{(N-2) / N}}
\end{aligned}
$$

for ε sufficiently small.
(ii) The only change is in the estimation of m_{ε}. We have

$$
\begin{aligned}
& m_{\varepsilon} \leq-\left(\lambda-\lambda_{k-1}\right)\left\|u^{-}\right\|_{2}^{2}+O\left(\varepsilon^{(N-2) / 2}\right)\left\|u^{-}\right\|_{2} \\
& +\frac{\int_{\Omega}\left(\left|\nabla U_{\varepsilon}\right|^{2}-\lambda U_{\varepsilon}^{2}\right) d x}{\left(\int_{\Omega} Q(x) U_{\varepsilon}^{2^{*}} d x\right)^{2 / 2^{*}}}\left(\int_{\Omega} s^{2^{*}} Q(x) U_{\varepsilon}^{2^{*}} d x\right)^{2 / 2^{*}} \\
& \leq-\left(\lambda-\lambda_{k-1}\right)\left\|u^{-}\right\|_{2}^{2}+O\left(\varepsilon^{(N-2) / 2}\right)\left\|u^{-}\right\|_{2} \\
& +\frac{K_{1}+O\left(\varepsilon^{N-2}\right)-\lambda c \varepsilon^{2}}{\left(K_{2} Q_{M}+o\left(\varepsilon^{2}\right)\right)^{(N-2) / N}}\left(\int_{\Omega} s^{2^{*}} Q(x) U_{\varepsilon}^{2^{*}} d x\right)^{2 / 2^{*}} \\
& =-\left(\lambda-\lambda_{k-1}\right)\left\|u^{-}\right\|_{2}^{2}+O\left(\varepsilon^{(N-2) / 2}\right)\left\|u^{-}\right\|_{2} \\
& +\left(K_{1}+O\left(\varepsilon^{N-2}\right)-\lambda c \varepsilon^{2}\right)\left(\left(K_{2} Q_{m}\right)^{-(N-2) / N}+o\left(\varepsilon^{2}\right)\right)\left(1+C_{4} \varepsilon^{(N-2) / 2}\right) \\
& \leq \frac{S}{Q_{M}^{(N-2) / N}}+O\left(\varepsilon^{(N-2) / 2}\right)-c \lambda \varepsilon^{2},
\end{aligned}
$$

where $c>0$ is a constant independent of $\varepsilon, K_{1}=\int_{\mathbb{R}^{N}}|\nabla U|^{2} d x$ and $K_{2}=$ $\int_{\mathbb{R}^{N}} U^{2^{*}} d x$. Since $S=K_{1} / K_{2}^{(N-2) / 2}$, by taking ε sufficiently small the result follows.

Applying a min-max theorem based on topological linking [25], we derive the following existence result:

Theorem 3.3. Under assumptions (i) and (ii) of Proposition 3.2 problem (1.1) admits a nontrivial solution.

By a similar argument we can establish the existence result in the case when $\partial \Omega$ has a flat part. We need the following assumption:
(F) $\quad D(a, 0) \subset \partial \Omega$ for some $a>0$, where $D(a, 0)=B(0, a) \cap\left\{x_{N}=0\right\}$ and $\left\{x ; x \in \partial \Omega, Q(x)=Q_{m}\right\} \subset D(a, 0)$.
Theorem 3.4. Let $N \geq 5$. Suppose that (F) holds and that $D_{i} Q(y)=0$, $D_{i j} Q(y)=0, i, j=1, \ldots, N$, for some $y \in \partial \Omega$ with $Q_{m}=Q(y)$. Then problem (1.1) admits a nontrivial solution.

Proof. Without loss of generality we may assume that $y=0$. It is sufficient to notice that

$$
\frac{\int_{\Omega}\left(\left|\nabla U_{\varepsilon}\right|^{2}-\lambda U_{\varepsilon}^{2}\right) d x}{\left(\int_{\Omega} Q(x) U_{\varepsilon}^{2 *} d x\right)^{2 / 2^{*}}}=\frac{K_{2} / 2+O\left(\varepsilon^{N-2}\right)-\lambda \int_{\Omega} U_{\varepsilon}^{2} d x}{\left(\left(K_{2} / 2\right) Q_{m}+O\left(\varepsilon^{N}\right)+o\left(\varepsilon^{2}\right)\right)^{(N-2) / N}} .
$$

As is easy to see, the above expression is strictly less than $S /\left(2^{2 / N} Q_{m}^{(N-2) / N}\right)$ for ε sufficiently small. The remaining part of the proof is the same as in Theorem 3.3.

REFERENCES

[1] Adimurthi and G. Mancini, Neumann problem for elliptic equations with critical nonlinearity, in: Nonlinear Analysis, A Tribute in Honour of G. Prodi, Scuola Norm. Sup. Pisa, 1991, 9-25.
[2] -, -, Geometry and topology of the boundary in critical Neumann problem, J. Reine Angew. Math. 456 (1994), 1-18.
[3] Adimurthi, G. Mancini and S. L. Yadava, The role of the mean curvature in semilinear Neumann problem involving critical exponent, Comm. Partial Differential Equations 20 (1995), 591-631.
[4] Adimurthi, F. Pacella and S. L. Yadava, Interaction between the geometry of the boundary and positive solutions of a semilinear Neumann problem with critical nonlinearity, J. Funct. Anal. 113 (1993), 318-350.
[5] -, —, —, Characterization of concentration points and L^{∞}-estimates for solutions of a semilinear Neumann problem involving the critical Sobolev exponent, Differential Integral Equations 8 (1995), 31-68.
[6] Adimurthi and S. L. Yadava, Critical Sobolev exponent problem in $\mathbb{R}^{n}(n \geq 4)$ with Neumann boundary condition, Proc. Indian Acad. Sci. 100 (1990), 275-284.
[7] H. Brézis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math. 36 (1983), 437-477.
[8] J. Chabrowski, On the nonlinear Neumann problem with indefinite weight and Sobolev critical nonlinearity, Bull. Polish Acad. Sci., to appear.
[9] - Mean curvature and least energy solutions for the critical Neumann problem with weight, Boll. Un. Mat. Ital., to appear.
[10] J. Chabrowski and M. Willem, Least energy solutions of a critical Neumann problem with weight, Calc. Var. Partial Differential Equations, to appear.
[11] J. F. Escobar, Positive solutions for some nonlinear elliptic equations with critical Sobolev exponents, Comm. Pure Appl. Math. 40 (1987), 623-657.
[12] M. Grossi and F. Pacella, Positive solutions of nonlinear elliptic equations with critical Sobolev exponent and mixed boundary conditions, Proc. Roy. Soc. Edinburgh Sect. A 116 (1990), 23-43.
[13] C. Gui and N. Ghoussoub, Multi-peak solutions for a semilinear Neumann problem involving the critical Sobolev exponent, Math. Z. 229 (1998), 443-474.
[14] P. L. Lions, The concentration-compactness principle in the calculus of variations. The limit case. Parts 1, 2, Rev. Mat. Iberoamericana 1 (1985), no. 1, 145-201 and no. 2, 45-121.
[15] P. L. Lions, F. Pacella and M. Tricarico, Best constants in Sobolev inequalities for functions vanishing on some part of the boundary and related questions, Indiana Univ. Math. J. 37 (1988), 301-324.
[16] W. M. Ni, X. B. Pan and I. Takagi, Singular behavior of least-energy solutions of a semilinear Neumann problem involving critical Sobolev exponents, Duke Math. J. 67 (1992), 1-20.
[17] W. M. Ni and I. Takagi, On the shape of least-energy solutions to a semilinear Neumann problem, Comm. Pure Appl. Math. 44 (1991), 819-851.
[18] X. J. Wang, Neumann problems of semilinear elliptic equations involving critical Sobolev exponents, J. Differential Equations 93 (1991), 283-310.
[19] Z. Q. Wang, On the shape of solutions for a nonlinear Neumann problem in symmetric domains, in: Exploiting Symmetry in Applied and Numerical Analysis, Lectures in Appl. Math. 29, Amer. Math. Soc., Providence, 1993, 433-442.
[20] -, Remarks on a nonlinear Neumann problem with critical exponent, Houston J. Math. 20 (1994), 671-684.
[21] -, High-energy and multi-peaked solutions for a nonlinear Neumann problem with critical exponents, Proc. Roy. Soc. Edinburgh Sect. A 125 (1995), 1003-1029.
[22] - , The effect of the domain geometry on the number of positive solutions of Neumann problems with critical exponents, Differential Integral Equations 8 (1995), 1533-1554.
[23] -, Construction of multi-peaked solutions for a nonlinear Neumann problem with critical exponent in symmetric domains, Nonlinear Anal. 27 (1996), 1281-1306.
[24] -, Existence and nonexistence of G-least energy solutions for a nonlinear Neumann problem with critical exponent in symmetric domains, Calc. Var. Partial Differential Equations 8 (1999), 109-122.
[25] M. Willem, Min-max Theorems, Birkhäuser, Boston, 1996.
[26] M. Zhu, Sobolev inequalities with interior norms, Calc. Var. Partial Differential Equations 8 (1999), 27-43.

Department of Mathematics
University of Queensland
St. Lucia, Qld 4072, Australia
E-mail: jhc@maths.uq.edu.au

School of Mathematics and Statistics University of Sydney
Sydney, NSW 2006, Australia
E-mail: shusen@maths.usyd.edu.au

Received 28 January 2002;
revised 8 April 2002

