VOL. 94

2002

NO. 1

ON THE NONLINEAR NEUMANN PROBLEM AT RESONANCE WITH CRITICAL SOBOLEV NONLINEARITY

BҮ

J. CHABROWSKI (Brisbane) and SHUSEN YAN (Sydney)

Abstract. We consider the Neumann problem for the equation $-\Delta u - \lambda u = Q(x)|u|^{2^*-2}u$, $u \in H^1(\Omega)$, where Q is a positive and continuous coefficient on $\overline{\Omega}$ and λ is a parameter between two consecutive eigenvalues λ_{k-1} and λ_k . Applying a min-max principle based on topological linking we prove the existence of a solution.

1. Introduction. In this paper we are concerned with the semilinear Neumann problem

(1.1)
$$\begin{cases} -\Delta u - \lambda u = Q(x)|u|^{2^*-2}u & \text{in } \Omega, \\ \frac{\partial}{\partial \nu}u(x) = 0 & \text{on } \partial\Omega, \end{cases}$$

where $\Omega \subset \mathbb{R}^N$ is a bounded domain with a smooth boundary $\partial \Omega$ and ν is the unit outward normal at the boundary $\partial \Omega$. The coefficient Q is continuous and positive on $\overline{\Omega}$ and $2^* = 2N/(N-2), N \geq 3$, denotes the critical Sobolev exponent. The parameter λ satisfies the inequality

(1.2)
$$\lambda_{k-1} < \lambda < \lambda_k$$

for some $k \ge 2$. Here $\{\lambda_k\}, k = 1, 2, \dots$, denotes the sequence of eigenvalues for the Neumann problem

$$\begin{cases} -\Delta u = \lambda u & \text{in } \Omega, \\ \frac{\partial}{\partial \nu} u(x) = 0 & \text{on } \partial \Omega. \end{cases}$$

Each eigenvalue is repeated according to its multiplicity. It is well known that $\lambda_1 = 0 < \lambda_2 \leq \lambda_3 \leq \ldots$ and the eigenspace corresponding to $\lambda_1 = 0$ consists of constant functions.

If the parameter λ does not interfere with the spectrum of the operator $-\Delta$, then problem (1.1) can be written in the form

(1.3)
$$\begin{cases} -\Delta u + \lambda u = Q(x)|u|^{2^*-2}u & \text{in } \Omega, \\ \frac{\partial}{\partial \nu}u(x) = 0 & \text{on } \partial\Omega, \end{cases}$$

2000 Mathematics Subject Classification: 35B33, 35J65, 35J20.

Key words and phrases: Neumann problem, critical Sobolev exponent, linking.

where $\lambda > 0$. Problem (1.3) has an extensive literature, specially in the case $Q(x) \equiv 1$ on Ω ; we refer to papers [1]–[6], [12], [19], [20]–[24], [16]–[18]. Solutions of (1.3) were obtained as minimizers of the variational problem

(1.4)
$$m_{\lambda} = \inf \left\{ \int_{\Omega} (|\nabla u|^2 + \lambda u^2) \, dx; \, u \in H^1(\Omega), \, \int_{\Omega} Q(x) |u|^{2^*} \, dx = 1 \right\}.$$

A suitable multiple of a minimizer for m_{λ} is a solution of problem (1.3). These solutions are called the *least energy solutions*. The least energy solutions can be chosen to be positive and have a tendency to concentrate at the most curved part of the boundary of $\partial \Omega$ as $\lambda \to \infty$. Some extensions of these results to problem (1.3) with $Q(x) \not\equiv \text{const can be found in [8]-[10]}$.

To describe these results and supply some motivation for our paper we need some notations. Let $Q_M = \max_{x \in \overline{\Omega}} Q(x)$ and $Q_m = \max_{x \in \partial \Omega} Q(x)$. By H(y) we denote the mean curvature of $\partial \Omega$ at $y \in \partial \Omega$ with respect to the inner normal to $\partial \Omega$. The existence of least energy solutions has been examined in papers [10] and [8]. In particular, if $Q_M \leq 2^{2/(N-2)}Q_m$ and $Q_m = Q(y)$ with $y \in \partial \Omega$ satisfying

(1.5)
$$|Q(x) - Q(y)| = o(|x - y|)$$
 for x near y,

then problem (1.1) has a least energy solution for every $\lambda > 0$. If $Q_M > 2^{2/(N-2)}Q_m$, then there exists $\Lambda > 0$ such that problem (1.1) has a least energy solution for each $0 < \lambda \leq \Lambda$ and no least energy solution for $\lambda > \Lambda$. A similar situation occurs if

$$\{y; y \in \partial\Omega, Q(y) = Q_m\} \subset \{y; y \in \partial\Omega, H(y) < 0\}.$$

In this case, if $Q_M \leq 2^{2/(N-2)}Q_m$, there exists a constant $\overline{\Lambda} > 0$ such that problem (1.1) has a least energy solution for each $0 < \lambda \leq \overline{\Lambda}$ and no least energy solution for each $\lambda > \overline{\Lambda}$. The existence of positive solutions in the case $\lambda = 0$ has been established in the paper [9]. In this case positive solutions exist provided Q changes sign and $\int_{\Omega} Q(x) dx < 0$. If λ interferes with the spectrum of $-\Delta$, then the method of the constrained minimization (1.4) breaks down as the quadratic functional appearing in m_{λ} changes sign. To obtain the existence of solutions in this case we apply a min-max method based on topological linking [25]. The main existence results of this paper are contained in Section 3: Theorems 3.3 and 3.4. To apply the topological linking we need to investigate Palais–Smale sequences of the variational functional for problem (1.1).

We recall that a C^1 functional $\phi : X \to \mathbb{R}$ on a Banach space X satisfies the *Palais–Smale condition* at a level c ((PS)_c condition for short) if each sequence $\{x_n\} \subset X$ such that

(*)
$$\phi(x_n) \to c$$
,
(**) $\phi'(x_n) \to 0$ in X^*

is relatively compact in X.

Finally, any sequence $\{x_n\}$ satisfying (*) and (**) is called a *Palais*-Smale sequence at level c (a (PS)_c sequence for short).

Throughout this paper we denote strong convergence by " \rightarrow " and weak convergence by " \rightarrow ". The norms in the Lebesgue spaces $L^q(\Omega)$ are denoted by $\|\cdot\|_q$. By $H^1(\Omega)$ we denote the standard Sobolev space on Ω equipped with the norm

$$||u||^2 = \int_{\Omega} (|\nabla u|^2 + u^2) \, dx.$$

The paper is organized as follows. In Section 2 we determine the energy level of the variational functional for (1.1) below which the Palais–Smale condition holds. The approach is based on the P. L. Lions concentrationcompactness principle. Section 3 is devoted to the existence results for (1.1). First we verify that the variational functional for (1.1) has the geometry of topological linking. We use instantons to show that at a min-max level the Palais–Smale condition holds. This restricts the validity of the existence results to dimensions $N \geq 5$ in Theorem 3.3 and $N \geq 7$ in Theorem 3.4.

2. The Palais–Smale condition. Solutions to problem (1.1) will be found as critical points of the variational functional

$$J_{\lambda}(u) = \frac{1}{2} \int_{\Omega} (|\nabla u|^2 - \lambda u^2) \, dx - \frac{1}{2^*} \int_{\Omega} Q(x) |u|^{2^*} \, dx$$

for $u \in H^1(\Omega)$.

LEMMA 2.1. Let $\{u_m\} \subset H^1(\Omega)$ be such that $J_{\lambda}(u_m) \to c$ and $J'_{\lambda}(u_m) \to 0$ in $H^{-1}(\Omega)$. Then the sequence $\{u_m\}$ is bounded in $H^1(\Omega)$.

Proof. We argue by contradiction. Assume that $||u_m|| \to \infty$. We set $v_m = u_m/||u_m||$. Then

(2.1)
$$\int_{\Omega} (\nabla u_m \nabla \phi - \lambda u_m \phi) \, dx - \int_{\Omega} Q(x) |u_m|^{2^* - 2} u_m \phi \, dx \to 0$$

as $m \to \infty$ for each $\phi \in H^1(\Omega)$. Since $||v_m|| = 1$ for each m, we may assume that $v_m \rightharpoonup v$ in $H^1(\Omega)$ and $v_m \rightarrow v$ in $L^p(\Omega)$ for each $2 \le p < 2^*$. Consequently, we deduce from (2.1) that

(2.2)
$$\int_{\Omega} Q(x)|v|^{2^*-2}v\phi\,dx = 0$$

for each $\phi \in H^1(\Omega)$. This implies that v = 0 a.e. on Ω . Since $\{u_m\}$ is a Palais–Smale sequence we see that

(2.3)
$$\frac{1}{2} \int_{\Omega} (|\nabla v_m|^2 - \lambda v_m^2) \, dx - \frac{1}{2^*} ||u_m||^{2^* - 2} \int_{\Omega} Q(x) |v_m|^{2^*} \, dx \to 0$$

and

(2.4)
$$\int_{\Omega} (|\nabla v_m|^2 - \lambda v_m^2) \, dx - \|u_m\|^{2^* - 2} \int_{\Omega} Q(x) |v_m|^{2^*} \, dx \to 0$$

as $m \to \infty$. Since $v_m \to 0$ in $L^2(\Omega)$, (2.3) and (2.4) can be rewritten as

$$\frac{1}{2} \int_{\Omega} |\nabla v_m|^2 \, dx - \frac{1}{2^*} \, \|u_m\|^{2^* - 2} \int_{\Omega} Q(x) |v_m|^{2^*} \, dx \to 0$$

and

$$\int_{\Omega} |\nabla v_m|^2 \, dx - \|u_m\|^{2^* - 2} \int_{\Omega} Q(x) |v_m|^{2^*} \, dx \to 0$$

This is only possible when $\int_{\Omega} |\nabla v_m|^2 dx \to 0$ and $||u_m||^{2^*-2} \int_{\Omega} Q(x) |v_m|^{2^*} dx \to 0$, which is impossible.

PROPOSITION 2.2. (i) Let $Q_M \leq 2^{2/(N-2)}Q_m$. Then J_{λ} satisfies the (PS)_c condition with

$$c < \frac{S^{N/2}}{2NQ_m^{(N-2)/2}}.$$

(ii) Let $Q_M > 2^{2/(N-2)}Q_m$. Then J_λ satisfies the (PS)_c condition with $c < \frac{S^{N/2}}{NQ_M^{(N-2)/2}}.$

Proof. (i) Let $\{u_m\}$ be a (PS)_c sequence with

$$c < \frac{S^{N/2}}{2NQ_m^{(N-2)/2}}$$

and $J'_{\lambda}(u_m) \to 0$ in $H^{-1}(\Omega)$. By Lemma 2.1, $\{u_m\}$ is bounded in $H^1(\Omega)$ and we may assume that $u_m \rightharpoonup u$ in $H^1(\Omega)$ and $u_m \rightarrow u$ in $L^p(\Omega)$, $2 \le p < 2^*$. By the concentration-compactness principle [14], we may assume that

$$|u_m|^{2^*} \rightharpoonup |u|^{2^*} + \sum_{j \in J} \nu_j \delta_{x_j}$$
 and $|\nabla u_m|^2 \rightharpoonup |\nabla u|^2 + \sum_{j \in J} \mu_j \delta_{x_j}$

in the sense of measure, where $\nu_j > 0$, $\mu_j > 0$ are constants and the set J is at most countable. Moreover,

if
$$x_j \in \Omega$$
, then $S\nu_j^{2/2^*} \le \mu_j$,
if $x_j \in \partial \Omega$, then $\frac{S\nu_j^{2/2^*}}{2^{2/N}} \le \mu_j$.

Fix x_j . Using a family of test functions concentrating at x_j we check that $Q(x_j)\nu_j = \mu_j, j \in J$. Hence, if $\nu_j > 0$, then

(2.5)
$$\frac{S^{N/2}}{Q(x_j)^{N/2}} \le \nu_j \quad \text{if } x_j \in \Omega,$$

(2.6)

$$\frac{S^{N/2}}{2Q(x_j)^{N/2}} \le \nu_j \quad \text{if } x_j \in \partial\Omega.$$

We now write

$$J_{\lambda}(u_m) - \frac{1}{2} \langle J_{\lambda}'(u_m), u_m \rangle = \frac{1}{N} \int_{\Omega} Q(x) |u_m|^{2^*} dx$$

and letting $m \to \infty$ we get

$$c \ge \frac{1}{N} \int_{\Omega} Q(x) |u|^{2^*} dx + \frac{1}{N} \sum_{j \in J} Q(x_j) \nu_j.$$

If $\nu_i > 0$ for some $j \in J$, then

$$c \ge \frac{S^{N/2}}{NQ(x_j)^{N/2}} Q(x_j) \ge \frac{S^{N/2}}{NQ_M^{(N-2)/2}} \ge \frac{S^{N/2}}{2NQ_m^{(N-2)/2}} \quad \text{if } x_j \in \Omega,$$

$$c \ge \frac{S^{N/2}}{2NQ(x_j)^{N/2}} Q(x_j) \ge \frac{S^{N/2}}{2NQ_m^{(N-2)/2}} \quad \text{if } x_j \in \partial\Omega.$$

We see that in both cases we obtain a contradiction. This yields $u_m \to u$ in $L^{2^*}(\Omega)$ and in $L^2(\Omega)$. Using the fact that $J'_{\lambda}(u_m) \to 0$ in $H^{-1}(\Omega)$, it is easy to show that $\nabla u_m \to \nabla u$ in $L^2(\Omega)$ and the result follows.

In a similar manner we prove (ii).

3. Existence of solutions of problem (1.1). Throughout this section we assume that λ satisfies (1.2). Let $\{e_j\}$ be the sequence of eigenfunctions corresponding to $\{\lambda_j\}$ and set $E^- = \operatorname{span}\{e_1, \ldots, e_{k-1}\}$. We have the orthogonal decomposition of $H^1(\Omega)$,

$$H^1(\Omega) = E^- \oplus E^+.$$

Let $z_{\circ} \in E^+ - \{0\}$ and define the set

$$M = \{ u \in H^1(\Omega); \ u = v + sz_{\circ}, \ v \in E^-, \ s \ge 0 \text{ and } \|u\| \le R \}$$

(see [25, Section 2.7]).

The proof of the following result is standard.

PROPOSITION 3.1. There exist $\alpha > 0$, $\rho > 0$ and $R > \rho$ (R depending on z_{\circ}) such that

$$J_{\lambda}(u) \begin{cases} \geq \alpha & \text{for all } u \in E^+ \cap \partial B(0, \varrho), \\ \leq 0 & \text{for all } u \in \partial M. \end{cases}$$

Let

$$U(x) = c_N / (1 + |x|^2)^{(N-2)/2}$$

where $c_N = (N(N-2))^{(N-2)/4}$. It is known that $\|\nabla U\|_2^2 = \|U\|_{2^*}^{2^*} = S^{N/2}$.

For $\varepsilon > 0$ and $y \in \mathbb{R}^N$ we set

$$U_{\varepsilon,y}(x) = U\left(\frac{x-y}{\varepsilon}\right) = \frac{c_N \varepsilon^{(N-2)/2}}{(\varepsilon^2 + |x|^2)^{(N-2)/2}}$$

Our argument is based on topological linking. Towards this end we define

$$Z_{\varepsilon} = E^{-} \oplus \mathbb{R}U_{\varepsilon,y} = E^{-} \oplus \mathbb{R}U_{\varepsilon,y}^{+},$$

where $U_{\varepsilon,y}^+$ denotes the projection of $U_{\varepsilon,y}$ onto E^+ . From now on we use $z_{\circ} = U_{\varepsilon,y}^+$ in the definition of M.

PROPOSITION 3.2. (i) Let $N \geq 5$. Suppose that $Q_M \leq 2^{2/(N-2)}Q_m$ and that $Q(y) = Q_m$ for some $y \in \partial \Omega$ with H(y) > 0 and

$$|Q(x) - Q(y)| = o(|x - y|) \quad for \ x \ near \ y.$$

Then

(3.1)
$$\sup_{u \in M} J_{\lambda}(u) < \frac{S^{N/2}}{2NQ_m^{(N-2)/2}}$$

for $\varepsilon > 0$ sufficiently small.

(ii) Let $N \ge 7$. Suppose that $Q_M > 2^{2/(N-2)}Q_m$ and that $D_iQ(y) = 0$, $D_{ij}^2Q(y) = 0, i, j = 1, ..., N$, for some $y \in \{x; Q(x) = Q_M\}$. Then

(3.2)
$$\sup_{u \in M} J_{\lambda}(u) < \frac{S^{N/2}}{NQ_M^{(N-2)/2}}.$$

Proof. (i) We follow, with some modifications, the argument on pp. 52–53 in [25]. If $u \neq 0$, then

$$\max_{t \ge 0} J_{\lambda}(tu) = \frac{1}{N} \cdot \frac{\{\int_{\Omega} (|\nabla u|^2 - \lambda u^2) \, dx\}^{N/2}}{\{\int_{\Omega} Q(x) |u|^{2^*} \, dx\}^{(N-2)/2}}$$

whenever the integral in the numerator is positive, and the maximum is 0 otherwise. In what follows we always denote by C_i positive constants independent of ε . It is clear that if

(3.3)
$$m_{\varepsilon} = \sup_{u \in Z_{\varepsilon}, \, \|u\|_{2^*, Q} = 1} \int_{\mathbb{R}^N} (|\nabla u|^2 - \lambda u^2) \, dx < \frac{S}{2^{2/N} Q_m^{(N-2)/N}},$$

then

$$\sup_{Z_{\varepsilon}} J_{\lambda}(u) < \frac{S^{N/2}}{2NQ_m^{(N-2)/2}}$$

37/0

and this obviously implies (i). For simplicity we assume that y = 0 and set $U_{\varepsilon} = U_{\varepsilon,0}$. If $u \in Z_{\varepsilon}$ and $||u||_{2^*,Q} = 1$, then

$$u = u^- + sU_{\varepsilon} = (u^- + sU_{\varepsilon}^-) + sU_{\varepsilon}^+,$$

where U_{ε}^{-} denotes the projection of U_{ε} onto E^{-} . We now observe that

$$\int_{\Omega} (|\nabla U_{\varepsilon}^{-}|^{2} - \lambda (U_{\varepsilon}^{-})^{2}) \, dx \leq 0,$$

 \mathbf{SO}

$$\int_{\Omega} |\nabla U_{\varepsilon}^{-}|^{2} dx \leq \lambda \int_{\Omega} (U_{\varepsilon}^{-})^{2} dx \leq \lambda \int_{\Omega} U_{\varepsilon}^{2} dx = O(\varepsilon^{2})$$

Therefore

$$||U_{\varepsilon}^{-}||_{2^{*}} \le C_{2}(||\nabla U_{\varepsilon}^{-}||_{2} + ||U_{\varepsilon}^{-}||_{2}) \to 0.$$

From this we deduce that there exists a constant $C_3 > 0$ such that $0 < s \leq C_3$ and $||u^-||_{2^*} \leq C_3$. Since all norms in E^- are equivalent, we have $||u^-||_{\infty} \leq C||u^-||_{2^*} \leq C'$. It follows from the convexity of $|| \cdot ||_{2^*,Q}^{2^*}$ that

$$1 = \|u\|_{2^*,Q}^{2^*} \ge \|sU_{\varepsilon}\|_{2^*,Q}^{2^*} + 2^* \int_{\Omega} Q(x)u^{-}(sU_{\varepsilon})^{2^*-1} dx$$
$$\ge \|sU_{\varepsilon}\|_{2^*,Q}^{2^*} - C_4 \|U_{\varepsilon}\|_{2^*-1}^{2^*-1}.$$

This implies that

(3.4)
$$||sU_{\varepsilon}||_{2^*,Q}^{2^*} \le 1 + C_5 \varepsilon^{(N-2)/2}$$

Since all norms in E^- are equivalent we see that

(3.5)
$$\int_{\Omega} (\nabla u^{-} \nabla U_{\varepsilon} - \lambda u^{-} U_{\varepsilon}) dx \leq C_{5} (\|\nabla U_{\varepsilon}\|_{1} + \|U_{\varepsilon}\|_{1}) \|u^{-}\|_{2}$$
$$= O(\varepsilon^{(N-2)/2}) \|u^{-}\|_{2}.$$

It follows from the regularity of Q at 0 that

(3.6)
$$\|U_{\varepsilon}\|_{2^*,Q}^{2^*} = Q_m \int_{\Omega} U_{\varepsilon}^{2^*} dx + o(\varepsilon)$$

By (3.5) we have

$$(3.7) \quad \int_{\Omega} (|\nabla u|^{2} - \lambda u^{2}) \, dx \leq (\lambda_{k-1} - \lambda) \int_{\Omega} |u^{-}|^{2} \, dx + O(\varepsilon^{(N-2)/2}) ||u^{-}||_{2} + s^{2} \int_{\Omega} (|\nabla U_{\varepsilon}|^{2} - \lambda U_{\varepsilon}^{2}) \, dx = -(\lambda - \lambda_{k-1}) ||u^{-}||_{2}^{2} + O(\varepsilon^{(N-2)/2}) ||u^{-}||_{2} + s^{2} \int_{\Omega} (|\nabla U_{\varepsilon}|^{2} - \lambda U_{\varepsilon}^{2}) \, dx = -(\lambda - \lambda_{k-1}) ||u^{-}||_{2}^{2} + O(\varepsilon^{(N-2)/2}) ||u^{-}||_{2} + \frac{\int_{\Omega} (|\nabla U_{\varepsilon}|^{2} - \lambda U_{\varepsilon}^{2}) \, dx}{(\int_{\Omega} Q(x) U_{\varepsilon}^{2^{*}} \, dx)^{2/2^{*}}} \left(s^{2^{*}} \int_{\Omega} Q(x) U_{\varepsilon}^{2^{*}} \, dx\right)^{2/2^{*}}.$$

To proceed further, we use the following asymptotic formula: if we let

$$E_{\lambda}(u) = \frac{\int_{\Omega} (|\nabla u|^2 - \lambda u^2) \, dx}{(\int_{\Omega} Q(x) |u|^{2^*} \, dx)^{2/2^*}},$$

then

(3.8)
$$E_{\lambda}(U_{\varepsilon}) = \frac{S}{2^{2/N}} - A_N H(y)\varepsilon - a_N \lambda \varepsilon^2 + O(\varepsilon^2) + o(\lambda \varepsilon^2)$$
 if $N \ge 5$,

where $A_N > 0$ and $a_N > 0$ are constants depending on N. It follows from (3.6)–(3.8) that if $N \ge 5$ then

$$m_{\varepsilon} \leq -(\lambda - \lambda_{k-1}) \|u^{-}\|_{2}^{2} + O(\varepsilon^{(N-2)/2} \|u^{-}\|_{2}) \\ + \left[\frac{S}{2^{2/N}} Q_{m}^{(N-2)/N} - A_{N} Q_{m}^{-(N-2)/N} H(y) \varepsilon + o(\varepsilon) \right] (1 + C_{4} \varepsilon^{(N-2)/2}) \\ < \frac{S}{2^{2/N} Q_{m}^{(N-2)/N}}$$

for ε sufficiently small.

(ii) The only change is in the estimation of m_{ε} . We have

$$\begin{split} m_{\varepsilon} &\leq -(\lambda - \lambda_{k-1}) \|u^{-}\|_{2}^{2} + O(\varepsilon^{(N-2)/2}) \|u^{-}\|_{2} \\ &+ \frac{\int_{\Omega} (|\nabla U_{\varepsilon}|^{2} - \lambda U_{\varepsilon}^{2}) \, dx}{(\int_{\Omega} Q(x) U_{\varepsilon}^{2^{*}} \, dx)^{2/2^{*}}} \Big(\int_{\Omega} s^{2^{*}} Q(x) U_{\varepsilon}^{2^{*}} \, dx \Big)^{2/2^{*}} \\ &\leq -(\lambda - \lambda_{k-1}) \|u^{-}\|_{2}^{2} + O(\varepsilon^{(N-2)/2}) \|u^{-}\|_{2} \\ &+ \frac{K_{1} + O(\varepsilon^{N-2}) - \lambda c \varepsilon^{2}}{(K_{2} Q_{M} + o(\varepsilon^{2}))^{(N-2)/N}} \Big(\int_{\Omega} s^{2^{*}} Q(x) U_{\varepsilon}^{2^{*}} \, dx \Big)^{2/2^{*}} \\ &= -(\lambda - \lambda_{k-1}) \|u^{-}\|_{2}^{2} + O(\varepsilon^{(N-2)/2}) \|u^{-}\|_{2} \\ &+ (K_{1} + O(\varepsilon^{N-2}) - \lambda c \varepsilon^{2}) ((K_{2} Q_{m})^{-(N-2)/N} + o(\varepsilon^{2}))(1 + C_{4} \varepsilon^{(N-2)/2}) \\ &\leq \frac{S}{Q_{M}^{(N-2)/N}} + O(\varepsilon^{(N-2)/2}) - c \lambda \varepsilon^{2}, \end{split}$$

where c > 0 is a constant independent of ε , $K_1 = \int_{\mathbb{R}^N} |\nabla U|^2 dx$ and $K_2 = \int_{\mathbb{R}^N} U^{2^*} dx$. Since $S = K_1/K_2^{(N-2)/2}$, by taking ε sufficiently small the result follows.

Applying a min-max theorem based on topological linking [25], we derive the following existence result:

THEOREM 3.3. Under assumptions (i) and (ii) of Proposition 3.2 problem (1.1) admits a nontrivial solution. By a similar argument we can establish the existence result in the case when $\partial \Omega$ has a flat part. We need the following assumption:

(F) $D(a,0) \subset \partial \Omega$ for some a > 0, where $D(a,0) = B(0,a) \cap \{x_N = 0\}$ and $\{x; x \in \partial \Omega, Q(x) = Q_m\} \subset D(a,0)$.

THEOREM 3.4. Let $N \geq 5$. Suppose that (F) holds and that $D_iQ(y) = 0$, $D_{ij}Q(y) = 0$, i, j = 1, ..., N, for some $y \in \partial \Omega$ with $Q_m = Q(y)$. Then problem (1.1) admits a nontrivial solution.

Proof. Without loss of generality we may assume that y = 0. It is sufficient to notice that

$$\frac{\int_{\Omega} (|\nabla U_{\varepsilon}|^2 - \lambda U_{\varepsilon}^2) \, dx}{(\int_{\Omega} Q(x) U_{\varepsilon}^{2*} \, dx)^{2/2*}} = \frac{K_2/2 + O(\varepsilon^{N-2}) - \lambda \int_{\Omega} U_{\varepsilon}^2 \, dx}{((K_2/2)Q_m + O(\varepsilon^N) + o(\varepsilon^2))^{(N-2)/N}}.$$

As is easy to see, the above expression is strictly less than $S/(2^{2/N}Q_m^{(N-2)/N})$ for ε sufficiently small. The remaining part of the proof is the same as in Theorem 3.3.

REFERENCES

- Adimurthi and G. Mancini, Neumann problem for elliptic equations with critical nonlinearity, in: Nonlinear Analysis, A Tribute in Honour of G. Prodi, Scuola Norm. Sup. Pisa, 1991, 9–25.
- [2] —, —, Geometry and topology of the boundary in critical Neumann problem, J. Reine Angew. Math. 456 (1994), 1–18.
- [3] Adimurthi, G. Mancini and S. L. Yadava, The role of the mean curvature in semilinear Neumann problem involving critical exponent, Comm. Partial Differential Equations 20 (1995), 591–631.
- [4] Adimurthi, F. Pacella and S. L. Yadava, Interaction between the geometry of the boundary and positive solutions of a semilinear Neumann problem with critical nonlinearity, J. Funct. Anal. 113 (1993), 318–350.
- [5] -, -, -, -, Characterization of concentration points and L^{∞} -estimates for solutions of a semilinear Neumann problem involving the critical Sobolev exponent, Differential Integral Equations 8 (1995), 31–68.
- [6] Adimurthi and S. L. Yadava, Critical Sobolev exponent problem in \mathbb{R}^n $(n \ge 4)$ with Neumann boundary condition, Proc. Indian Acad. Sci. 100 (1990), 275–284.
- [7] H. Brézis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math. 36 (1983), 437–477.
- [8] J. Chabrowski, On the nonlinear Neumann problem with indefinite weight and Sobolev critical nonlinearity, Bull. Polish Acad. Sci., to appear.
- [9] —, Mean curvature and least energy solutions for the critical Neumann problem with weight, Boll. Un. Mat. Ital., to appear.
- [10] J. Chabrowski and M. Willem, Least energy solutions of a critical Neumann problem with weight, Calc. Var. Partial Differential Equations, to appear.
- [11] J. F. Escobar, Positive solutions for some nonlinear elliptic equations with critical Sobolev exponents, Comm. Pure Appl. Math. 40 (1987), 623–657.

- [12] M. Grossi and F. Pacella, Positive solutions of nonlinear elliptic equations with critical Sobolev exponent and mixed boundary conditions, Proc. Roy. Soc. Edinburgh Sect. A 116 (1990), 23–43.
- [13] C. Gui and N. Ghoussoub, Multi-peak solutions for a semilinear Neumann problem involving the critical Sobolev exponent, Math. Z. 229 (1998), 443–474.
- [14] P. L. Lions, The concentration-compactness principle in the calculus of variations. The limit case. Parts 1, 2, Rev. Mat. Iberoamericana 1 (1985), no. 1, 145–201 and no. 2, 45–121.
- [15] P. L. Lions, F. Pacella and M. Tricarico, Best constants in Sobolev inequalities for functions vanishing on some part of the boundary and related questions, Indiana Univ. Math. J. 37 (1988), 301–324.
- [16] W. M. Ni, X. B. Pan and I. Takagi, Singular behavior of least-energy solutions of a semilinear Neumann problem involving critical Sobolev exponents, Duke Math. J. 67 (1992), 1–20.
- [17] W. M. Ni and I. Takagi, On the shape of least-energy solutions to a semilinear Neumann problem, Comm. Pure Appl. Math. 44 (1991), 819–851.
- [18] X. J. Wang, Neumann problems of semilinear elliptic equations involving critical Sobolev exponents, J. Differential Equations 93 (1991), 283–310.
- [19] Z. Q. Wang, On the shape of solutions for a nonlinear Neumann problem in symmetric domains, in: Exploiting Symmetry in Applied and Numerical Analysis, Lectures in Appl. Math. 29, Amer. Math. Soc., Providence, 1993, 433–442.
- [20] —, Remarks on a nonlinear Neumann problem with critical exponent, Houston J. Math. 20 (1994), 671–684.
- [21] —, High-energy and multi-peaked solutions for a nonlinear Neumann problem with critical exponents, Proc. Roy. Soc. Edinburgh Sect. A 125 (1995), 1003–1029.
- [22] —, The effect of the domain geometry on the number of positive solutions of Neumann problems with critical exponents, Differential Integral Equations 8 (1995), 1533–1554.
- [23] —, Construction of multi-peaked solutions for a nonlinear Neumann problem with critical exponent in symmetric domains, Nonlinear Anal. 27 (1996), 1281–1306.
- [24] —, Existence and nonexistence of G-least energy solutions for a nonlinear Neumann problem with critical exponent in symmetric domains, Calc. Var. Partial Differential Equations 8 (1999), 109–122.
- [25] M. Willem, *Min-max Theorems*, Birkhäuser, Boston, 1996.
- [26] M. Zhu, Sobolev inequalities with interior norms, Calc. Var. Partial Differential Equations 8 (1999), 27–43.

Department of Mathematics	School of Mathematics and Statistics
University of Queensland	University of Sydney
St. Lucia, Qld 4072, Australia	Sydney, NSW 2006, Australia
E-mail: jhc@maths.uq.edu.au	E-mail: shusen@maths.usyd.edu.au

Received 28 January 2002; revised 8 April 2002 (4163)